Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202202
Biotechnology Research and Innovation Journal
Review Article

Peptides and current methods on bovine tuberculosis diagnosis

Violetta Dias Pacce, Natasha Rodrigues de Oliveira, Jean Michel Dela Vedova-Costa, Odir Antônio Dellagostin, Vanete Thomaz-Soccol

Downloads: 2
Views: 329

Abstract

Abstract: Bovine tuberculosis (bTB) is a respiratory disease caused by Mycobacterium bovis that mainly infects cattle and adversely affects animal health and the livestock economy. Additionally, bTB affects human health as a zoonotic disease. Therefore, implementing diagnostic tests and slaughter policies campaigns is a valuable strategy to control this disease. The tuberculin skin test (TST) and the interferon-gamma (IFN-γ) assay are applied as current ante-mortem bTB diagnostic approaches. In addition, the choice of antigens is critical for the bTB diagnostic technique. The sensitivity of currently TST tests range from 40 to 95%. Thus, available tests present limitations with methodology and/or antigen used. In this scenario, several antigens are derived from inactivated cells or proteins, although peptides have been increasingly studied and used due to their numerous advantages. From this perspective, this review provides an overall literature review of the current ante-mortem bTB diagnostic tests, their advantages and limitations, and the peptide antigens used to improve test performance.

Keywords

Cattle; Infectious diseases; Mycobacterium bovis; Diagnostic tests; Antigens.

References

Abbate, J. M., Arfuso, F., Iaria, C., Arestia, G., & Lanteri, G. (2020). Prevalence of bovine tuberculosis in slaughtered cattle in sicily, Southern Italy. Animals, 10(9), 1-11. http://dx.doi.org/10.3390/ani10091473. PMid:32839384.

Al-Mouqatea, S., Alkhamis, M., Akbar, B., Ali, A., Al-Aqeel, H., BinHeji, A., Razzaque, M., Alvarez, J., & Perez, A. (2018). Bayesian estimation of ELISA and gamma interferon test accuracy for the detection of bovine tuberculosis in caudal fold test–negative dairy cattle in Kuwait. Journal of Veterinary Diagnostic Investigation, 30(3), 468-470. http://dx.doi.org/10.1177/1040638718759574. PMid:29431048.

Alves, L. M., Barros, H. L. S., Flauzino, J. M. R., Guedes, P. H. G., Pereira, J. M., Fujiwara, R. T., Mineo, T. W. P., Mineo, J. R., de Oliveira, R. J., Madurro, J. M., & Brito-Madurro, G. (2019). A novel peptide-based sensor platform for detection of anti-Toxoplasma gondii immunoglobulins. Journal of Pharmaceutical and Biomedical Analysis, 175, 112778. http://dx.doi.org/10.1016/j.jpba.2019.112778. PMid:31352171.

Animal and Plant Health Agency. (2020). Bovine tuberculosis in England in 2019: Epidemiological analysis of the 2019 data and historical trends. https://assets.publishing.service.gov. uk/government/uploads/system/uploads/ attachment_data/file/923195/tb-epidemiology-england-2019.pdf

Azami, H. Y., Ducrotoy, M. J., Bouslikhane, M., Hattendorf, J., Thrusfield, M., Conde-Álvarez, R., Moriyón, I., Zúñiga-Ripa, A., Muñoz Álvaro, P. M., Mick, V., Bryssinckx, W., Welburn, S. C., & Zinsstag, J. (2018). The prevalence of brucellosis and bovine tuberculosis in ruminants in Sidi Kacem Province, Morocco. PLoS One, 13(9), e0203360. http://dx.doi.org/10.1371/journal.pone.0203360. PMid:30226847.

Bai, X., Wang, D., Liu, Y., Xiao, L., Liang, Y., Yang, Y., Zhang, J., Lin, M., & Wu, X. (2018). Novel epitopes identified from Mycobacterium tuberculosis antigen Rv2629 induces cytotoxic T lymphocyte response. Immunology Letters, 203, 21-28. http://dx.doi.org/10.1016/j.imlet.2018.06.005. PMid:29908955.

Behrendt, R., White, P., & Offer, J. (2016). Advances in Fmoc solidphase peptide synthesis. Journal of Peptide Science, 22(1), 4-27. http://dx.doi.org/10.1002/psc.2836. PMid:26785684.

Bhatwa, A., Wang, W., Hassan, Y. I., Abraham, N., Li, X.-Z., & Zhou, T. (2021). Challenges associated with the formation of recombinant protein inclusion bodies in Escherichia coli and strategies to address them for industrial applications. Frontiers in Bioengineering and Biotechnology, 9, 630551. http://dx.doi.org/10.3389/fbioe.2021.630551. PMid:33644021.

Bozovičar, K., & Bratkovič, T. (2019). Evolving a peptide: Library platforms and diversification strategies. International Journal of Molecular Sciences, 21(1), 215. http://dx.doi.org/10.3390/ijms21010215. PMid:31892275.

Carneiro, P. A. M., Moura, S., Viana, R. B., Monteiro, B. M., Socorro Lima Kzam, A., de Souza, D. C., Coelho, A. S., Ribeiro Filho, J. D., Jordão, R. S., Tavares, M. R. M., & Kaneene, J. B. (2021). Study on supplemental test to improve the detection of bovine tuberculosis in individual animals and herds. BMC Veterinary Research, 17(1), 137. http://dx.doi.org/10.1186/s12917-021-02839-4. PMid:33789652.

Carneiro, P. A. M., & Kaneene, J. B. (2018). Bovine tuberculosis control and eradication in Brazil: Lessons to learn from the US and Australia. Food Control, 93, 61-69. http://dx.doi.org/10.1016/j.foodcont.2018.05.021. Casal, C., Bezos, J., Díez-Guerrier, A., Álvarez, J., Romero, B., de Juan, L., Rodriguez-Campos, S., Vordermeier, M., Whelan, A., Hewinson, R. G., Mateos, A., Domínguez, L., & Aranaz, A. (2012). Evaluation of two cocktails containing ESAT-6, CFP-10 and Rv-3615c in the intradermal test and the interferon-γ assay for diagnosis of bovine tuberculosis. Preventive Veterinary Medicine, 105(1-2), 149-154. http://dx.doi.org/10.1016/j.prevetmed.2012.02.007. PMid:22391021.

Casal, C., Infantes, J. A., Risalde, M. A., Díez-Guerrier, A., Domínguez, M., Moreno, I., Romero, B., de Juan, L., Sáez, J. L., Juste, R., Gortázar, C., Domínguez, L., & Bezos, J. (2017). Antibody detection tests improve the sensitivity of tuberculosis diagnosis in cattle. Research in Veterinary Science, 112, 214-221. http://dx.doi.org/10.1016/j.rvsc.2017.05.012. PMid:28521256.

Coad, M., Doyle, M., Steinbach, S., Gormley, E., Vordermeier, M., & Jones, G. (2019). Simultaneous measurement of antigen-induced CXCL10 and IFN-γ enhances test sensitivity for bovine TB detection in cattle. Veterinary Microbiology, 230, 1-6. http://dx.doi.org/10.1016/j.vetmic.2019.01.007. PMid:30827373.

de la Rua-Domenech, R., Goodchild, A. T., Vordermeier, H. M., Hewinson, R. G., Christiansen, K. H., & Clifton-Hadley, R. S. (2006). Ante mortem diagnosis of tuberculosis in cattle: A review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Research in Veterinary Science, 81(2), 190-210. http://dx.doi.org/10.1016/j.rvsc.2005.11.005. PMid:16513150.

Department of Agriculture Food and the Marine, Ireland (2021). National bovine TB statistics. https://www.gov.ie/en/publication/5986c-national-bovine-tb-statistics-2020/Djafar, Z. R., Benazi, N., Bounab, S., Sayhi, M., Diouani, M. F., & Benia, F. (2020). Distribution of seroprevalence and risk factors for bovine tuberculosis in east Algeria. Preventive Veterinary Medicine, 183, 105127. http://dx.doi.org/10.1016/j.prevetmed.2020.105127. PMid:32905887.

Fuse, S., Otake, Y., & Nakamura, H. (2018). Peptide synthesis utilizing micro-flow technology. Chemistry, an Asian Journal, 13(24), 3818-3832. http://dx.doi.org/10.1002/asia.201801488. PMid:30341812.

Garbaccio, S. G., Garro, C. J., Delgado, F., Tejada, G. A., Eirin, M. E., Huertas, P. S., Leon, E. A., & Zumárraga, M. J. (2019). Enzyme-linked immunosorbent assay as complement of intradermal skin test for the detection of Mycobacterium bovis infection in cattle. Tuberculosis, 117, 56-61. http://dx.doi.org/10.1016/j.tube.2019.05.006. PMid:31378269.


Garcia, M. S., Melo, A. F., Carvalho, G. F., Pomim, G. P., Neves, P. M. de S., Silva, R. A. B., de Oliveira, R. O., & Frias, D. F. R. (2021). Epidemiology of bovine tuberculosis in South America. Research Social Development, 10(9), e8610917936. http://dx.doi.org/10.33448/rsd-v10i9.17936.

Gong, Q.-L., Chen, Y., Tian, T., Wen, X., Li, D., Song, Y.-H., Wang, Q., Du, R., & Zhang, X.-X. (2021). Prevalence of bovine tuberculosis in dairy cattle in China during 2010–2019: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 15(6), e0009502. http://dx.doi.org/10.1371/journal.pntd.0009502. PMid:34138867.

Guétin-Poirier, V., Rivière, J., Crozet, G., & Dufour, B. (2020). Assessment of the cost-effectiveness of alternative bovine tuberculosis surveillance protocols in French cattle farms using the mixed interferon gamma test. Research in Veterinary Science, 132, 546-562. http://dx.doi.org/10.1016/j.rvsc.2020.08.005. PMid:32829191.

Islam, S. K. S., Rumi, T. B., Kabir, S. M. L., van der Zanden, A. G. M., Kapur, V., Rahman, A. K. M. A., Ward, M. P., Bakker, D., Ross, A. G., & Rahim, Z. (2020). Bovine tuberculosis prevalence and risk factors in selected districts of Bangladesh. PLoS One, 15(11), e0241717. http://dx.doi.org/10.1371/journal.pone.0241717. PMid:33170869.

Jang, Y. H., Kim, T. W., Jeong, M. K., Seo, Y. J., Ryoo, S., Park, C. H., Kang, S., Lee, Y. J., Yoon, S. S., & Kim, J. M. (2020). Introduction and application of the interferon-γ assay in the national bovine tuberculosis control program in South Korea. Frontiers in Veterinary Science, 7, 222. http://dx.doi.org/10.3389/fvets.2020.00222. PMid:32411741.

Kemal, J., Sibhat, B., Abraham, A., Terefe, Y., Tulu, K. T., Welay, K., & Getahun, N. (2019). Bovine tuberculosis in eastern Ethiopia: Prevalence, risk factors and its public health importance. BMC Infectious Diseases, 19(1), 39. http://dx.doi.org/10.1186/s12879-018-3628-1. PMid:30630431.

Keshavarz, R., Mosavari, N., Geravand, M. M., Tadayon, K., Pajoohi, R. A., Solemani, K., Ameri, M., & Gilani, G. V. (2016). Interferon-γ assay, a high-sensitivity, specific and appropriate method for detection of bovine tuberculosis in cattle. International Journal of Mycobacteriology, 5(Suppl 1), S219. http://dx.doi.org/10.1016/j.ijmyco.2016.10.014. PMid:28043566.

Kuria, J. K. N. (2019). Diseases caused by bacteria in cattle: Tuberculosis. In H. Kaoud (Ed.), Bacterial cattle diseases. London: IntechOpen. https://doi.org/10.5772/INTECHOPEN.82051.

Link, J. S., Alban, S. M., Soccol, C. R., Pereira, G. V. M., & Thomaz Soccol, V. (2017). Synthetic peptides as potential antigens for cutaneous leishmaniosis diagnosis. Journal of Immunology Research, 2017, 5871043. http://dx.doi.org/10.1155/2017/5871043. PMid:28367456.

Lorenzo, M. A., Pachón, D., Maier, A., Bermúdez, H., Losada, S., Toledo, M., Pujol, F. H., Alarcón de Noya, B., Noya, O., & Serrano, M. L. (2021). Immunoinformatics and pepscan strategies on the path of a peptide-based serological diagnosis of COVID19. Journal of Immunological Methods, 495, 113071. http://dx.doi.org/10.1016/j.jim.2021.113071. PMid:33991531.

Lyashchenko, K. P., Vordermeier, H. M., & Waters, W. R. (2020). Memory B cells and tuberculosis. Veterinary Immunology and Immunopathology, 221, 110016. http://dx.doi.org/10.1016/j.vetimm.2020.110016. PMid:32050091.

Malla, B. A., Ramanjeneya, S., Vergis, J., Malik, S. S., Barbuddhe, S. B., & Rawool, D. B. (2021). Comparison of recombinant and synthetic listeriolysin- O peptide- based indirect ELISA vis-à-vis cultural isolation for detection of listeriosis in caprine and ovine species. Journal of Microbiological Methods, 188, 106278. http://dx.doi.org/10.1016/j.mimet.2021.106278. PMid:34246691.

MAPA, Brazil, Ministério da Agricultura Pecuária e Abastecimento. (2020). Diagnóstico situacional do Programa de Controle e Erradicação da Brucelose e da Tuberculose Animal. https://www.gov.br/agricultura/pt-br/assuntos/sanidade-animal-e-vegetal/saude-animal/programas-de-saude-animal/pncebt/DSPNCEBT.pdf

Mapa, España, Ministerio de Agricultura, Pesca y Alimentación. (2020). Programa Nacional de Erradicacion de Tuberculosis Bovina presentado por Espanã para el año 2020. https://www.mapa.gob.es/es/ganaderia/temas/sanidad-animal-higiene-ganadera/pnetb_2020final_tcm30-523317.PDF

Middleton, S., Steinbach, S., Coad, M., McGill, K., Brady, C., Duignan, A., Wiseman, J., Gormley, E., Jones, G. J., & Vordermeier, H. M. (2021). A molecularly defined skin test reagent for the diagnosis of bovine tuberculosis compatible with vaccination against Johne’s Disease. Scientific Reports, 11(1), 2929. http://dx.doi.org/10.1038/s41598-021-82434-7. PMid:33536465.

Modise, B. M. (2012). Mycobacterium tuberculosis complex-specific antigens for use in serodiagnosis of bovine tuberculosis [Thesis]. University of Pretoria.

Ortega-Tirado, D., Niño-Padilla, E. I., Arvizu-Flores, A. A., Velazquez, C., Espitia, C., Serrano, C. J., Enciso-Moreno, J. A., SumozaToledo, A., & Garibay-Escobar, A. (2020). Identification of immunogenic T-cell peptides of Mycobacterium tuberculosis PE_PGRS33 protein. Molecular Immunology, 125, 123-130. http://dx.doi.org/10.1016/j.molimm.2020.06.026. PMid:32659597.

OSPRI New Zealand. (2016). Annual review 2015/2016. https://www.ospri.co.nz/assets/Documents/20201210-TBfree-NOP-2020.pdf Pandey, S., Malviya, G., & Chottova Dvorakova, M. (2021). Role of peptides in diagnostics. International Journal of Molecular Sciences, 22(16), 8828. http://dx.doi.org/10.3390/ijms22168828. PMid:34445532.

Pérez-Morote, R., Pontones-Rosa, C., Gortázar-Schmidt, C., & Muñoz-Cardona, Á. I. (2020). Quantifying the economic impact of bovine tuberculosis on livestock farms in South-Western Spain. Animals, 10(12), 2433. http://dx.doi.org/10.3390/ani10122433. PMid:33353111.

Picasso-Risso, C., Alvarez, J., VanderWaal, K., Kinsley, A., Gil, A., Wells, S. J., & Perez, A. (2021). Modelling the effect of test-andslaughter strategies to control bovine tuberculosis in endemic high prevalence herds. Transboundary and Emerging Diseases, 68(3), 1205-1215. http://dx.doi.org/10.1111/tbed.13774. PMid:32767833.

Picasso-Risso, C., Perez, A., Gil, A., Nunez, A., Salaberry, X., Suanes, A., & Alvarez, J. (2019). Modeling the accuracy of two in-vitro bovine tuberculosis tests using a bayesian approach. Frontiers in Veterinary Science, 6, 261. http://dx.doi.org/10.3389/fvets.2019.00261. PMid:31457019.

Polvere, I., Voccola, S., Cardinale, G., Fumi, M., Aquila, F., Parrella, A., Madera, J. R., Stilo, R., Vito, P., & Zotti, T. (2022). A peptide-based assay discriminates individual antibody response to SARS-CoV-2. Genes & Diseases, 9(1), 275-281. http://dx.doi.org/10.1016/j.gendis.2021.01.008. PMid:33564711.

Quiroz-Castañeda, R. E., Tapia-Uriza, T. R., Valencia Mujica, C., Rodríguez-Camarillo, S. D., la Preciado-De Torre, J. F., AmaroEstrada, I., & Cobaxin-Cárdenas, M. (2019). Synthetic peptidesbased indirect ELISA for the diagnosis of bovine anaplasmosis. International Journal of Applied Research in Veterinary Medicine, 17(2), 65-70.

Ramli, S. R., Moreira, G. M. S. G., Zantow, J., Goris, M. G. A., Nguyen, V. K., Novoselova, N., Pessler, F., & Hust, M. (2019). Discovery of Leptospira spp. seroreactive peptides using ORFeome phage display. PLoS Neglected Tropical Diseases, 13(1), e0007131. http://dx.doi.org/10.1371/journal.pntd.0007131. PMid:30677033.

Roperto, S., Varano, M., Russo, V., Lucà, R., Cagiola, M., Gaspari, M., Ceccarelli, D. M., Cuda, G., & Roperto, F. (2017). Proteomic analysis of protein purified derivative of Mycobacterium bovis. Journal of Translational Medicine, 15(1), 68. http://dx.doi.org/10.1186/s12967-017-1172-1. PMid:28372590.

Sergeant, E., Happold, J., & Langstaff, I. (2017). Evaluation of australian surveillance for freedom from bovine tuberculosis. Australian Veterinary Journal, 95(12), 474-479. http://dx.doi.org/10.1111/avj.12648. PMid:29243239.

Singhla, T., Boonyayatra, S., Chulakasian, S., Lukkana, M., Alvarez, J., Sreevatsan, S., & Wells, S. J. (2019). Determination of the sensitivity and specificity of bovine tuberculosis screening tests in dairy herds in Thailand using a Bayesian approach. BMC Veterinary Research, 15(1), 149. http://dx.doi.org/10.1186/s12917-019-1905-x. PMid:31096976.

Srinivasan, S., Easterling, L., Rimal, B., Niu, X. M., Conlan, A. J. K., Dudas, P., & Kapur, V. (2018). Prevalence of bovine tuberculosis in India: A systematic review and meta-analysis. Transboundary and Emerging Diseases, 65(6), 1627-1640. http://dx.doi.org/10.1111/tbed.12915. PMid:29885021.

Srinivasan, S., Jones, G., Veerasami, M., Steinbach, S., Holder, T., Zewude, A., Fromsa, A., Ameni, G., Easterling, L., Bakker, D., Juleff, N., Gifford, G., Hewinson, R. G., Martin Vordermeier, H., & Kapur, V. (2019). A defined antigen skin test for the diagnosis of bovine tuberculosis. Science Advances, 5(7), eaax4899. http://dx.doi.org/10.1126/sciadv.aax4899. PMid:31328169.

Srinivasan, S., Subramanian, S., Shankar Balakrishnan, S., Ramaiyan Selvaraju, K., Manomohan, V., Selladurai, S., Jothivelu, M., Kandasamy, S., Gopal, D. R., Kathaperumal, K., Conlan, A. J. K., Veerasami, M., Bakker, D., Vordermeier, M., & Kapur, V. (2020). A defined antigen skin test that enables implementation of bcg vaccination for control of bovine tuberculosis: Proof of concept. Frontiers in Veterinary Science, 7, 391. http://dx.doi.org/10.3389/fvets.2020.00391. PMid:32793643.

Sun, L., Chen, Y., Yi, P., Yang, L., Yan, Y., Zhang, K., Zeng, Q., & Guo, A. (2021). Serological detection of Mycobacterium tuberculosis complex infection in multiple hosts by one universal ELISA. PLoS One, 16(10), e0257920. http://dx.doi.org/10.1371/journal. pone.0257920. PMid:34618810.

Thermo Fisher Scientific. (2019). BOVIGAMTM PC-EC Stimulating Antigen (lyophilized). https://www.thermofisher.com/order/catalog/product/7600100#/7600100 Trost, B., Stuber, T., Surujballi, O., Nelson, J., Robbe-Austerman, S., Smith, N. H., Desautels, L., Tikoo, S. K., & Griebel, P. (2016). Investigation of the cause of geographic disparities in IDEXX ELISA sensitivity in serum samples from Mycobacterium bovis-infected cattle. Scientific Reports, 6(1), 22763. http://dx.doi.org/10.1038/srep22763. PMid:26949166.

U.S. Department of Agriculture. (2017). National Tuberculosis Eradication Program. https://www.ers.usda.gov/topics/animalproducts/cattle-beef/statistics-information/ Uruguay, Ministerio de Ganadería Agricultura y Pesca. (2019). Últimos datos de Tuberculosis Bovina. http://www.smvu.com.uy/noticias_355-tuberculosis-bovina.html

Vedova-Costa, J. M. D., Ramos, E. L. P., Boschero, R. A., Ferreira, G. N., Soccol, V. T., Santiani, M. H., Pacce, V. D., Lustosa, B. P. R., Vicente, V. A., & Soccol, C. R. (2021). A review on COVID-19 diagnosis tests approved for use in Brazil and the impact on pandemic control. Brazilian Archives of Biology and Technology, 64(spe), 1-14. http://dx.doi.org/10.1590/1678-4324-75years-2021200147.

Waters, W., Buddle, B., Vordermeier, H., Gormley, E., Palmer, M., Thacker, T., Bannantine, J., Stabel, J., Linscott, R., Martel, E., Milian, F., Foshaug, W., & Lawrence, J. (2011). Development and evaluation of an enzyme-linked immunosorbent assay for use in the detection of bovine tuberculosis in cattle. Clinical and Vaccine Immunology; CVI, 18(11), 1882-1888. http://dx.doi.org/10.1128/CVI.05343-11. PMid:21918115.

Whelan, C., Shuralev, E., O’Keeffe, G., Hyland, P., Kwok, H. F., Snoddy, P., O’Brien, A., Connolly, M., Quinn, P., Groll, M., Watterson, T., Call, S., Kenny, K., Duignan, A., Hamilton, M. J., Buddle, B. M., Johnston, J. A., Davis, W. C., Olwill, S. A., & Clarke, J. (2008). Multiplex immunoassay for serological diagnosis of Mycobacterium bovis infection in cattle. Clinical and Vaccine Immunology; CVI, 15(12), 1834-1838. http://dx.doi.org/10.1128/CVI.00238-08. PMid:18927068.

World Organization for Animal Health - OIE. (2018). Bovine tuberculosis: Manual of diagnostic tests and vaccines for terrestrial animals. https://www.oie.int/app/uploads/2021/03/3-04-06-bovine-tb.pdf

World Organization for Animal Health - OIE. (2019a). Panorama 2019-1: Bovine tuberculosis: Global distribution and implementation status of prevention and control measures according to WAHIS data. Bulletin de l’OIE, 2019(1), 9-11. http://dx.doi.org/10.20506/bull.2019.1.2912

World Organization for Animal Health - OIE. (2019b). Roadmap to zoonic tuberculosis. https://www.oie.int/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/Tuberculosis/Roadmap_zoonotic_TB.pdf

World Organization for Animal Health - OIE. (2019c). Panorama 2019-1: Bovine tuberculosis in Western Canada (2016): Case response overview. Bulletin de l’OIE, 2019(1), 1-3. http://dx.doi.org/10.20506/bull.2019.1.2928.

Yadav, J. P., Malik, S. V. S., Dhaka, P., Kumar, M., Sirsant, B., Gourkhede, D., Barbuddhe, S. B., & Rawool, D. B. (2020). Comparison of two new in-house Latex Agglutination Tests (LATs), based on the DnaK and Com1 synthetic peptides of Coxiella burnetii, with a commercial indirect-ELISA, for sero-screening of coxiellosis in bovines. Journal of Microbiological Methods, 170, 105859. http://dx.doi.org/10.1016/j.mimet.2020.105859. PMid:32027926.

Zavaglio, F., Fiorina, L., Suárez, N. M., Fornara, C., De Cicco, M., Cirasola, D., Davison, A. J., Gerna, G., & Lilleri, D. (2021). Detection of genotype-specific antibody responses to glycoproteins b and h in primary and non-primary human cytomegalovirus infections by peptide-based ELISA. Viruses, 13(3), 399. http://dx.doi.org/10.3390/v13030399. PMid:33802390.


Submitted date:
03/31/2022

Reviewed date:
05/03/2022

Accepted date:
05/20/2022

6294d937a953954a5b680e53 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections