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Introduction

The global population has doubled in the last 50 years,
and the current world population of 7.6 billion is expected
to increase to more than 9 billion by 2050, substantially
increasing the demand for agricultural products by at least
70% (United Nations, 2019). This demand, associated to the
reduction of arable land due to urban development, land
degradation, and global climate change (Matsumoto et al.,
2021) requires an increase in agricultural productivity without
significant increases in land, water or fertilizer use, as they
are all becoming limited and pose additional threats to the
environment (Prasad et al., 2019).

The current approaches used in agriculture to promote
plant growth and production rely heavily on the use of
chemical fertilizers. However, their long-term use can bring
harmful effects to the environment (Ullah et al., 2019),
causing groundwater contamination, eutrophication, loss
of soil fertility, soil pollution, reduced biodiversity and
increased emissions of greenhouse gases (Prasad et al., 2019;
Wozniak et al., 2019).

This scenario indicates the urgent need to find sustainable
alternatives to increase crop production with environmental
sustainability (Wozniak et al., 2019). Several alternatives have
already been proposed and documented in the literature, and
the use of plant growth-promoting bacteria (PGPB) emerges as a
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promising solution for sustainable and environmentally friendly
agriculture (ALKahtani et al., 2020; Degrassi & Carpentieri-
Pipolo, 2020; Hamid et al., 2021; Ullah et al., 2019).

PGPB are present in soil ecosystems, closely associated
with higher plants, being classified as epiphytes or endophytes
(Martinez-Viveros et al., 2010). Epiphytes are bacteria that
colonize the rhizosphere (zone of interaction between the root
and soil) and phyllosphere (the aerial part of the plant), while
endophytic bacteria are those that can be found colonizing
the endosphere (inner part of the plant) of a healthy plant,
without causing any apparent damage or pathogenic symptoms
to their host plant (Bandara et al., 2006; Gautam et al., 2016).
Both epiphytes or endophytes use the same plant growth-
promoting mechanisms (Glick, 2012; Santoyo et al., 2016).
However, endophytic bacteria have been considered greater
providers of beneficial effects to the host plant than many
epiphytic bacteria for the following reasons: (i) endophytic
bacteria live inside the plant and have greater contact with
plant cells and therefore are more ready to exert a direct
beneficial effect on the plant; and (ii) endophytic bacteria are
not subject to competition for nutrients as normally occurs
in the rhizophore and, therefore, end up having greater
efficiency than epiphytic bacteria in promoting plant growth
(Afzal et al., 2019; Santoyo et al., 2016).

Endophytic microorganisms are classified as obligate or
facultative endophytes (Egamberdieva & Ahmad, 2018).
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Obligate endophytes spend their entire life cycle within the
host, unable to live outside plant tissues, depend on the host
plant for survival, and disseminate through seeds or vegetative
plant tissue (Frank et al., 2017; Kumar & Khapre, 2017).
Obligate endophytes are not culturable or are more difficult
to cultivate in the laboratory, as they require more specific
conditions for their growth (Maela & Serepa-dlamini, 2019).
On the other hand, facultative endophytes have a free life.
They colonize plants opportunistically, that is, they can live
outside the plant for part of their life (Singh et al., 2016).

Facultative endophytes are the category that helps to
improve plant growth, development, and health. They
enter plant tissues from the root through fissures formed
at the junction of secondary roots or wounds caused by
microbial phytopathogens or nematodes, as well as through
flowers, stems, cotyledons via stomata (natural openings),
wounds or fissures (Fadiji & Babalola, 2020; Herlina et al.,
2017; Setiawati et al., 2018), remaining there or becoming
systemic by transport or active migration through the
conductive elements (Lodewyckx et al., 2002; Mengistu,
2020). In addition, facultative endophytes enter plants via
the secretion of plant cell wall degrading enzymes, such
as endoglucanases, pectinases, and cellulases, capable of
loosening and degrading the cellulose fiber and, therefore,
assisting in the entry and colonization of the host plant
(Verma et al., 2021). Successful colonization by endophytes is
affected by different factors, including plant genotype, plant
tissue type, microbial taxon and environmental conditions
(Singh et al., 2017).

Plants and endophytic microorganisms have a mutualistic
interaction. Endophytes profit from nutrients made available
by plants, including photosynthates (Guo et al., 2017);
in return, the endophytic microorganisms improve the
acquisition of plant nutrients from the environment, such
as nitrogen, iron, and phosphorus (Kandel et al., 2017),
e.g., through biological nitrogen fixation (Suhandono et al.,
2016), phosphate solubilization (Krishnamoorthy et al.,
2020), and siderophores production (ALKahtani et al., 2020).
They also help in the synthesis of phytohormones such as
auxins, gibberellins, and cytokinins (Aslam et al., 2018),
prevent pathogenic infections by producing antifungal and
antibacterial compounds (Ullah et al., 2019), and produce
1-aminocyclopropane-1-carboxylate (ACC) which minimizes
the ethylene level of the plant induced by biotic or abiotic
stress (Degrassi & Carpentieri-Pipolo, 2020). Endophytic
bacteria have also been reported to trigger a latent disease
defense mechanism called induced systemic resistance (ISR),
which provides a higher level of protection to a broad range
of phytopathogens (ALKahtani et al., 2020).

Endophytic bacteria are present in almost all plants and
have been isolated from tissues of various plants, such as
maize, wheat, soybean, onion, cucumber, and cauliflower
(Aslam et al., 2018; Wozniak et al., 2019). Endophytic
bacteria commonly found in plant tissues belong to the
genera Enterobacter, Arthrobacter, Bacillus, Flavobacterium,
Burkholderia, Pseudomonas, Serratia, Stenotrophomonas,
Micrococcus, Pantoea, Microbacterium, Klebsiella, and
Herbaspirillum (Nair & Padmavathy, 2014; Ullah et al., 2019;
Wozniak et al., 2019).

Due to their plant growth promoting and disease control
properties, many studies have suggested the use of endophytic

bacteria in the form of bioinoculants in agriculture. There
are many reports in the literature on the isolation of
endophytic bacteria from roots, stems, leaves, seeds of
different plant species and their agricultural applications
(Rana et al., 2020). The number of registered patents is
increasing, related to the application of endophytic bacteria
as bioinoculants in agriculture, demonstrating their great
contribution to the development of a sustainable agriculture
(Krishnamoorthy et al., 2020; Ullah et al., 2019).

Atmospheric N, fixation

Nitrogen is the most important and limiting macronutrient
for plant growth and development. It is an unlimited
resource, highly abundant in the atmosphere, accounting
for approximately 78% of the atmospheric gases, and
mainly present in the diatomic form (N,). Plants cannot use
atmospheric N, directly, as they only uptake nitrate (NO,’)
or ammonium (NH,*) as inorganic nitrogen sources and
amino acids under particular conditions of soil composition.
Therefore, regardless of the huge abundance of atmospheric
N,, the plant-available nitrogen is commonly deficient in
agricultural soils (CTAHR, 2021).

The great demand for nitrogen in agriculture has been met
with the use of nitrogen-rich fertilizers, such as ammonia,
urea, and ammonium nitrate, produced by chemical
processes. The use of nitrogen-rich fertilizers is inevitable to
meet the growing demand for food, however, the prolonged
use of these fertilizers can cause serious environmental
damage, including (i) increase of nitrous oxide (N,O) emission,
one of the greenhouse gases; (ii) accumulation of nitrate
in groundwater, which can cause various negative effects
on human health; (iii) death of certain plant species; (iv)
promotion of the growth of non-native grasses; and (v)
eutrophication and nutrients imbalance causing the depletion
of other important minerals in the soil, such as magnesium,
calcium, and phosphorus, which can cause proliferation of
toxic elements such as aluminum that harm plants, fish, and
aquatic organisms (Liu et al., 2014).

An alternative to reduce the excessive use of nitrogen-rich
fertilizers in agricultural practices, without harming crop
productivity, is the use of endophytic diazotrophic bacteria.
These bacteria are able to supply nitrogen to their host plants
through the biological nitrogen fixation (BNF) mechanism
(Poza-Carrion et al., 2014; Santi et al., 2015). BNF consists
of the conversion of atmospheric nitrogen (N,) into ammonia
(NH,) through the use of a highly specialized enzyme complex
called nitrogenase encoded by the nif genes (Liu et al., 2020).
Nitrogenase is a highly conserved protein present in all N,
fixing bacteria, widely used as a molecular marker for the
identification and characterization of diazotrophic bacteria.

Diazotrophic bacteria can be found living freely in soils
and water, in the rhizosphere and phyllosphere, and in
plant tissues, in symbiotic association with legumes and
actinorhizal plants (e.g., Frankia spp.), fungi, woody plants,
and terrestrial plants (Diagne et al., 2013). These diazotrophic
bacteria include the genera Rhizobium, Bradyrhizobium,
Azorhizobium, Sinorhizobium, Mesorhizobium (Oliveira et al.,
2020), Enterobacter, Klebsiella, Serratia, and Pantoea,
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involved in nitrogen fixation and growth promotion of several
crops worldwide (Singh et al., 2021).

The presence of endophytic diazotrophic bacteria in
sugarcane was discovered and described for the first
time by the Brazilian researchers Dobereiner and Ruschel
(Martins et al., 2020). Since the discovery of endophytic
diazotrophic bacteria in sugarcane tissues, other important
crops such as rice, wheat, corn, sorghum, and canola have
been studied and postulated to receive significant amounts
of fixed nitrogen in this way (Pankievicz et al., 2021;
Setiawati et al., 2018). Azospirillum brasilense is the most
studied species in association with cereals. Bacteria of the
genus Azospirillum, in addition to other contributions through
biological nitrogen fixation, are also considered potent plant
growth promoters, as they can produce plant hormones
(e.g., indole-3-acetic acid), solubilize phosphates and act as
biocontrol agents against phytopathogens (Breda et al., 2020).
While in sugarcane, the genera Herbaspirillum, Burkholderia
(Carvalho et al., 2014), Gluconacetobacter, and Azospirillum,
especially Azospirillum amazonense (Oliveira et al., 2004),
are the best characterized endophytic diazotrophic bacteria.
Studies suggest that these bacteria can act as a nitrogen
biofertilizers for several important crops besides sugarcane
(Medina-Cordoba et al., 2021; Nunes Oliveira et al., 2017).

More recent studies have focused their attention on testing
other plant growth-promoting characteristics of endophytic
diazotrophic bacteria including phytohormones production,
phosphate solubilization, defense against phytopathogens
and tolerance to abiotic stresses, in addition to the nitrogen
fixation activity (Higdon et al., 2020; Rodrigues et al., 2016;
Singh et al., 2021). This indicates the emerging concern
of researchers in developing bacterial inoculants that can
increase plant growth through a variety of mechanisms in
order to reduce the dependence on agrochemicals.

Phosphate solubilization

Phosphorus is the second most important macronutrient
for plant growth and development, after nitrogen, and
represents about 0.2% to 0.8% of the plant’s dry weight
(Alori et al., 2017). It is an essential macronutrient that
can limit the growth of plants (Matos et al., 2017), being
a component of nucleic acids, adenosine triphosphate
(ATP), and phospholipids (Kalayu, 2019; Sharon et al.,
2016). In the plant, phosphorus is involved in the process
of root development, stem strengthening, flower and seed
formation, and promotion of crop maturity (Bononi et al.,
2020; Sharon et al., 2016).

The level of phosphorus in the soil is around 0.05% (w/w),
but a considerable part, 95 to 99%, is in the form of mineral
(insoluble) salts, such as dicalcium and tricalcium phosphate,
hydroxyapatite and phosphate rocks; therefore, only 0.1% is
available for plants to support their growth (Alori et al., 2017;
Zhu et al., 2011). Plants are only able to absorb considerable
amounts of orthophosphate ions (H,PO,” or HPO,* and PO,*)
from the soil. Therefore, the lower availability of phosphate
in the soil certainly harms the agricultural productivity.

The challenge of phosphorus deficiency in agricultural
soil is usually remediated by the application of phosphorus

fertilizers. However, almost 70 to 90% of the applied
phosphorus is rapidly immobilized by Ca?, Al** and Fe?*
cations and becomes unavailable to plants (de Abreu et al.,
2017; Ouattara et al., 2019). Phosphorus speciation is mainly
governed by the pH value of soil, in neutral to alkaline soils
there is a predominance of Ca?* cations that form a complex of
calcium phosphate (Ca,(PO,),), while in acidic soils there is a
predominance of Al** and Fe3* cations that rapidly immobilize
phosphorus to form aluminum phosphate (ALPO,) and ferrous
phosphate (FePO,).

The immobilization of phosphorus by cations to form
mineral salts decreases the efficiency of fertilization and
the profitability of the crop, resulting in economic losses and
environmental problems such as deterioration of soil quality
(Arora & Singh, 2016). When phosphate fertilizers are used
extensively for long periods, increased concentrations of
phosphorus can be found in water, as a result of the transport
of phosphorus-laden soil particles in lakes and surface
waters (Emami et al., 2019). In addition, most commercial
phosphorus fertilizers contain toxic elements such as lead
(Pb), fluorine (F), arsenic (As), cadmium (Cd), mercury
(Hg), and chromium (Cr), along with radionuclides such as
Ra-226, Th-232, Pb-210, Po-210, and U-238 (Emami et al.,
2019, 2020; Hegedds et al., 2017).

Such environmental concerns and the rapid immobilization
of phosphorus in soils have led scientists to search for
environmentally friendly and economically viable alternatives
to improve agricultural production (Matos et al., 2017).
Among the alternatives, the use of endophytic bacteria
has gained considerable attention. Several studies have
reported the great potential of endophytic bacteria to
solubilize phosphate and therefore increase soil fertility,
plant nutrition, and growth (Ouattara et al., 2019). They
increase the bioavailability of phosphorus through the
solubilization of phosphorus containing minerals, using
mechanisms that include the production of extracellular
phosphatases, the secretion of organic acids, and the release
of complexes or compounds such as organic acid anions,
protons, and siderophores that chelate Ca?", A**, and Fe¥
cations involved in the immobilization of phosphorus to form
insoluble phytates (Arora & Singh, 2016; Emami et al., 2020;
Nannipieri et al., 2011; Sharon et al., 2016). Endophytic
bacteria with phosphate solubilization activity include the
genera Arthrobacter, Pseudomonas, Bacillus, Rhizobium,
Burkholderia, Enterobacter, Erwinia, Paenibacillus,
Lysinibacillus, Mesorhizobium, Microbacterium, Serratia
and Flavobacterium. Among them, the genera Rhizobium,
Pseudomonas, and Bacillus are the most frequently reported
(Arora & Singh, 2016; de Abreu et al., 2017; Matos et al.,
2017; Prasad et al., 2019).

Production of phytohormones

Phytohormones or plant hormones are organic substances
with no nutritional function, acting as signaling or regulatory
molecules capable of influencing and/or controlling some
physical, biochemical, and morphological characteristics of
the plant, at different stages of its development, at very
low concentrations (Fu et al., 2015; Gaspar et al., 2003;
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Parizkova et al., 2017; Sauer et al., 2013). The synthesis of
phytohormones can occur in any organ of the plant, then these
hormones are transported to other organs (Aziz et al., 2015),
and their influencing action on plant growth and development,
as well as the mediation of the plant resistance to abiotic
stresses, may be far away from their synthesis sites or in
the same organ where they were synthesized (Gaspar et al.,
2003; Xu et al., 2018).

There are five categories of phytohormones, namely auxins,
cytokinins, abscisic acid, gibberellins, and ethylene (Halmann,
1990). However, some other categories of phytohormones may
also be included such as brassinosteroids, jasmonic acid, and
salicylates (Gray, 2004; Halmann, 1990; Sauer et al., 2013;
Shi et al., 2017). Among the mentioned phytohormones, the
benefits in plant growth and development are attributed to
the production of the phytohormones auxin (indole-3-acetic
acid or IAA, the most common natural auxin), cytokinins,
and gibberellins, while the increased stress tolerance is
often explained by an induction of systemic resistance
involving abscisic acid, ethylene, salicylates, and jasmonic
acid (Xu et al., 2018).

Among phytohormones, auxins, especially IAA, is considered
the main contributor to plant growth and development (Zhao,
2010), being involved in various processes of regulation of
plant growth and development. IAA acts in cell division
(Teale et al., 2006), cell elongation (Sauer et al., 2013), cell
differentiation (Sugawara et al., 2015; Tsavkelova et al.,
2006), response to directional stimuli (tropic response),
and mediation of resistance to stress conditions (Xu et al.,
2018). In addition, it plays a significant role in stimulating
root initiation (Nutaratat et al., 2016), root elongation, root
hair formation, and branching (Ali & Vora, 2014; Grossmann,
2010; Halmann, 1990). The improvement in root surface
area therefore has a positive effect on nutrients and water
uptake and causes overall plant growth and development
(Hagaggi & Mohamed, 2020).

In addition to being produced by plants, IAA is also
synthesized by endophytic bacteria (Gomes et al., 2017). They
synthesize IAA mainly via tryptophan-dependent pathways,
where the amino acid L-tryptophan is the main precursor
(Spaepen and Vanderleyden 2011; Herlina et al. 2017). There
are several tryptophan dependent IAA synthesis pathways,
which are usually named after the intermediate, such as the
indole-3-acetonitrile (IAN) pathway, indole-3-acetamide (IAM)
pathway, indole-3-pyruvic acid (IPyA) pathway, tryptamine
(TAM) pathway, and indol-3-acetylaldehyde (IAAld) pathway
(Lietal., 2018; Senthil et al., 2010; Spaepen et al., 2007). The
tryptophan-independent pathway has been identified in some
microorganisms, but tryptophan remains the most common
and major precursor of IAA biosynthesis by microorganisms.

Prominent IAA-producing endophytic bacterial genera
include Pseudomonas, Bacillus, Azotobacter, Klebsiella,
Burkholderia, Bradyrhizobium, Enterobacter, Rhizobium,
Streptomyces, Azospirillum, Pantoea, Lysobacter, and
Herbaspirillum (Kumar et al., 2017). Although plants
naturally synthesize IAA for growth, they respond positively
to exogenous IAA applied during certain stages of growth
(Egamberdieva et al., 2017). Bacterial IAA is non-toxic to
plants over a wide range of concentrations and is effective
in promoting the growth and development of various plant
species when applied at certain development stages in

optimal concentration (Bhutani et al., 2018; Khan et al.,
2016; Ribeiro et al., 2018; Shi et al., 2009; Xin et al., 2009).
Numerous bacterial endophytes have been reported to
promote plant growth by their ability to biosynthesize 1AA
(Hagaggi & Mohamed, 2020).

Indirect plant growth promotion

Several studies have reported that endophytic bacteria
have the ability to indirectly promote plant growth, inhibiting
the growth of phytopathogens and plant pests. Endophytic
bacteria of the genera Arthrobacter, Actinobacteria,
Bacillus, Burkholderia, Enterobacter, Paenibacillus,
Micrococcus, Pantoea, Pseudomonas, Rhizobium, Serratia,
and Streptomyces have already been screened and exploited
as biocontrol agents against various plant pathogens
(Jacob et al., 2020). Among them, Bacillus and Pseudomonas
are the genera most frequently reported as biocontrol agents
in several plants, such as pepper, tomato, potato, cassava, and
wheat (Afzal et al., 2019; Amna et al., 2020; Meliah et al.,
2021). Bacillus strains have been documented as the most
potent microorganisms for the formulation of biocontrol
products due to their ability to form endospores, resistant to
extreme environmental conditions including heat, drought,
salinity and heavy metals, allowing them to trigger defense
responses in host plants even under unfavorable conditions
(Kushwaha et al., 2020; Wang et al., 2020b).

The biocontrol activity of Bacillus spp. against pathogenic
fungi is well documented in the literature. Bacillus subtilis,
an important biocontrol agent used in agriculture, exhibits
direct and indirect biocontrol mechanisms, the first
represented by the synthesis of compounds that allow the
defense of the plant, like hormones, antioxidants, and
enzymes, and the second characterized by the promotion of
plant growth and induction of acquired systemic resistance.
B. subtilis is especially effective in alleviating biotic stress
in plants (Hashem et al., 2019). B. subtilis and Bacillus
amyloliquefaciens demonstrated efficient inhibitory activity
against Phytophthora sojae, a soil-borne pathogen resistant to
control agents that results in great reductions of soybean yield
(Liu et al., 2019). Torres et al. (2020) reported that Bacillus
velezensis promoted the growth of various horticultural crops
such as tomato, pepper, pumpkin, and cucumber plants,
and showed antifungal activity in vitro against various
phytopathogens such as Alternaria alternata, Fusarium
oxysporum, Monilinia fructicola, Magnaporthe oryzae,
Thanatephorus cucumeris, and Sclerotinia sclerotiorum.
Ferreira et al. (2021) reported that cassava endophytic
bacteria, B. velezensis isolate 21Y and Bacillus aryabhattai
isolates 4W and 23Y, inhibited the in vitro and in vivo
growth of Phytopythium sp., a pathogen that causes the soft
root rot of cassava. Kushwaha et al. (2020) demonstrated
that B. amyloliquefaciens EPP90, an endophytic Bacillus
from pearl millet (Pennisetum glaucum), has antagonistic
activity against phytopathogenic fungi. Amna et al. (2020)
reported, in in vivo experiments, that Bacillus xiamenensis
PM14 inhibited the growth of six phytopathogenic fungi,
including Colletotrichum falcatum, Fusarium moniliforme,
F. oxysporum, Macrophomina phaseolina, Rhizoctonia solani,
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and Pythium splendens, and in greenhouse experiments,
that the inoculation of B. xiamenensis PM14 to sugarcane
plants suppressed sugarcane red rot disease symptoms
and enhanced plant growth. Cheffi Azabou et al. (2020)
reported B. velezensis OEE1 as an efficient biocontrol
agent against Verticillium wilt of olive and a potential
plant growth-promoter. One possible mechanism of indirect
plant growth promotion and biocontrol is the synthesis of
hydrolytic enzymes, such as chitinases, cellulases, B-1,3-
glucanases, lipases, pectinases, and proteases that can
destroy phytopathogenic fungi and, therefore, protect the
plant from biotic stress (Aktuganov et al., 2008; Caulier et al.,
2019; Figueiredo et al., 2016; Glick, 2012; Jacob et al., 2020;
Palaniyandi et al., 2013).

The ability of Bacillus spp. to act as a biocontrol agent
against plant pests has also been reported. Ramalakshmi et al.
(2020) reported the suppression of the root-knot nematode
Meloidogyne incognita by Bacillus thuringiensis, and
Zhou et al. (2021) reported the inhibition of the invasion,
development, and reproduction of the soybean cyst nematode
Heterodera glycines in soybean by Bacillus megaterium strain
Sneb207. Insecticidal activity against pests has been reported
for B. thuringiensis against Lepidoptera (Chakrabarty et al.,
2020). In addition to its efficiency as a biocontrol agent,
Bacillus spp. are also recognized for promoting plant
growth and tolerance to abiotic stresses such as extreme
temperatures, salinity, drought, and heavy metals.

Endophytic bacteria also have the ability to indirectly
promote plant growth through the production of siderophores
(iron chelators), that reduce iron availability to phytopathogens
thus inhibiting their growth (Afzal et al., 2019). In addition,
endophytic bacteria can use the ISR mechanism in host plants
against pathogenic fungi, bacteria, viruses, nematodes, and
pests. The ISR prepares the plant’s defense mechanisms,
thus protecting the unexposed parts of the plant against
future pathogenic attacks (Afzal et al., 2019; Lacava et al.,
2007; Ryan et al., 2008). Normally, endophytic bacteria
can initiate ISR using pathways mediated by salicylic acid,
jasmonic acid, and ethylene (Yanti et al., 2019). Salicylic
acid signaling positively regulates plant defense against
biotrophic plant pathogenic fungi, whereas jasmonic acid and
ethylene pathways are commonly required for resistance to
necrotrophic plant pathogenic fungi and pests (Wang et al.,
2020a). However, endophytic bacteria can use distinct
plant defense signaling pathways, depending on the type of
phytopathogen invader, that is, the same bacterium could
use different pathways to confer resistance to different
pathogens (Afzal et al., 2019).

Panorama of technological development
based on patent applications

A patent search was carried out to assess the panorama of
technological development related to the use of endophytic
bacteria in important agricultural crops: corn, soybean,
and sugarcane. The bacterial genera were selected based
on Afzal et al. (2019). The search was run in the Derwent
Innovations Index database, using the following terms in the
“Topic”: (endophyt* OR Acetobacter OR Achromobacter OR

Agrobacterium OR Arthrobacter OR Bacillus OR Burkholderia
OR Corynebacterium OR Curtobacterium OR Enterobacter
OR Erwinia OR Gluconacetobacter OR Herbaspirillum OR
Klebsiella OR Microbacterium OR Micrococcus OR Pantoea
OR Paenibacillus OR Phyllobacterium OR Providencia OR
Pseudomonas OR Rhizobium OR Serratia) AND (sugar$cane OR
soy* OR corn OR maize), associated to the International Patent
Classification code AO1P-021/00 (Plant growth regulators).

Although studies with endophytes began decades ago,
the first patent publication, related to the use of these
microorganisms in agriculture, dates from 2003, initially
published by the World Intellectual Property Organization
(WIPO), followed by publications in the United States,
Australia, the European Patent Office (EPO), India, Canada,
and Germany. The patent document entitled “New sulfur-
oxidizing plant growth-promoting Rhizobacteria, e.g.,
RAY12 (Achromobacter piechaudii), RAY28 (Agrobacterium
tumefaciens) or RAY132 (Stenotrophomonas maltophilia),
useful for enhancing canola performance”, described the
use of the strains as biocontrol agents or as biofungicides,
that is, when in contact with plants, growth-promoting
bacteria were able to oxidize sulfur to provide sulfate to
the plants. Consequently, the characteristics involved with
growth were significantly improved, as were biomass, seed
weight, macro and micronutrient absorption, among others
(Banerjee et al., 2003).

The patent search for the period of 2016-2021 resulted in
401 patent documents, from which 172 were in fact related
to the use of endophytic bacteria in the cultivation of corn,
soybean, and sugarcane. An in-depth analysis of these
documents was carried out to identify the recent technologies
and the distribution of patent publications among countries.
Results can be seen in Figure 1.

According to the map shown in Figure 1, China leads the
rank of patent publications with 115 documents, followed by
USA with 19, Canada with 16 and, fourthly, Brazil with ten
documents. The search also found four documents originally
published by the WIPO, two by the EPO, two in the Republic
of Korea and in Mexico, and one document in Philippines,
Australia, and Taiwan.

Arecent publication shows that China has a long-term plan
to modernize domestic agriculture with a focus on innovations,
land reform and food security protection, maintaining much
of agricultural production in its own territory and controlling
global trade through large conglomerates. This long-term plan
may justify the search for ways to reduce costs and improve
agricultural efficiency (Seixas & Contini, 2018).

Another study conducted by the Brazilian Agricultural
Research Corporation (Embrapa) in 2020 showed that Brazil
occupies the fourth position in the global rank of grain
producers, behind China, the United States, and India.
Having produced 239 million tons and exported 123 million
tons, Brazil accounts for 7.8% of the world’s grain production
(Guaraldo, 2020). Despite the large volume of production,
when compared to China and USA, Brazil shows a low
level of technological development regarding endophytic
microorganisms. Among the ten patent publications found
in the Brazilian domain none was originally applied in Brazil.
When a search was performed in the Brazilian National
Institute of Industrial Property (INPI) using the translated
term for “endophyte”, seven documents were found between
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Figure 1. Number of published patent documents by country, between 2016 and 2021, related to the use of endophytic bacteria
in the cultivation of corn, soybean, and sugarcane. Additionally, there were four publications by the World Intellectual Property
Organization (WIPO, WO) and two by the European Patent Office (EP). Source of data: Derwent Innovations Index; search performed

on October 6%, 2021.

2016 and 2019, related to the use of endophytes as biocontrol
agents and plant growth promoters, and two of them were
originally applied in Brazil.

According to the search results, formulations of bioinoculants
or biopesticides containing endophytic microorganisms are
mostly intended for seed coating or spraying and act directly
in the control of pests and diseases, as well as in increasing
resistance to environmental stress. In many cases, they act
in promoting the growth of plants producing hormones that
regulate or increase nutrient uptake (Parnell et al., 2019;
Wei et al., 2021; White & Caraballo, 2019; Xun et al., 2021).

New strains such as Microbacterium trichothecenolyticum
(W02019217255-A1), Bacillus proteolyticus (CN112899206-A),
Paenibacillus amylolyticus KY15 (CN110257293-A), B.
aryabhattai strain J5 (CN105985922-A), and Enterobacter
LY6 (CN105838750-A), were discovered as efficient producers
of IAA. These strains also act in the capture, transport, and
disposal of soil nutrients, and prevent or treat possible plant
diseases (Cai et al., 2016; Hou et al., 2016; Kang & Wang,
2019; Parnell et al., 2019; Wei et al., 2021). Meanwhile, some
bioproduct compositions focus, for example, on nitrogen
fixation by the plant (W020191422199-A1) and in the capture
of carbon dioxide from the atmosphere, so photosynthetic
processes are increased, thus improving growth, shoot and
leaf size, rooting, plant stress resistance, and nitrogen use
effectiveness (W02019084324-A1) (Avidov et al., 2019;
Harman et al., 2019). In general, the technologies aimed at
increasing the quality and efficiency of agricultural production
since, in addition to these benefits, there were significant

reductions in the amount of pesticides used during cultivation,
directly impacting the cost of production (Li et al., 2017).

Conclusion

Endophytic bacteria, through their mechanisms of
atmospheric nitrogen fixation, phosphate solubilization,
production of phytohormones, and inhibition of plant
pathogens and pests, are a promising tool in the development
of a sustainable, eco-friendly agriculture. Their use promotes
plant growth reducing the demand for chemical fertilizers
and pest control agents. In this segment, a panorama
of technological development was designed focused on
three important commodities, namely corn, soybean, and
sugarcane. The rank of patent publications by country
was leaded by China, USA, Canada, and Brazil. Several
new bacterial strains were protected as bioinoculants or
biopesticides. Formulations containing endophytic bacteria
were mostly intended for seed coating or spraying and acted
directly in the control of pests and diseases, as well as in
increasing resistance to environmental stress. In many cases,
they acted in promoting the growth of plants producing
hormones that regulate or increase nutrient uptake.
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