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Abstract: Endophytic bacteria are a promising tool in the development of a sustainable agriculture. 
Their biological mechanisms of atmospheric nitrogen fixation, phosphate solubilization, production 
of phytohormones and inhibition of plant pathogens and pests promote plant growth avoiding the 
need for chemical fertilizers and control agents. A patent search was carried out in the Derwent 
Innovations Index database to assess the panorama of technological development related to 
the use of endophytic bacteria in three important agricultural crops, i.e., corn, soybean, and 
sugarcane. The rank of patent publications by country was leaded by China, USA, Canada, and 
Brazil, and among these countries, China, USA, and Brazil lead the worldwide production of grains. 
Several new bacterial strains were protected as bioinoculants or biopesticides. Formulations 
containing endophytic bacteria were mostly intended for seed coating or spraying and acted 
directly in the control of pests and diseases, as well as in increasing resistance to environmental 
stress. In many cases, they acted in promoting the growth of plants producing hormones that 
regulate or increase nutrient uptake.
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promising solution for sustainable and environmentally friendly 
agriculture (ALKahtani et al., 2020; Degrassi & Carpentieri-
Pipolo, 2020; Hamid et al., 2021; Ullah et al., 2019).

PGPB are present in soil ecosystems, closely associated 
with higher plants, being classified as epiphytes or endophytes 
(Martínez-Viveros et al., 2010). Epiphytes are bacteria that 
colonize the rhizosphere (zone of interaction between the root 
and soil) and phyllosphere (the aerial part of the plant), while 
endophytic bacteria are those that can be found colonizing 
the endosphere (inner part of the plant) of a healthy plant, 
without causing any apparent damage or pathogenic symptoms 
to their host plant (Bandara et al., 2006; Gautam et al., 2016). 
Both epiphytes or endophytes use the same plant growth-
promoting mechanisms (Glick, 2012; Santoyo et al., 2016). 
However, endophytic bacteria have been considered greater 
providers of beneficial effects to the host plant than many 
epiphytic bacteria for the following reasons: (i) endophytic 
bacteria live inside the plant and have greater contact with 
plant cells and therefore are more ready to exert a direct 
beneficial effect on the plant; and (ii) endophytic bacteria are 
not subject to competition for nutrients as normally occurs 
in the rhizophore and, therefore, end up having greater 
efficiency than epiphytic bacteria in promoting plant growth 
(Afzal et al., 2019; Santoyo et al., 2016).

Endophytic microorganisms are classified as obligate or 
facultative endophytes (Egamberdieva & Ahmad, 2018). 

Introduction

The global population has doubled in the last 50 years, 
and the current world population of 7.6 billion is expected 
to increase to more than 9 billion by 2050, substantially 
increasing the demand for agricultural products by at least 
70% (United Nations, 2019). This demand, associated to the 
reduction of arable land due to urban development, land 
degradation, and global climate change (Matsumoto et al., 
2021) requires an increase in agricultural productivity without 
significant increases in land, water or fertilizer use, as they 
are all becoming limited and pose additional threats to the 
environment (Prasad et al., 2019).

The current approaches used in agriculture to promote 
plant growth and production rely heavily on the use of 
chemical fertilizers. However, their long-term use can bring 
harmful effects to the environment (Ullah et al., 2019), 
causing groundwater contamination, eutrophication, loss 
of soil fertility, soil pollution, reduced biodiversity and 
increased emissions of greenhouse gases (Prasad et al., 2019; 
Woźniak et al., 2019).

This scenario indicates the urgent need to find sustainable 
alternatives to increase crop production with environmental 
sustainability (Woźniak et al., 2019). Several alternatives have 
already been proposed and documented in the literature, and 
the use of plant growth-promoting bacteria (PGPB) emerges as a 
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bacteria in the form of bioinoculants in agriculture. There 
are many reports in the literature on the isolation of 
endophytic bacteria from roots, stems, leaves, seeds of 
different plant species and their agricultural applications 
(Rana et al., 2020). The number of registered patents is 
increasing, related to the application of endophytic bacteria 
as bioinoculants in agriculture, demonstrating their great 
contribution to the development of a sustainable agriculture 
(Krishnamoorthy et al., 2020; Ullah et al., 2019).

Atmospheric N2 fixation

Nitrogen is the most important and limiting macronutrient 
for plant growth and development. It is an unlimited 
resource, highly abundant in the atmosphere, accounting 
for approximately 78% of the atmospheric gases, and 
mainly present in the diatomic form (N2). Plants cannot use 
atmospheric N2 directly, as they only uptake nitrate (NO3

-) 
or ammonium (NH4

+) as inorganic nitrogen sources and 
amino acids under particular conditions of soil composition. 
Therefore, regardless of the huge abundance of atmospheric 
N2, the plant-available nitrogen is commonly deficient in 
agricultural soils (CTAHR, 2021).

The great demand for nitrogen in agriculture has been met 
with the use of nitrogen-rich fertilizers, such as ammonia, 
urea, and ammonium nitrate, produced by chemical 
processes. The use of nitrogen-rich fertilizers is inevitable to 
meet the growing demand for food, however, the prolonged 
use of these fertilizers can cause serious environmental 
damage, including (i) increase of nitrous oxide (N2O) emission, 
one of the greenhouse gases; (ii) accumulation of nitrate 
in groundwater, which can cause various negative effects 
on human health; (iii) death of certain plant species; (iv) 
promotion of the growth of non-native grasses; and (v) 
eutrophication and nutrients imbalance causing the depletion 
of other important minerals in the soil, such as magnesium, 
calcium, and phosphorus, which can cause proliferation of 
toxic elements such as aluminum that harm plants, fish, and 
aquatic organisms (Liu et al., 2014).

An alternative to reduce the excessive use of nitrogen-rich 
fertilizers in agricultural practices, without harming crop 
productivity, is the use of endophytic diazotrophic bacteria. 
These bacteria are able to supply nitrogen to their host plants 
through the biological nitrogen fixation (BNF) mechanism 
(Poza-Carrión et al., 2014; Santi et al., 2015). BNF consists 
of the conversion of atmospheric nitrogen (N2) into ammonia 
(NH3) through the use of a highly specialized enzyme complex 
called nitrogenase encoded by the nif genes (Liu et al., 2020). 
Nitrogenase is a highly conserved protein present in all N2 
fixing bacteria, widely used as a molecular marker for the 
identification and characterization of diazotrophic bacteria.

Diazotrophic bacteria can be found living freely in soils 
and water, in the rhizosphere and phyllosphere, and in 
plant tissues, in symbiotic association with legumes and 
actinorhizal plants (e.g., Frankia spp.), fungi, woody plants, 
and terrestrial plants (Diagne et al., 2013). These diazotrophic 
bacteria include the genera Rhizobium, Bradyrhizobium, 
Azorhizobium, Sinorhizobium, Mesorhizobium (Oliveira et al., 
2020), Enterobacter, Klebsiella, Serratia, and Pantoea, 

Obligate endophytes spend their entire life cycle within the 
host, unable to live outside plant tissues, depend on the host 
plant for survival, and disseminate through seeds or vegetative 
plant tissue (Frank et al., 2017; Kumar & Khapre, 2017). 
Obligate endophytes are not culturable or are more difficult 
to cultivate in the laboratory, as they require more specific 
conditions for their growth (Maela & Serepa-dlamini, 2019). 
On the other hand, facultative endophytes have a free life. 
They colonize plants opportunistically, that is, they can live 
outside the plant for part of their life (Singh et al., 2016).

Facultative endophytes are the category that helps to 
improve plant growth, development, and health. They 
enter plant tissues from the root through fissures formed 
at the junction of secondary roots or wounds caused by 
microbial phytopathogens or nematodes, as well as through 
flowers, stems, cotyledons via stomata (natural openings), 
wounds or fissures (Fadiji & Babalola, 2020; Herlina et al., 
2017; Setiawati et al., 2018), remaining there or becoming 
systemic by transport or active migration through the 
conductive elements (Lodewyckx et al., 2002; Mengistu, 
2020). In addition, facultative endophytes enter plants via 
the secretion of plant cell wall degrading enzymes, such 
as endoglucanases, pectinases, and cellulases, capable of 
loosening and degrading the cellulose fiber and, therefore, 
assisting in the entry and colonization of the host plant 
(Verma et al., 2021). Successful colonization by endophytes is 
affected by different factors, including plant genotype, plant 
tissue type, microbial taxon and environmental conditions 
(Singh et al., 2017).

Plants and endophytic microorganisms have a mutualistic 
interaction. Endophytes profit from nutrients made available 
by plants, including photosynthates (Guo et al., 2017); 
in return, the endophytic microorganisms improve the 
acquisition of plant nutrients from the environment, such 
as nitrogen, iron, and phosphorus (Kandel et al., 2017), 
e.g., through biological nitrogen fixation (Suhandono et al., 
2016), phosphate solubilization (Krishnamoorthy et al., 
2020), and siderophores production (ALKahtani et al., 2020). 
They also help in the synthesis of phytohormones such as 
auxins, gibberellins, and cytokinins (Aslam et al., 2018), 
prevent pathogenic infections by producing antifungal and 
antibacterial compounds (Ullah et al., 2019), and produce 
1-aminocyclopropane-1-carboxylate (ACC) which minimizes 
the ethylene level of the plant induced by biotic or abiotic 
stress (Degrassi & Carpentieri-Pipolo, 2020). Endophytic 
bacteria have also been reported to trigger a latent disease 
defense mechanism called induced systemic resistance (ISR), 
which provides a higher level of protection to a broad range 
of phytopathogens (ALKahtani et al., 2020).

Endophytic bacteria are present in almost all plants and 
have been isolated from tissues of various plants, such as 
maize, wheat, soybean, onion, cucumber, and cauliflower 
(Aslam et al., 2018; Woźniak et al., 2019). Endophytic 
bacteria commonly found in plant tissues belong to the 
genera Enterobacter, Arthrobacter, Bacillus, Flavobacterium, 
Burkholderia, Pseudomonas, Serratia, Stenotrophomonas, 
Micrococcus, Pantoea, Microbacterium, Klebsiella, and 
Herbaspirillum (Nair & Padmavathy, 2014; Ullah et al., 2019; 
Woźniak et al., 2019).

Due to their plant growth promoting and disease control 
properties, many studies have suggested the use of endophytic 
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fertilizers. However, almost 70 to 90% of the applied 
phosphorus is rapidly immobilized by Ca2+, Al3+ and Fe3+ 
cations and becomes unavailable to plants (de Abreu et al., 
2017; Ouattara et al., 2019). Phosphorus speciation is mainly 
governed by the pH value of soil, in neutral to alkaline soils 
there is a predominance of Ca2+ cations that form a complex of 
calcium phosphate (Ca3(PO4)2), while in acidic soils there is a 
predominance of Al3+ and Fe3+ cations that rapidly immobilize 
phosphorus to form aluminum phosphate (AlPO4) and ferrous 
phosphate (FePO4).

The immobilization of phosphorus by cations to form 
mineral salts decreases the efficiency of fertilization and 
the profitability of the crop, resulting in economic losses and 
environmental problems such as deterioration of soil quality 
(Arora & Singh, 2016). When phosphate fertilizers are used 
extensively for long periods, increased concentrations of 
phosphorus can be found in water, as a result of the transport 
of phosphorus-laden soil particles in lakes and surface 
waters (Emami et al., 2019). In addition, most commercial 
phosphorus fertilizers contain toxic elements such as lead 
(Pb), fluorine (F), arsenic (As), cadmium (Cd), mercury 
(Hg), and chromium (Cr), along with radionuclides such as 
Ra-226, Th-232, Pb-210, Po-210, and U-238 (Emami et al., 
2019, 2020; Hegedűs et al., 2017).

Such environmental concerns and the rapid immobilization 
of phosphorus in soils have led scientists to search for 
environmentally friendly and economically viable alternatives 
to improve agricultural production (Matos et al., 2017). 
Among the alternatives, the use of endophytic bacteria 
has gained considerable attention. Several studies have 
reported the great potential of endophytic bacteria to 
solubilize phosphate and therefore increase soil fertility, 
plant nutrition, and growth (Ouattara et al., 2019). They 
increase the bioavailability of phosphorus through the 
solubilization of phosphorus containing minerals, using 
mechanisms that include the production of extracellular 
phosphatases, the secretion of organic acids, and the release 
of complexes or compounds such as organic acid anions, 
protons, and siderophores that chelate Ca2+, Al3+, and Fe3+ 
cations involved in the immobilization of phosphorus to form 
insoluble phytates (Arora & Singh, 2016; Emami et al., 2020; 
Nannipieri et al., 2011; Sharon et al., 2016). Endophytic 
bacteria with phosphate solubilization activity include the 
genera Arthrobacter, Pseudomonas, Bacillus, Rhizobium, 
Burkholderia, Enterobacter, Erwinia, Paenibacillus, 
Lysinibacillus, Mesorhizobium, Microbacterium, Serratia 
and Flavobacterium. Among them, the genera Rhizobium, 
Pseudomonas, and Bacillus are the most frequently reported 
(Arora & Singh, 2016; de Abreu et al., 2017; Matos et al., 
2017; Prasad et al., 2019).

Production of phytohormones

Phytohormones or plant hormones are organic substances 
with no nutritional function, acting as signaling or regulatory 
molecules capable of influencing and/or controlling some 
physical, biochemical, and morphological characteristics of 
the plant, at different stages of its development, at very 
low concentrations (Fu et al., 2015; Gaspar et al., 2003; 

involved in nitrogen fixation and growth promotion of several 
crops worldwide (Singh et al., 2021).

The presence of endophytic diazotrophic bacteria in 
sugarcane was discovered and described for the first 
time by the Brazilian researchers Döbereiner and Ruschel 
(Martins et al., 2020). Since the discovery of endophytic 
diazotrophic bacteria in sugarcane tissues, other important 
crops such as rice, wheat, corn, sorghum, and canola have 
been studied and postulated to receive significant amounts 
of fixed nitrogen in this way (Pankievicz et al., 2021; 
Setiawati et al., 2018). Azospirillum brasilense is the most 
studied species in association with cereals. Bacteria of the 
genus Azospirillum, in addition to other contributions through 
biological nitrogen fixation, are also considered potent plant 
growth promoters, as they can produce plant hormones 
(e.g., indole-3-acetic acid), solubilize phosphates and act as 
biocontrol agents against phytopathogens (Breda et al., 2020). 
While in sugarcane, the genera Herbaspirillum, Burkholderia 
(Carvalho et al., 2014), Gluconacetobacter, and Azospirillum, 
especially Azospirillum amazonense (Oliveira et al., 2004), 
are the best characterized endophytic diazotrophic bacteria. 
Studies suggest that these bacteria can act as a nitrogen 
biofertilizers for several important crops besides sugarcane 
(Medina-Cordoba et al., 2021; Nunes Oliveira et al., 2017).

More recent studies have focused their attention on testing 
other plant growth-promoting characteristics of endophytic 
diazotrophic bacteria including phytohormones production, 
phosphate solubilization, defense against phytopathogens 
and tolerance to abiotic stresses, in addition to the nitrogen 
fixation activity (Higdon et al., 2020; Rodrigues et al., 2016; 
Singh et al., 2021). This indicates the emerging concern 
of researchers in developing bacterial inoculants that can 
increase plant growth through a variety of mechanisms in 
order to reduce the dependence on agrochemicals.

Phosphate solubilization

Phosphorus is the second most important macronutrient 
for plant growth and development, after nitrogen, and 
represents about 0.2% to 0.8% of the plant’s dry weight 
(Alori et al., 2017). It is an essential macronutrient that 
can limit the growth of plants (Matos et al., 2017), being 
a component of nucleic acids, adenosine triphosphate 
(ATP), and phospholipids (Kalayu, 2019; Sharon et al., 
2016). In the plant, phosphorus is involved in the process 
of root development, stem strengthening, flower and seed 
formation, and promotion of crop maturity (Bononi et al., 
2020; Sharon et al., 2016).

The level of phosphorus in the soil is around 0.05% (w/w), 
but a considerable part, 95 to 99%, is in the form of mineral 
(insoluble) salts, such as dicalcium and tricalcium phosphate, 
hydroxyapatite and phosphate rocks; therefore, only 0.1% is 
available for plants to support their growth (Alori et al., 2017; 
Zhu et al., 2011). Plants are only able to absorb considerable 
amounts of orthophosphate ions (H2PO4

− or HPO4
2− and PO4

3-) 
from the soil. Therefore, the lower availability of phosphate 
in the soil certainly harms the agricultural productivity.

The challenge of phosphorus deficiency in agricultural 
soil is usually remediated by the application of phosphorus 
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optimal concentration (Bhutani et al., 2018; Khan et al., 
2016; Ribeiro et al., 2018; Shi et al., 2009; Xin et al., 2009). 
Numerous bacterial endophytes have been reported to 
promote plant growth by their ability to biosynthesize IAA 
(Hagaggi & Mohamed, 2020).

Indirect plant growth promotion

Several studies have reported that endophytic bacteria 
have the ability to indirectly promote plant growth, inhibiting 
the growth of phytopathogens and plant pests. Endophytic 
bacteria of the genera Arthrobacter, Actinobacteria, 
Bacillus, Burkholderia, Enterobacter, Paenibacillus, 
Micrococcus, Pantoea, Pseudomonas, Rhizobium, Serratia, 
and Streptomyces have already been screened and exploited 
as biocontrol agents against various plant pathogens 
(Jacob et al., 2020). Among them, Bacillus and Pseudomonas 
are the genera most frequently reported as biocontrol agents 
in several plants, such as pepper, tomato, potato, cassava, and 
wheat (Afzal et al., 2019; Amna et al., 2020; Meliah et al., 
2021). Bacillus strains have been documented as the most 
potent microorganisms for the formulation of biocontrol 
products due to their ability to form endospores, resistant to 
extreme environmental conditions including heat, drought, 
salinity and heavy metals, allowing them to trigger defense 
responses in host plants even under unfavorable conditions 
(Kushwaha et al., 2020; Wang et al., 2020b).

The biocontrol activity of Bacillus spp. against pathogenic 
fungi is well documented in the literature. Bacillus subtilis, 
an important biocontrol agent used in agriculture, exhibits 
direct and indirect biocontrol mechanisms, the first 
represented by the synthesis of compounds that allow the 
defense of the plant, like hormones, antioxidants, and 
enzymes, and the second characterized by the promotion of 
plant growth and induction of acquired systemic resistance. 
B. subtilis is especially effective in alleviating biotic stress 
in plants (Hashem et al., 2019). B. subtilis and Bacillus 
amyloliquefaciens demonstrated efficient inhibitory activity 
against Phytophthora sojae, a soil-borne pathogen resistant to 
control agents that results in great reductions of soybean yield 
(Liu et al., 2019). Torres et al. (2020) reported that Bacillus 
velezensis promoted the growth of various horticultural crops 
such as tomato, pepper, pumpkin, and cucumber plants, 
and showed antifungal activity in vitro against various 
phytopathogens such as Alternaria alternata, Fusarium 
oxysporum, Monilinia fructicola, Magnaporthe oryzae, 
Thanatephorus cucumeris, and Sclerotinia sclerotiorum. 
Ferreira et al. (2021) reported that cassava endophytic 
bacteria, B. velezensis isolate 21Y and Bacillus aryabhattai 
isolates 4W and 23Y, inhibited the in vitro and in vivo 
growth of Phytopythium sp., a pathogen that causes the soft 
root rot of cassava. Kushwaha et al. (2020) demonstrated 
that B. amyloliquefaciens EPP90, an endophytic Bacillus 
from pearl millet (Pennisetum glaucum), has antagonistic 
activity against phytopathogenic fungi. Amna et al. (2020) 
reported, in in vivo experiments, that Bacillus xiamenensis 
PM14 inhibited the growth of six phytopathogenic fungi, 
including Colletotrichum falcatum, Fusarium moniliforme, 
F. oxysporum, Macrophomina phaseolina, Rhizoctonia solani, 

Pařízková et al., 2017; Sauer et al., 2013). The synthesis of 
phytohormones can occur in any organ of the plant, then these 
hormones are transported to other organs (Aziz et al., 2015), 
and their influencing action on plant growth and development, 
as well as the mediation of the plant resistance to abiotic 
stresses, may be far away from their synthesis sites or in 
the same organ where they were synthesized (Gaspar et al., 
2003; Xu et al., 2018).

There are five categories of phytohormones, namely auxins, 
cytokinins, abscisic acid, gibberellins, and ethylene (Halmann, 
1990). However, some other categories of phytohormones may 
also be included such as brassinosteroids, jasmonic acid, and 
salicylates (Gray, 2004; Halmann, 1990; Sauer et al., 2013; 
Shi et al., 2017). Among the mentioned phytohormones, the 
benefits in plant growth and development are attributed to 
the production of the phytohormones auxin (indole-3-acetic 
acid or IAA, the most common natural auxin), cytokinins, 
and gibberellins, while the increased stress tolerance is 
often explained by an induction of systemic resistance 
involving abscisic acid, ethylene, salicylates, and jasmonic 
acid (Xu et al., 2018).

Among phytohormones, auxins, especially IAA, is considered 
the main contributor to plant growth and development (Zhao, 
2010), being involved in various processes of regulation of 
plant growth and development. IAA acts in cell division 
(Teale et al., 2006), cell elongation (Sauer et al., 2013), cell 
differentiation (Sugawara et al., 2015; Tsavkelova et al., 
2006), response to directional stimuli (tropic response), 
and mediation of resistance to stress conditions (Xu et al., 
2018). In addition, it plays a significant role in stimulating 
root initiation (Nutaratat et al., 2016), root elongation, root 
hair formation, and branching (Ali & Vora, 2014; Grossmann, 
2010; Halmann, 1990). The improvement in root surface 
area therefore has a positive effect on nutrients and water 
uptake and causes overall plant growth and development 
(Hagaggi & Mohamed, 2020).

In addition to being produced by plants, IAA is also 
synthesized by endophytic bacteria (Gomes et al., 2017). They 
synthesize IAA mainly via tryptophan-dependent pathways, 
where the amino acid L-tryptophan is the main precursor 
(Spaepen and Vanderleyden 2011; Herlina et al. 2017). There 
are several tryptophan dependent IAA synthesis pathways, 
which are usually named after the intermediate, such as the 
indole-3-acetonitrile (IAN) pathway, indole-3-acetamide (IAM) 
pathway, indole-3-pyruvic acid (IPyA) pathway, tryptamine 
(TAM) pathway, and indol-3-acetylaldehyde (IAAld) pathway 
(Li et al., 2018; Senthil et al., 2010; Spaepen et al., 2007). The 
tryptophan-independent pathway has been identified in some 
microorganisms, but tryptophan remains the most common 
and major precursor of IAA biosynthesis by microorganisms.

Prominent IAA-producing endophytic bacterial genera 
include Pseudomonas, Bacillus, Azotobacter, Klebsiella, 
Burkholderia, Bradyrhizobium, Enterobacter, Rhizobium, 
Streptomyces, Azospirillum, Pantoea, Lysobacter, and 
Herbaspirillum (Kumar et al., 2017). Although plants 
naturally synthesize IAA for growth, they respond positively 
to exogenous IAA applied during certain stages of growth 
(Egamberdieva et al., 2017). Bacterial IAA is non-toxic to 
plants over a wide range of concentrations and is effective 
in promoting the growth and development of various plant 
species when applied at certain development stages in 
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Agrobacterium OR Arthrobacter OR Bacillus OR Burkholderia 
OR Corynebacterium OR Curtobacterium OR Enterobacter 
OR Erwinia OR Gluconacetobacter OR Herbaspirillum OR 
Klebsiella OR Microbacterium OR Micrococcus OR Pantoea 
OR Paenibacillus OR Phyllobacterium OR Providencia OR 
Pseudomonas OR Rhizobium OR Serratia) AND (sugar$cane OR 
soy* OR corn OR maize), associated to the International Patent 
Classification code A01P-021/00 (Plant growth regulators).

Although studies with endophytes began decades ago, 
the first patent publication, related to the use of these 
microorganisms in agriculture, dates from 2003, initially 
published by the World Intellectual Property Organization 
(WIPO), followed by publications in the United States, 
Australia, the European Patent Office (EPO), India, Canada, 
and Germany. The patent document entitled “New sulfur-
oxidizing plant growth-promoting Rhizobacteria, e.g., 
RAY12 (Achromobacter piechaudii), RAY28 (Agrobacterium 
tumefaciens) or RAY132 (Stenotrophomonas maltophilia), 
useful for enhancing canola performance”, described the 
use of the strains as biocontrol agents or as biofungicides, 
that is, when in contact with plants, growth-promoting 
bacteria were able to oxidize sulfur to provide sulfate to 
the plants. Consequently, the characteristics involved with 
growth were significantly improved, as were biomass, seed 
weight, macro and micronutrient absorption, among others 
(Banerjee et al., 2003).

The patent search for the period of 2016–2021 resulted in 
401 patent documents, from which 172 were in fact related 
to the use of endophytic bacteria in the cultivation of corn, 
soybean, and sugarcane. An in-depth analysis of these 
documents was carried out to identify the recent technologies 
and the distribution of patent publications among countries. 
Results can be seen in Figure 1.

According to the map shown in Figure 1, China leads the 
rank of patent publications with 115 documents, followed by 
USA with 19, Canada with 16 and, fourthly, Brazil with ten 
documents. The search also found four documents originally 
published by the WIPO, two by the EPO, two in the Republic 
of Korea and in Mexico, and one document in Philippines, 
Australia, and Taiwan.

A recent publication shows that China has a long-term plan 
to modernize domestic agriculture with a focus on innovations, 
land reform and food security protection, maintaining much 
of agricultural production in its own territory and controlling 
global trade through large conglomerates. This long-term plan 
may justify the search for ways to reduce costs and improve 
agricultural efficiency (Seixas & Contini, 2018).

Another study conducted by the Brazilian Agricultural 
Research Corporation (Embrapa) in 2020 showed that Brazil 
occupies the fourth position in the global rank of grain 
producers, behind China, the United States, and India. 
Having produced 239 million tons and exported 123 million 
tons, Brazil accounts for 7.8% of the world’s grain production 
(Guaraldo, 2020). Despite the large volume of production, 
when compared to China and USA, Brazil shows a low 
level of technological development regarding endophytic 
microorganisms. Among the ten patent publications found 
in the Brazilian domain none was originally applied in Brazil. 
When a search was performed in the Brazilian National 
Institute of Industrial Property (INPI) using the translated 
term for “endophyte”, seven documents were found between 

and Pythium splendens, and in greenhouse experiments, 
that the inoculation of B. xiamenensis PM14 to sugarcane 
plants suppressed sugarcane red rot disease symptoms 
and enhanced plant growth. Cheffi Azabou et al. (2020) 
reported B. velezensis OEE1 as an efficient biocontrol 
agent against Verticillium wilt of olive and a potential 
plant growth-promoter. One possible mechanism of indirect 
plant growth promotion and biocontrol is the synthesis of 
hydrolytic enzymes, such as chitinases, cellulases, β-1,3-
glucanases, lipases, pectinases, and proteases that can 
destroy phytopathogenic fungi and, therefore, protect the 
plant from biotic stress (Aktuganov et al., 2008; Caulier et al., 
2019; Figueiredo et al., 2016; Glick, 2012; Jacob et al., 2020; 
Palaniyandi et al., 2013).

The ability of Bacillus spp. to act as a biocontrol agent 
against plant pests has also been reported. Ramalakshmi et al. 
(2020) reported the suppression of the root-knot nematode 
Meloidogyne incognita by Bacillus thuringiensis, and 
Zhou et al. (2021) reported the inhibition of the invasion, 
development, and reproduction of the soybean cyst nematode 
Heterodera glycines in soybean by Bacillus megaterium strain 
Sneb207. Insecticidal activity against pests has been reported 
for B. thuringiensis against Lepidoptera (Chakrabarty et al., 
2020). In addition to its efficiency as a biocontrol agent, 
Bacillus spp. are also recognized for promoting plant 
growth and tolerance to abiotic stresses such as extreme 
temperatures, salinity, drought, and heavy metals.

Endophytic bacteria also have the ability to indirectly 
promote plant growth through the production of siderophores 
(iron chelators), that reduce iron availability to phytopathogens 
thus inhibiting their growth (Afzal et al., 2019). In addition, 
endophytic bacteria can use the ISR mechanism in host plants 
against pathogenic fungi, bacteria, viruses, nematodes, and 
pests. The ISR prepares the plant’s defense mechanisms, 
thus protecting the unexposed parts of the plant against 
future pathogenic attacks (Afzal et al., 2019; Lacava et al., 
2007; Ryan et al., 2008). Normally, endophytic bacteria 
can initiate ISR using pathways mediated by salicylic acid, 
jasmonic acid, and ethylene (Yanti et al., 2019). Salicylic 
acid signaling positively regulates plant defense against 
biotrophic plant pathogenic fungi, whereas jasmonic acid and 
ethylene pathways are commonly required for resistance to 
necrotrophic plant pathogenic fungi and pests (Wang et al., 
2020a). However, endophytic bacteria can use distinct 
plant defense signaling pathways, depending on the type of 
phytopathogen invader, that is, the same bacterium could 
use different pathways to confer resistance to different 
pathogens (Afzal et al., 2019).

Panorama of technological development 
based on patent applications

A patent search was carried out to assess the panorama of 
technological development related to the use of endophytic 
bacteria in important agricultural crops: corn, soybean, 
and sugarcane. The bacterial genera were selected based 
on Afzal et al. (2019). The search was run in the Derwent 
Innovations Index database, using the following terms in the 
“Topic”: (endophyt* OR Acetobacter OR Achromobacter OR 
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reductions in the amount of pesticides used during cultivation, 
directly impacting the cost of production (Li et al., 2017).

Conclusion

Endophytic bacteria, through their mechanisms of 
atmospheric nitrogen fixation, phosphate solubilization, 
production of phytohormones, and inhibition of plant 
pathogens and pests, are a promising tool in the development 
of a sustainable, eco-friendly agriculture. Their use promotes 
plant growth reducing the demand for chemical fertilizers 
and pest control agents. In this segment, a panorama 
of technological development was designed focused on 
three important commodities, namely corn, soybean, and 
sugarcane. The rank of patent publications by country 
was leaded by China, USA, Canada, and Brazil. Several 
new bacterial strains were protected as bioinoculants or 
biopesticides. Formulations containing endophytic bacteria 
were mostly intended for seed coating or spraying and acted 
directly in the control of pests and diseases, as well as in 
increasing resistance to environmental stress. In many cases, 
they acted in promoting the growth of plants producing 
hormones that regulate or increase nutrient uptake.
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2016 and 2019, related to the use of endophytes as biocontrol 
agents and plant growth promoters, and two of them were 
originally applied in Brazil.

According to the search results, formulations of bioinoculants 
or biopesticides containing endophytic microorganisms are 
mostly intended for seed coating or spraying and act directly 
in the control of pests and diseases, as well as in increasing 
resistance to environmental stress. In many cases, they act 
in promoting the growth of plants producing hormones that 
regulate or increase nutrient uptake (Parnell et al., 2019; 
Wei et al., 2021; White & Caraballo, 2019; Xun et al., 2021).

New strains such as Microbacterium trichothecenolyticum 
(WO2019217255-A1), Bacillus proteolyticus (CN112899206-A), 
Paenibacillus amylolyticus KY15 (CN110257293-A), B. 
aryabhattai strain J5 (CN105985922-A), and Enterobacter 
LY6 (CN105838750-A), were discovered as efficient producers 
of IAA. These strains also act in the capture, transport, and 
disposal of soil nutrients, and prevent or treat possible plant 
diseases (Cai et al., 2016; Hou et al., 2016; Kang & Wang, 
2019; Parnell et al., 2019; Wei et al., 2021). Meanwhile, some 
bioproduct compositions focus, for example, on nitrogen 
fixation by the plant (WO20191422199-A1) and in the capture 
of carbon dioxide from the atmosphere, so photosynthetic 
processes are increased, thus improving growth, shoot and 
leaf size, rooting, plant stress resistance, and nitrogen use 
effectiveness (WO2019084324-A1) (Avidov et al., 2019; 
Harman et al., 2019). In general, the technologies aimed at 
increasing the quality and efficiency of agricultural production 
since, in addition to these benefits, there were significant 

Figure 1. Number of published patent documents by country, between 2016 and 2021, related to the use of endophytic bacteria 
in the cultivation of corn, soybean, and sugarcane. Additionally, there were four publications by the World Intellectual Property 
Organization (WIPO, WO) and two by the European Patent Office (EP). Source of data: Derwent Innovations Index; search performed 
on October 6th, 2021.
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