Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.21050203
Biotechnology Research and Innovation Journal
Review Article

Endophytic bacteria: a possible path towards a sustainable agriculture

Marcelino Lourenço Xavier, Amanda Ribeiro Bosch, Susan Grace Karp, Carlos Ricardo Soccol

Downloads: 13
Views: 973

Abstract

Endophytic bacteria are a promising tool in the development of a sustainable agriculture. Their biological mechanisms of atmospheric nitrogen fixation, phosphate solubilization, production of phytohormones and inhibition of plant pathogens and pests promote plant growth avoiding the need for chemical fertilizers and control agents. A patent search was carried out in the Derwent Innovations Index database to assess the panorama of technological development related to the use of endophytic bacteria in three important agricultural crops, i.e., corn, soybean, and sugarcane. The rank of patent publications by country was leaded by China, USA, Canada, and Brazil, and among these countries, China, USA, and Brazil lead the worldwide production of grains. Several new bacterial strains were protected as bioinoculants or biopesticides. Formulations containing endophytic bacteria were mostly intended for seed coating or spraying and acted directly in the control of pests and diseases, as well as in increasing resistance to environmental
stress. In many cases, they acted in promoting the growth of plants producing hormones that regulate or increase nutrient uptake.

Keywords

Nitrogen fixation; Phosphate solubilization; Phytohormones; Biological control; Technological development

References

Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, 221, 36-49. http://dx.doi.org/10.1016/j.micres.2019.02.001. PMid:30825940.
Aktuganov, G., Melentjev, A., Galimzianova, N., Khalikova, E., Korpela, T., & Susi, P. (2008). Wide-range antifungal antagonism of Paenibacillus ehimensis IB-X-b and its dependence on chitinase and β-1, 3-glucanase production. Canadian Journal of Microbiology, 54(7), 577-587. http://dx.doi.org/10.1139/W08-043. PMid:18641704.
Ali, M. M., & Vora, D. (2014). Potential of Endophytic Bacteria Isolated from Vitex negundo L. to Produce Auxin. Research Journal of Recent Sciences, 3(8), 38-42.
ALKahtani, M. D. F., Fouda, A., Attia, K. A., Al-Otaibi, F., Eid, A. M., El-Din Ewais, E., Hijri, M., St-Arnaud, M., El-Din Hassan, S., Khan, N., Hafez, Y. M., & Abdelaal, K. A. A. (2020). Isolation and characterization of plant growth promoting endophytic bacteria from desert plants and their application as bioinoculants for sustainable agriculture. Agronomy (Basel), 10, 1-18. http://dx.doi.org/10.3390/agronomy10091325.
Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8, 971. http://dx.doi.org/10.3389/fmicb.2017.00971. PMid:28626450.
Amna, X., Xia, Y., Farooq, M. A., Javed, M. T., Kamran, M. A.,Mukhtar, T., Ali, J., Tabassum, T., Rehman, S. U., Hussain Munis, M. F., Sultan, T., & Chaudhary, H. J. (2020). Multi-stress tolerant PGPR Bacillus xiamenensis PM14 activating sugarcane (Saccharum officinarum L.) red rot disease resistance. Plant Physiology and Biochemistry, 151, 640-649. http://dx.doi.org/10.1016/j.plaphy.2020.04.016. PMid:32339911.
Arora, N. K., & Singh, R. B. (2016). Growth enhancement of medicinal plant Withania somnifera using phosphate solubilizing endophytic bacteria Pseudomonas sp. as bioinoculant. International Journal of Science. Technology in Society, 2. http://dx.doi.org/10.18091/ijsts.v2i1-2.7537.
Aslam, A., Ahmad Zahir, Z., Asghar, H. N., & Shahid, M. (2018). Effect of carbonic anhydrase-containing endophytic bacteria on growth and physiological attributes of wheat under water-deficitconditions. Plant Production Science, 21(3), 244-255. http://dx.doi.org/10.1080/1343943X.2018.1465348.
Avidov, A., Barazani, A., & Zeilkha, M. (2019). Supplying nitrogen requirements of plant, e.g. maize, or wheat, by administering to plant, combination of non-pathogenic, atmospheric nitrogenfixing bacteria (e.g. Rhizobium leguminosarum) and activating agents (e.g. steviol glycoside) (Patent No. WO2019142199-A1).
Aziz, K., Nawaz, M., Nazir, J., Anjum, A. A., Yaqub, T., Ahmad, M. U. D., Rehman, M. U., Aziz, G., & Khan, M. (2015). Isolation, characterization and effect of auxin producing bacteria on growth of Triticum aestivum. Journal of Animal and Plant Sciences, 25(4), 1003-1007.
Bandara, W. M. M. S., Seneviratne, G., & Kulasooriya, S. A. (2006). Interactions among endophytic bacteria and fungi: Effects and potentials. Journal of Biosciences, 31(5), 645-650. http://dx.doi.org/10.1007/BF02708417. PMid:17301503.
Banerjee, M. R., Yesmin, L., & Banerjee, M. (2003). New sulfuroxidizing plant growth-promoting Rhizobacteria, e.g., RAY12 (Achromobacter piechaudii), RAY28 (Agrobacterium tumefaciens) or RAY132 (Stenotrophomonas maltophilia), useful for enhancing canola performance (Patent No. WO2003057861-A2).
Bhutani, N., Maheshwari, R., Negi, M., & Suneja, P. (2018). Optimization of IAA production by endophytic Bacillus spp. from Vigna radiata for their potential use as plant growth promoters. Israel Journal of Plant Sciences, 65(1–2), 83-96. http://dx.doi.org/10.1163/22238980-00001025.Bononi, L., Chiaramonte, J. B., Pansa, C. C., Moitinho, M. A., &
Melo, I. S. (2020). Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports, 10(1), 2858. http://dx.doi.org/10.1038/s41598-020-59793-8. PMid:32071331.
Breda, F. A. F., Alves, G. C., Lopez, B. D. O., de Aragão, A. R., Araújo, A. P., & Reis, V. M. (2020). Inoculation of diazotrophic bacteria modifies the growth rate and grain yield of maize at different levels of nitrogen supply. Archives of Agronomy and Soil Science, 66(14), 1948-1962. http://dx.doi.org/10.1080/03650340.2019.1702164.
Cai, Y., Cao, Y., Li, Y., Jiang, Y., Wang, Y., & Zhang, H. (2016). New Bacillus aryabhattai strain (J5) useful in producing auxin, ammonia, iron carrier, protease, catalase, decomposing insoluble phosphorus, salt and/or inhibiting bacteria, promoting seed germination and/or plant growth (Patent No. CN105985922-A).
Carvalho, T. L., Pires, E., Saraiva, R., Vargas, L., Bomfim, A. C. J., Ballesteros, H., Baldani, J. I., Ferreira, P. C., & Hemerly, A. S. (2014). Nitrogen fixation in grasses - gluconacetobacter activates genes in sugarcane. BMC Proceedings, 8(S4), O20. http://dx.doi.org/10.1186/1753-6561-8-S4-O20.
Caulier, S., Nannan, C., Gillis, A., Licciardi, F., Bragard, C., & Mahillon, J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis. Frontiers in microbiology, 10, 302. http://dx.doi.org/10.3389/fmicb.2019.00302.PMid:30873135.
Chakrabarty, S., Jin, M., Wu, C., Chakraborty, P., & Xiao, Y. (2020). Bacillus thuringiensis vegetative insecticidal protein family Vip3A and mode of action against pest Lepidoptera. Pest Management Science, 76(5), 1612-1617. http://dx.doi.org/10.1002/ps.5804. PMid:32103608.
Cheffi Azabou, M., Gharbi, Y., Medhioub, I., Ennouri, K., Barham, H., Tounsi, S., & Triki, M. A. (2020). The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biological Control, 142, 104168. http://dx.doi.org/10.1016/j.biocontrol.2019.104168.
CTAHR. (2021). Soil nutrient management for Maui country. https://www.ctahr.hawaii.edu/mauisoil/c_nutrients01.aspx
de Abreu, C. S., Figueiredo, J. E. F., Oliveira, C. A., dos Santos, V. L., Gomes, E. A., Ribeiro, V. P., Barros, B. A., Lana, U. G. P., & Marriel, I. E. (2017). Maize endophytic bacteria as mineral phosphate solubilizers. Genetics and Molecular Research, 16(1), 1-13. http://dx.doi.org/10.4238/gmr16019294. PMid:28218783.
Degrassi, G., & Carpentieri-Pipolo, V. (2020). Bacterial Endophytes Associated to Crops: Novel Practices for Sustainable Agriculture. Advances in Biochemistry and Biotechnology, 5, 1-12. http://dx.doi.org/10.29011/2574-7258.001099.
Diagne, N., Arumugam, K., Ngom, M., Nambiar-Veetil, M., Franche, C., Narayanan, K. K., & Laplaze, L. (2013). Use of frankia and actinorhizal plants for degraded lands reclamation. BioMed Research International, 2013, 948258. http://dx.doi.org/10.1155/2013/948258. PMid:24350296.
Egamberdieva, D., & Ahmad, P. (2018). Plant Microbiome: Stress Response (Microorgan, Vol. 5). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-10-5514-0.
Egamberdieva, D., Wirth, S. J., Alqarawi, A. A., Allah, E. F. A., Hashem, A., Antonio, J., Lucas, L., & Guevara-Gonzalez, R. G. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8, 2104. http://dx.doi.org/10.3389/fmicb.2017.02104. PMid:29163398.
Emami, S., Alikhani, H. A., Pourbabaee, A. A., Etesami, H., Motasharezadeh, B., & Sarmadian, F. (2020). Consortium of endophyte and rhizosphere phosphate solubilizing bacteria
improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere, 14, 100196. http://dx.doi.org/10.1016/j.rhisph.2020.100196.
Emami, S., Alikhani, H. A., Pourbabaei, A. A., Etesami, H., Sarmadian,
F., & Motessharezadeh, B. (2019). Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research International, 26(19), 19804-19813. http://dx.doi.org/10.1007/s11356-019-05284-x. PMid:31090003.
Fadiji, A. E., & Babalola, O. O. (2020). Exploring the potentialities of beneficial endophytes for improved plant growth. Saudi Journal of Biological Sciences, 27(12), 3622-3633. http://dx.doi.org/10.1016/j.sjbs.2020.08.002. PMid:33304173.
Ferreira, C., Keiko, A., Mara, S., Amaral, D., Oliveira, D., & Santos, A. (2021). Isolation and characterization of cassava root endophytic bacteria with the ability to promote plant growth and control the in vitro and in vivo growth of Phytopythium sp. Physiological and Molecular Plant Pathology, 116, 101709. http://dx.doi.org/10.1016/j.pmpp.2021.101709.
Figueiredo, M. V. B., Bonifacio, A., Rodrigues, A. C., & Araujo, F. F. (2016). Plant growth-promoting rhizobacteria: key mechanisms of action. In D. K. Choudhary & A. Varma (Eds.), Microbial-mediated induced systemic resistance in plants (pp. 1-226). Springer. https://doi.org/10.1007/978-981-10-0388-2.
Frank,A. C., Saldierna Guzmán, J. P., & Shay, J. E. (2017). Transmission of bacterial endophytes. Microorganisms, 5(4), 70. http://dx.doi.
org/10.3390/microorganisms5040070. PMid:29125552. Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., & Chou, J. Y. (2015). Indole-3-acetic acid: a widespread physiological code in interactions of fungi with other organisms. Plant Signaling & Behavior, 10(8), e1048052. http://dx.doi.org/10.1080/15592324.2015.1048052. PMid:26179718.
Gaspar, T., Kevers, C., Faivre-Rampant, O., Crèvecoeur, M., Penel, C., Greppin, H., & Dommes, J. (2003). Changing concepts in plant hormone action. In Vitro Cellular & Developmental Biology. Plant, 39(2), 85-106. http://dx.doi.org/10.1079/IVP2002393.Gautam, C. K., Madhav, M., Sinha, A., & Jabez Osborne, W. (2016).VIT-CMJ2: Endophyte of Agaricus bisporus in Production of Bioactive Compounds. Iranian Journal of Biotechnology, 14(2),19-24. http://dx.doi.org/10.15171/ijb.1287. PMid:28959322.
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012, 963401. http://dx.doi.org/10.6064/2012/963401. PMid:24278762.
Gomes, I. P., Matos, A. D. M., Nietsche, S., Xavier, A. A., Costa, M. R., Gomes, W. S., & Pereira, M. C. T. (2017). Auxin production by endophytic bacteria isolated from banana trees. Brazilian Archives of Biology and Technology, 60. http://dx.doi.org/10.1590/1678-4324-2017160484.
Gray, W. M. (2004). Hormonal regulation of plant growth and development. PLoS Biology, 2(9), E311. http://dx.doi.org/10.1371/journal.pbio.0020311. PMid:15367944.
Grossmann, K. (2010). Auxin herbicides: Current status of mechanism and mode of action. Pest Management Science, 66(2), 113-120. http://dx.doi.org/10.1002/ps.1860. PMid:19823992.
Guaraldo, M. C. (2020). Brasil é o quarto maior produtor de grãos e o maior exportador de carne bovina do mundo, diz estudo. https://www.embrapa.br/busca-de-noticias/-/noticia/62619259/brasil-e-o-quarto-maior-produtor-de-graos-e-o-maior-exportadorde-carne-bovina-do-mundo-diz-estudo
Guo, H., Glaeser, S. P., Alabid, I., Imani, J., Haghighi, H., Kämpfer, P., & Kogel, K. H. (2017). The abundance of endofungal bacterium Rhizobium radiobacter (syn. Agrobacterium
tumefaciens) increases in its fungal host Piriformospora indica during the tripartite sebacinalean symbiosis with higher plants. Frontiers in Microbiology, 8, 1-13. http://dx.doi.org/10.3389/fmicb.2017.00629. PMid:28450855.
Hagaggi, N. S. A., & Mohamed, A. A. A. (2020). Enhancement of Zea mays (L. ) growth performance using indole acetic acid producing endophyte Mixta theicola isolated from Solenostemma. South African Journal of Botany, 134, 64-71. http://dx.doi. org/10.1016/j.sajb.2020.02.034.
Halmann, M. (1990). Synthetic plant growth regulators. Advances in Agronomy, 43, 47-105. http://dx.doi.org/10.1016/S0065-2113(08)60476-9.
Hamid, B., Zaman, M., Farooq, S., Fatima, S., Sayyed, R. Z., Baba, Z. A., Sheikh, T. A., Reddy, M. S., El Enshasy, H., Gafur, A., & Suriani, N. L. (2021). Bacterial plant biostimulants: A sustainable way towards improving growth, productivity, and health of crops. Sustainability (Switzerland), 13(5), 1-24. http://dx.doi.org/10.3390/su13052856.
Harman, G., Marino, A. S., & Cadle-Davidson, M. (2019). Carbon dioxide sequestration from atmosphere comprises applying microbial agent comprises e.g. Bradyrhizobium spp. and Trichoderma spp. to plant root cortex, enhancing photosynthetic processes and increasing root biomass (Patent No. WO2019084324-A1).
Hashem, A., Tabassum, B., & Fathi Abd Allah, E. (2019). Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291-1297. http://dx.doi.org/10.1016/j.sjbs.2019.05.004. PMid:31516360.
Hegedűs, M., Tóth-Bodrogi, E., Németh, S., Somlai, J., & Kovács, T. (2017). Radiological investigation of phosphate fertilizers: Leaching studies. Journal of Environmental Radioactivity, 173, 34-43. http://dx.doi.org/10.1016/j.jenvrad.2016.10.006. PMid:27771131.
Herlina, L., Pukan, K. K., & Mustikaningtyas, D. (2017). The endophytic bacteria producing IAA (Indole Acetic Acid) in Arachis hypogaea. Cell Biology & Development, 1(1), 31-35. https://doi.org/10.13057/cellbioldev/v010106. 
Higdon, S. M., Pozzo, T., Tibbett, E. J., Chiu, C., Jeannotte, R., Weimer, B. C., & Bennett, A. B. (2020). Diazotrophic bacteria from maize exhibit multifaceted plant growth promotion traits in multiple hosts. PLoS One, 15(9), e0239081. http://dx.doi.org/10.1371/journal.pone.0239081. PMid:32925972.
Hou, Y., Huang, X., Wang, Q., Wang, Y., Xia, Z., Zeng, X., Zeng, Y.,& Zhu, P. (2016). New Enterobacter LY6 useful in production of indole acetic acid by fermentation for e.g. promoting rooting of crops preferably rice, wheat, corn, rape, vegetables, fruit, in crop germination, and rooting and planting process (Patent No. CN105838750-A).
Jacob, J., Krishnan, G. V., Thankappan, D., & Bhaskaran Nair Saraswathy Amma, D. K. (2020). Endophytic bacterial strains induced systemic resistance in agriculturally important crop plants. In A. Kumar & E. K. Radhakrishnan (Eds.), Microbial endophytes. Elsevier Inc. http://dx.doi.org/10.1016/B978-0-12-819654-0.00004-1
Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019, 1-7.  http://dx.doi.org/10.1155/2019/4917256.
Kandel, S., Joubert, P., & Doty, S. (2017). Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 5(4), 77 http://dx.doi.org/10.3390/microorganisms5040077. PMid:29186821.
Kang, Y., & Wang, Y. (2019). New Paenibacillus amylolyticus KY15 for promoting plant root growth; preferably, the plant comprises corn, is preseved at China General Microbiological Culture Collection Center (Patent No. CN110257293-A). 
Khan, Z., Rho, H., Firrincieli, A., Hung, S. H., Luna, V., Masciarelli, O., Kim, S. H., & Doty, S. L. (2016). Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6, 38-47. http://dx.doi.org/10.1016/j.cpb.2016.08.001.
Krishnamoorthy, A., Agarwal, T., Kotamreddy, J. N. R., Bhattacharya, R., Mitra, A., Maiti, T. K., & Maiti, M. K. (2020). Impact of seedtransmitted endophytic bacteria on intra- and inter-cultivar plant growth promotion modulated by certain sets of metabolites in rice crop. Microbiological Research, 241(April), 126582. http://dx.doi.org/10.1016/j.micres.2020.126582. PMid:32882536.
Kumar, S., & Khapre, A. (2017). Phytocapping technology for sustainable management of landfill sites. In R. Chandra, N. K. Dubey & V. Kumar (Eds.), Phytoremediation of environmental pollutants. Springer. https://doi.org/10.4324/9781315161549.
Kumar, V., Kumar, M., Sharma, S., & Prasad, R. (2017). Probiotics and plant health. In V. Kumar, M. Kumar, S. Sharma, & R. Prasad (Eds.), Probiotics and plant health. Springer. http://dx.doi.org/10.1007/978-981-10-3473-2.
Kushwaha, P., Kashyap, P. L., Kuppusamy, P., Srivastava, A. K., & Tiwari, R. K. (2020). Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosystems, 154(4), 503-514. http://dx.doi.org/10.1080/11263504.2019.1651773.
Lacava, P. T., Li, W., Araujo, W. L., Azevedo, J. L., & Hartung, J. S. (2007). The endophyte Curtobacterium flaccumfaciens reduces symptoms caused by Xylella fastidiosa in Catharanthus roseus. Journal of Microbiology (Seoul, Korea), 45(5), 388-393. PMid:17978797.
Li, M., Guo, R., Yu, F., Chen, X., Zhao, H., Li, H., & Wu, J. (2018). Indole-3-acetic acid biosynthesis pathways in the plant-beneficial bacterium Arthrobacter pascens zz21. International Journal of Molecular Sciences, 19(2), 443. http://dx.doi.org/10.3390/ijms19020443. PMid:29389906.
Li, P., Liu, J., Liu, L., & Zong, R. (2017). Biological seed coating agent used in cultivation of crops chosen from corn, rice, wheat and soybean, comprises mixed fermentation broth of Paenibacillus polymyxa, Bacillus cereus and Bacillus pumilus (Patent No. CN106577772-A).
Liu, C. W., Sung, Y., Chen, B. C., & Lai, H. Y. (2014). Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). International Journal of Environmental Research and Public Health, 11(4), 4427-4440. http://dx.doi.org/10.3390/ijerph110404427. PMid:24758896.
Liu, D., Li, K., Hu, J., Wang, W., Liu, X., & Gao, Z. (2019). Biocontrol and Action Mechanism of Bacillus amyloliquefaciens and Bacillus subtilis in Soybean Phytophthora Blight. International Journal of Molecular Sciences, 20(12), 2908. http://dx.doi.org/10.3390/ijms20122908. PMid:31207889.
Liu, X., Yang, C., Yu, X., Yu, H., Zhuang, W., Gu, H., Xu, K., Zheng, X., Wang, C., Xiao, F., Wu, B., He, Z., & Yan, Q. (2020). Revealing structure and assembly for rhizophyte-endophyte diazotrophic community in mangrove ecosystem after introduced Sonneratia apetala and Laguncularia racemosa. The Science of the Total Environment, 721, 137807. http://dx.doi.org/10.1016/j.scitotenv.2020.137807. PMid:32179356.
Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., & Van Der Lelie, D. (2002). Endophytic bacteria and their potential applications endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21(6), 583-606. http://dx.doi.org/10.1080/0735-260291044377.
Maela, P. M., & Serepa-dlamini, M. H. (2019). Current understanding of bacterial endophytes, their diversity, colonization and their roles in promoting plant Growth. Applied Microbiology: Open Access, 5(1), 1-12. http://dx.doi.org/10.4172/2471-9315.1000157.
Martínez-Viveros, O., Jorquera, M. A., Crowley, D. E., Gajardo, G., & Mora, M. L. (2010). Mechanisms and practical considerations involved in plant growth promotion by Rhizobacteria. Journal of Soil Science and Plant Nutrition, 10(3), 293-319. http://dx.doi.org/10.4067/S0718-95162010000100006.
Martins, D. S., Reis, V. M., Schultz, N., Alves, B. J. R., Urquiaga, S., Pereira, W., Sousa, J. S., & Boddey, R. M. (2020). Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria. Plant and Soil, 454(1-2), 155-169. http://dx.doi.org/10.1007/s11104-020-04621-1.
Matos, A. D. M., Gomes, I. C. P., Nietsche, S., Xavier, A. A., Gomes, W. S., Dos Santos, J. A., & Pereira, M. C. T. (2017). Phosphate solubilization by endophytic bacteria isolated from banana trees. Anais da Academia Brasileira de Ciências, 89(4), 2945-2954. http://dx.doi.org/10.1590/0001-3765201720160111. PMid:28876357.
Matsumoto, H., Fan, X., Wang, Y., Kusstatscher, P., Duan, J., Wu, S., Chen, S., Qiao, K., Wang, Y., Ma, B., Zhu, G., Hashidoko, Y., Berg, G., Cernava, T., & Wang, M. (2021). Bacterial seed endophyte shapes disease resistance in rice. Nature Plants, 7(1), 60-72. http://dx.doi.org/10.1038/s41477-020-00826-5. PMid:33398157.
Medina-Cordoba, L. K., Chande, A. T., Rishishwar, L., Mayer, L. W., Valderrama-Aguirre, L. C., Valderrama-Aguirre, A., Gaby, J. C., Kostka, J. E., & Jordan, I. K. (2021). Genomic characterization and computational phenotyping of nitrogen-fixing bacteria isolated from Colombian sugarcane fields. Scientific Reports, 11(1), 9187.http://dx.doi.org/10.1038/s41598-021-88380-8. PMid:33911103.
Meliah, S., Sulistiyani, T. R., Lisdiyanti, P., Kanti, A., Sudiana, I. M., & Kobayashi, M. (2021). Antifungal activity of endophytic bacteria associated with sweet sorghum (Sorghum bicolor). Journal of Mathematical and Fundamental Sciences, 53(1), 16-30. http://dx.doi.org/10.5614/j.math.fund.sci.2021.53.1.2.
Mengistu, A. A. (2020). Endophytes: colonization, behaviour, and their role in defense mechanism. International Journal of Microbiology, 2020, 6927219. http://dx.doi.org/10.1155/2020/6927219. PMid:32802073.
Nair, D. N., & Padmavathy, S. (2014). Impact of endophytic microorganisms on plants, environment and humans. TheScientificWorldJournal, 2014, 250693. http://dx.doi.
org/10.1155/2014/250693. PMid:24587715.
Nannipieri, P., Giagnoni, L., Landi, L., & Renella, G. (2011). Role of phosphatase enzymes in soil. In E. K. Bunemann, E. Frossard, & A. Oberson (Eds.), Phosphorus in action. Soil Biology (Vol. 26). Springer. https://doi.org/10.1007/978-3-642-15271-9.
Nunes Oliveira, F. L., Oliveira, W. S., Stamford, N. P., Silva, E. V. N., Santos, C. E. R. S., & Freitas, A. D. S. (2017). Effectiveness of biofertilizer enriched in N by Beijerinckia indica on sugarcane grown on an Ultisol and the interactive effects between biofertilizer and sugarcane filter cake. Journal of Soil Science and Plant Nutrition, 17(4), 1040-1057. http://dx.doi.org/10.4067/S0718-95162017000400015.
Nutaratat, P., Srisuk, N., Arunrattiyakorn, P., & Limtong, S. (2016). Fed-batch fermentation of indole-3-acetic acid production in stirred tank fermenter by red yeast Rhodosporidium paludigenum. Biotechnology and Bioprocess Engineering; BBE, 21(3), 414-421. http://dx.doi.org/10.1007/s12257-015-0819-0.
Oliveira, A. L. M., Canuto, E. L., Silva, E. E., Reis, V. M., & Baldani, J. I. (2004). Survival of endophytic diazotrophic bacteria in soil under different moisture levels. Brazilian Journal of Microbiology, 465(4), 295-299. http://dx.doi.org/10.1590/S1517-83822004000300005.
Oliveira, J. M., Michelon, M., & Burkert, C. A. V. (2020). Biotechnological potential of soybean molasses for the production of extracellular polymers by diazotrophic bacteria. Biocatalysis and Agricultural Biotechnology, 25, 101609. http://dx.doi.org/10.1016/j.bcab.2020.101609.
Ouattara, A., Coulibaly, K., Konate, I., Kebe, B. I., Tidou, A. S., & Filali-Maltouf, A. (2019). Selection of Cocoa Tree (Theobroma cacao Linn) Endophytic Bacteria Solubilizing Tri-Calcium Phosphate, Isolated from Seedlings Grown on Soils of Six Producing Regions of Côte d’Ivoire. Advances in Microbiology, 09(09), 842-852.
http://dx.doi.org/10.4236/aim.2019.99051.
Palaniyandi, S. A., Yang, S. H., Zhang, L., & Suh, J. W. (2013). Effects of actinobacteria on plant disease suppression and growth promotion. Applied Microbiology and Biotechnology, 97(22), 9621-9636. http://dx.doi.org/10.1007/s00253-013-5206-1. PMid:24092003.
Pankievicz, V. C. S., do Amaral, F. P., Ané, J.-M., & Stacey, G.. (2021). Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Molecular Plant-Microbe Interactions : MPMI, 34(5), 491-498. http://dx.doi.org/10.1094/MPMI-11-20-0316-FI. PMid:33543986.
Pařízková, B., Pernisová, M., & Novák, O. (2017). What has been seen cannot be unseen: Detecting auxin in vivo. International Journal of Molecular Sciences, 18(12), 1-26. http://dx.doi.org/10.3390/ijms18122736. PMid:29258197
Parnell, J. J., Ridge, G., Kluber, L. A., Baker, E. C., Kirkeng, S. E., Hall, C., Marin, C., & Maloney, G. S. (2019). New isolated Microbacterium trichothecenolyticum strain having the deposit accession number NRRL B-67602 is used to enhance plant growth and/or yield (Patent No. WO2019217255-A1).
Poza-Carrión, C., Jiménez-Vicente, E., Navarro-Rodríguez, M., Echavarri-Erasun, C., & Rubio, L. M. (2014). Kinetics of nif gene expression in a nitrogen-fixing bacterium. Journal of Bacteriology, 196(3), 595-603. http://dx.doi.org/10.1128/JB.00942-13. PMid:24244007.
Prasad, M., Srinivasan, R., Chaudhary, M., Mahawer, S. K., & Jat, L. K. (2019). Endophytic bacteria: Role in sustainable agriculture. In A. Kumar & V. K. Singh (Eds.), Microbial endophytes: prospects for sustainable agriculture. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818734-0.00003-6.
Ramalakshmi, A., Sharmila, R., Iniyakumar, M., & Gomathi, V. (2020). Nematicidal activity of native Bacillus thuringiensis against the root knot nematode, Meloidogyne incognita (Kofoid and White). Egyptian Journal of Biological Pest Control, 30(1), 90. http://dx.doi.org/10.1186/s41938-020-00293-2.
Rana, K. L., Kour, D., Kaur, T., Sheikh, I., Yadav, A. N., Kumar, V., Suman, A., & Dhaliwal, H. S. (2020). Endophytic microbes from diverse wheat genotypes and their potential biotechnological applications in plant growth promotion and nutrient uptake. Proceedings of the National Academy of Sciences. India. Section B, Biological Sciences, 90(5), 969-979. http://dx.doi.org/10.1007/ s40011-020-01168-0.
Ribeiro, V. P., Marriel, I. E., Sousa, S. M., Lana, U. G. P., Mattos, B. B., Oliveira, C. A., & Gomes, E. A. (2018). Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Brazilian Journal of Microbiology, 49(Suppl 1), 40-46. http://dx.doi.org/10.1016/j.bjm.2018.06.005. PMid:30150087.
Rodrigues, A. A., Forzani, M. V., Soares, R. de S., Sibov, S. T., & Vieira, J. D. G. (2016). Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical, 46(2), 149-158. http://dx.doi.org/10.1590/1983-40632016v4639526.
Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J., & Dowling, D. N. (2008). Bacterial endophytes : Recent developments and applications. FEMS Microbiology Letters, 278(1), 1-9. http://dx.doi.org/10.1111/j.1574-6968.2007.00918.x. PMid:18034833.
Santi, C., Bogusz, D., & Franche, C. (2015). Biological nitrogen fixation in non-legume plants. Annals of Botany, 111(5), 743-767. http://dx.doi.org/10.1093/aob/mct048. PMid:23478942. 

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. http://dx.doi.org/10.1016/j.micres.2015.11.008. PMid:26805622.
Sauer, M., Robert, S., & Kleine-Vehn, J. (2013). Auxin: Simply complicated. Journal of Experimental Botany, 64(9), 2565-2577. http://dx.doi.org/10.1093/jxb/ert139. PMid:23669571.
Seixas, M. A., & Contini, E. (2018). China. Potência do agronegócio global. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/183711/1/China-potencia-do-agronegocio-global.pdf
Senthil, N., Elangovan, K., Rajkumar, S., & Bavya, M. (2010). Studies on Indole acetic acid production and phosphate solubilization from forest soil bacteria. Biotechnology (Faisalabad), 4(3), 3-6.
Setiawati, M. R., Suryatmana, P., Hindersah, R., Fitriatin, B. N., Nurbaity, A., Herdiyantoro, D., Kamaluddin, N. N., & Simarmata, T. (2018). Characteristic and capability of plant growth promoting endophytic bacteria of rice plant tissue in saline ecosystem. Asian Journal of Microbiology. Biotechnology and Environmental Sciences, 20(3), 791-797.
Sharon, J. A., Hathwaik, L. T., Glenn, G. M., Imam, S. H., & Lee, C. C. (2016). Isolation of efficient phosphate solubilizing bacteria capable of enhancing tomato plant growth. Journal of Soil Science and Plant Nutrition, 16(2), 525-536. http://dx.doi.org/10.4067/S0718-95162016005000043.

Shi, T.-Q., Peng, H., Zeng, S.-Y., Ji, R.-Y., Shi, K., Huang, H., & Ji, X.-J. (2017). Microbial production of plant hormones: Opportunities and challenges. Bioengineered, 8(2), 124-128. http://dx.doi.org/10.1080/21655979.2016.1212138. PMid:27459344.
Shi, Y., Lou, K., & Li, C. (2009). Promotion of plant growth by phytohormone-producing endophytic microbes of sugar beet. Biology and Fertility of Soils, 45(6), 645-653. http://dx.doi.org/10.1007/s00374-009-0376-9.
Singh, D. P., Singh, B. H., & Prabha, R. (2016). Microbial inoculants in sustainable agricultural productivity (Vol. 1). Springer. https://doi.org/10.1007/978-81-322-2647-5.
Singh, M., Kumar, A., Singh, R., & Pandey, K. D. (2017). Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, 7, 1-14. https://doi.org/10.1007/s13205-017-0942-z.
Singh, P., Singh, R. K., Li, H. B., Guo, D. J., Sharma, A., Lakshmanan, P., Malviya, M. K., Song, X. P., Solanki, M. K., Verma, K. K., Yang, L. T., & Li, Y. R. (2021). Diazotrophic bacteria pantoea dispersa and enterobacter asburiae promote sugarcane growth by inducing nitrogen uptake and defense-related gene expression. Frontiers in Microbiology, 11, 600417. http://dx.doi.org/10.3389/fmicb.2020.600417. PMid:33510724.
Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3(4), 1-13. http://dx.doi.org/10.1101/cshperspect.a001438. PMid:21084388.
Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3- acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, 31(4), 425-448. http://dx.doi.org/10.1111/j.1574-6976.2007.00072.x. PMid:17509086.
Sugawara, S., Mashiguchi, K., Tanaka, K., Hishiyama, S., Sakai, T., Hanada, K., Kinoshita-Tsujimura, K., Yu, H., Dai, X., Takebayashi, Y., Takeda-Kamiya, N., Kakimoto, T., Kawaide, H., Natsume, M., Estelle, M., Zhao, Y., Hayashi, K. I., Kamiya, Y., & Kasahara, H. (2015). Distinct Characteristics of Indole-3-Acetic Acid and
Phenylacetic Acid, Two Common Auxins in Plants. Plant & Cell Physiology, 56(8), 1641-1654. http://dx.doi.org/10.1093/pcp/pcv088. PMid:26076971.
Suhandono, S., Kusumawardhani, M. K., & Aditiawati, P. (2016). Isolation and Molecular Identification of Endophytic Bacteria From Rambutan Fruits (Nephelium lappaceum L.) Cultivar Binjai. Hayati Journal of Biosciences, 23(1), 39-44. http://dx.doi.org/10.1016/j.hjb.2016.01.005.
Teale, W. D., Paponov, I. A., & Palme, K. (2006). Auxin in action: Signalling, transport and the control of plant growth and development. Nature Reviews. Molecular Cell Biology, 7(11), 847-859. http://dx.doi.org/10.1038/nrm2020. PMid:16990790.
Torres, M., Llamas, I., Torres, B., Toral, L., Sampedro, I., & Béjar, V. (2020). Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1. Applied Soil Ecology, 150, 103453. https://doi.org/10.1016/j.apsoil.2019.103453.
Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Prikladnaia biokhimiia i mikrobiologiia, 42(2), 117-126. http://dx.doi.org/10.1134/S0003683806020013. PMid:16761564.
Ullah, A., Nisar, M., Ali, H., Hazrat, A., Hayat, K., Keerio, A. A., Ihsan, M., Laiq, M., Ullah, S., Fahad, S., Khan, A., Khan, A. H., Akbar, A., & Yang, X. (2019). Drought tolerance improvement in plants: An endophytic bacterial approach. Applied Microbiology and Biotechnology, 103(18), 7385-7397. http://dx.doi.org/10.1007/s00253-019-10045-4. PMid:31375881.
United Nations. (2019). World population prospects 2019 (No. 141). Department of Economic and Social Affairs.Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S. K., Sharma,
V. K., Droby, S., Santoyo, G., White, J. F., & Kumar, A. (2021). The potential application of endophytes in management of stress from drought and salinity in crop plants. Journal of Applied Phycology, 9(8), 1729. http://dx.doi.org/10.1007/s10811-021-02570-5. PMid:34442808.
Wang, R., Wang, H. L., Tang, R. P., Sun, M. Y., Chen, T. M., Duan, X. C., Lu, X. F., Liu, D., Shi, X. C., Laborda, P., & Wang, S. Y. (2020a). Pseudomonas putida represses ja-and sa-mediated defense pathways in rice and promotes an alternative defense mechanism possibly through aba signaling. Plants, 9(12), 1641.
http://dx.doi.org/10.3390/plants10010001. PMid:33255501.
Wang, S., Sun, L., Zhang, W., Chi, F., Hao, X., Bian, J., & Li, Y. (2020b). Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egyptian Journal of Biological Pest Control, 30(1), 9. http://dx.doi.org/10.1186/s41938-020-0209-6.
Wei, G., Li, X., & Shi, P. (2021). New Bacillus proteolyticus for producing the chitinase and indole-acetic acid (Patent No.CN112899206-A).
White, J. F., & Caraballo, I. I. (2019). Improving a plant phenotype by inoculating a plant element with a formulation comprising biologically pure endophyte strains isolated from Thespesia populnea and Gossypium hirsutum which are heterologously disposed to the plant element (Patent No. WO2019028355-A1).
Woźniak, M., Gałązka, A., Tyśkiewicz, R., & Jaroszuk-ściseł, J. (2019). Endophytic bacteria potentially promote plant growth by synthesizing different metabolites and their phenotypic/ physiological profiles in the biolog gen iii microplateTM test. International Journal of Molecular Sciences, 20(21), 5283. http://dx.doi.org/10.3390/ijms20215283. PMid:31652989.
Xin, G., Zhang, G., Kang, J. W., Staley, J. T., & Doty, S. L. (2009). A diazotrophic, indole-3-acetic acid-producing endophyte fromwild cottonwood. Biology and Fertility of Soils, 45(6), 669-674. http://dx.doi.org/10.1007/s00374-009-0377-8.
Xu, L., Wu, C., Oelmüller, R., & Zhang, W. (2018). Role of phytohormones in piriformospora indica-induced growth promotion and stress tolerance in plants: More questions than answers. Frontiers in Microbiology, 9, 1-13. http://dx.doi.org/10.3389/fmicb.2018.01646. PMid:30140257.
Xun, W., Zhang, R., Liu, Z., Ren, Y., Zhang, N., Xu, Z., & Shen, Q. (2021). Complex flora useful e.g. for controlling outbreak of disease in corn caused by Fusarium oxysporum, contains Acinetobacter baumannii, Pseudomonas stutzeri, Burkholderia cenocepacia, Bacillus amyloliquefaciens and Enterobacter ludwigii (Patent No. CN112899203-A).
Yanti, Y., Warnita, & Reflin. (2019). Involvement of Jasmonic Acid in the Induced Systemic Resistance of Tomato against Ralstonia syzigiisub sp. indonesiensis by Indigenous Endophyte Bacteria. IOP Conference Series: Earth and Environmental Science, 347, 012024. http://dx.doi.org/10.1088/1755-1315/347/1/012024
Zhao, Y. (2010). Auxin biosynthesis and its role in plant development. Annual Review of Plant Biology, 61(1), 49-64. http://dx.doi.org/10.1146/annurev-arplant-042809-112308. PMid:20192736.
Zhou, Y., Chen, J., Zhu, X., Wang, Y., Liu, X., Fan, H., Duan, Y., & Chen, L. (2021). Efficacy of Bacillus megaterium strain Sneb207 against soybean cyst nematode (Heterodera glycines) in soybean. Pest Management Science, 77(1), 568-576. http://dx.doi.org/10.1002/ps.6057. PMid:32815305.
Zhu, F., Qu, L., Hong, X., & Sun, X. (2011). Isolation and Characterization of a Phosphate- Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evidence-Based Complementary and Alternative Medicine, 2011, 615032. http://dx.doi.org/10.1155/2011/615032.
PMid:21716683.


Submitted date:
11/05/2021

Accepted date:
11/29/2021

61df12d0a9539509a7288c84 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections