Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202105
Biotechnology Research and Innovation Journal
Review Article

Regulated promoters applied to plant engineering: an insight over promising soybean promoters under biotic stress and their cis-elements

Bruno Paes de Melo, Stéfanie Menezes de Moura, Carolina Vianna Morgante, Daniele Heloisa Pinheiro, Nayara Sabrina Freitas Alves, Paolo Lucas Rodrigues-Silva, Isabela Tristan Lourenço-Tessutti, Rosângela Vieira Andrade, Rodrigo Rocha Fragoso, Maria Fatima Grossi-de-Sa

Downloads: 5
Views: 1105

Abstract

Promoters are upstream gene regulatory sequences recognized by transcription factors (TFs) involved in controlling transcription initiation and progression. For modern crop improvement, the design of efficient gene constructs relies on promoter efficiency, tissue specificity, and other characteristics that allow the introgression of agronomically relevant traits to overcome biotic and abiotic stresses. Several constitutive viral promoters, such as pCaMV35S, remain widely employed in the transgenic plant generation, but their indiscriminate use leads to gene silencing triggering and metabolic penalties impacting plant fitness. The identification and functional characterization of plant-derived promoters can unveil alternatives to commonly used non-homologous promoters; however, knowledge over them remains limited, especially for crops. This review summarizes plant promoters used to drive foreign gene expression in homologous and heterologous systems, focusing on inducible soybean promoters from genes upregulated by different biotic stresses. Analyses of these soybean promoters revealed 22 coincident cis-acting elements that can be used for synthetic engineering promoters responsive to multiple biotic stresses and, therefore, efficiently drive gene expression, conferring desirable traits in transgenic soybean. In addition, we also revisited commercial and protected promoters to provide an update on soybean promoters and gain new insights into superior crops’ development.

Keywords

Soybean promoters; Transcription regulation; Plant promoters; Stress-inducible genes; Plant genetic engineering.

References

Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & YamaguchiShinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15(1), 63-78. http://dx.doi.org/10.1105/tpc.006130. PMid:12509522.

Ali, S., & Kim, W.-C. (2019). A fruitful decade using synthetic promoters in the improvement of transgenic plants. Frontiers in Plant Science, 10, 1433. http://dx.doi.org/10.3389/fpls.2019.01433. PMid:31737027.

Althoff, F., Kopischke, S., Zobell, O., Ide, K., Ishizaki, K., Kohchi, T., & Zachgo, S. (2014). Comparison of the MpEF1α and CaMV35S promoters for application in Marchantia polymorpha overexpression studies. Transgenic Research, 23(2), 235-244. http://dx.doi.org/10.1007/s11248-013-9746-z. PMid:24036909.

Bae, S.-H., Han, H. W., & Moon, J. (2015). Functional analysis of the molecular interactions of TATA box-containing genes and essential genes. PLoS One, 10(3), e0120848. http://dx.doi.org/10.1371/journal.pone.0120848. PMid:25789484.

Banerjee, J., Sahoo, D. K., Dey, N., Houtz, R. L., & Maiti, I. B. (2013). An intergenic region shared by At4g35985 and At4g35987 in Arabidopsis thaliana is a tissue specific and stress inducible bidirectional promoter analyzed in transgenic Arabidopsis and tobacco plants. PLoS One, 8(11), e79622. http://dx.doi.org/10.1371/journal.pone.0079622. PMid:24260266.

Baruah, I., Baldodiya, G. M., Sahu, J., & Baruah, G. (2020). Dissecting the role of promoters of pathogen-sensitive genes in plant defense. Current Genomics, 21(7), 491-503. http://dx.doi.org/10.2174/1389202921999200727213500. PMid:33214765.

Basso, M. F., Lourenço-Tessutti, I. T., Busanello, C., Pinto, C. E. M., de Oliveira, F. E., Ribeiro, T. P., Almeida-Engler, J., Oliveira, A. C., Morgante, C. V., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2020). Insights obtained using different modules of the cotton uceA1.7 promoter. Planta, 251(2), 56. http://dx.doi.org/10.1007/s00425-020-03348-8. PMid:32006110.

Basu, S., Roychoudhury, A., & Sengupta, D. N. (2014). Deciphering the role of various cis-acting regulatory elements in controlling SamDC gene expression in rice. Plant Signaling & Behavior, 9(1), e28391. http://dx.doi.org/10.4161/psb.28391. PMid:24603050.

Bate, N., & Twell, D. (1998). Functional architecture of a late pollen promoter: Pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Molecular Biology, 37(5), 859-869. http://dx.doi.org/10.1023/A:1006095023050. PMid:9678581.

Bencke-Malato, M., Cabreira, C., Wiebke-Strohm, B., Bücker-Neto, L., Mancini, E., Osorio, M. B., Homrich, M. S., Turchetto-Zolet, A. C., De Carvalho, M. C., Stolf, R., Weber, R. L., Westergaard, G., Castagnaro, A. P., Abdelnoor, R. V., Marcelino-Guimarães, F. C., Margis-Pinheiro, M., & Bodanese-Zanettini, M. H. (2014). Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhizi infection. BMC Plant Biology, 14(1), 236. http://dx.doi.org/10.1186/s12870-014-0236-0. PMid:25201117.

Beneventi, M. A., Silva Junior, O. B., Sá, M. E. L., Firmino, A. A. P., Amorim, R. M. S., Albuquerque, É. V. S., Silva, M. C. M., Silva, J. P., Campos, M. A., Lopes, M. J. C., Togawa, R. C., Pappas Junior, G. J., & Grossi-de-Sa, M. F. (2013). Transcription profile of soybeanroot-knot nematode interaction reveals a key role of phythormones in the resistance reaction. BMC Genomics, 14(1), 322. http://dx.doi.org/10.1186/1471-2164-14-322. PMid:23663436.

Berna, A., & Bernier, F. (1999). Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2- producing enzyme. Plant Molecular Biology, 39(3), 539-549. http://dx.doi.org/10.1023/A:1006123432157. PMid:10092181.

Bhattacharyya, J., Chowdhury, A. H., Ray, S., Jha, J. K., Das, S., Gayen, S., Chakraborty, A., Mitra, J., Maiti, M. K., Basu, A., & Sen, S. K. (2012). Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants. Plant Cell Reports, 31(2), 271-279. http://dx.doi.org/10.1007/s00299-011-1161-4. PMid:21996937.

Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A. K. (2016). Cis-regulatory elements used to control gene expression in plants. Plant Cell, Tissue and Organ Culture, 127(2), 269-287. http://dx.doi.org/10.1007/s11240-016-1057-7.

Blume, B., & Grierson, D. (1997). Expression of ACC oxidase promoter-GUS fusions in tomato and Nicotiana plumbaginifolia regulated by developmental and environmental stimuli. The Plant Journal, 12(4), 731-746. http://dx.doi.org/10.1046/j.1365-313X.1997.12040731.x. PMid:9375389.

Boni, R., Chauhan, H., Hensel, G., Roulin, A., Sucher, J., Kumlehn, J., Brunner, S., Krattinger, S. G., & Keller, B. (2018). Pathogeninducible Ta-Lr34res expression in heterologous barley confers disease resistance without negative pleiotropic effects. Plant Biotechnology Journal, 16(1), 245-253. http://dx.doi.org/10.1111/pbi.12765. PMid:28561994.

Buchel, A. S., Brederode, F. T., Bol, J. F., & Linthorst, H. J. (1999). Mutation of GT-1 binding sites in the Pr-1A promoter influences the level of inducible gene expression in vivo. Plant Molecular Biology, 40(3), 387-396. http://dx.doi.org/10.1023/A:1006144505121. PMid:10437823.

Cabre, L., Peyrard, S., Sirven, C., Gilles, L., Pelissier, B., Ducerf, S., & Poussereau, N. (2021). Identification and characterization of a new soybean promoter induced by Phakopsora pachyrhizi, the causal agent of Asian soybean rust. BMC Biotechnology, 21(1), 27. http://dx.doi.org/10.1186/s12896-021-00684-9. PMid:33765998.

Cazzonelli, C. I., McCallum, E. J., Lee, R., & Botella, J. R. (2005). Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Research, 14(6), 941-967. http://dx.doi.org/10.1007/s11248-005-2539-2. PMid:16315097.

Chai, C., Lin, Y., Shen, D., Wu, Y., Li, H., & Dou, D. (2013). Identification and functional characterization of the soybean GmaPPO12 promoter conferring Phytophthora sojae induced expression. PLoS One, 8(6), e67670. http://dx.doi.org/10.1371/journal.pone.0067670. PMid:23840763.

Chang, C., Tian, L., Ma, L., Li, W., Nasir, F., Li, X., Tran, L. P., & Tian, C. (2019). Differential responses of molecular mechanisms and physiochemical characters in wild and cultivated soybeans against invasion by the pathogenic Fusarium oxysporum Schltdl. Physiologia Plantarum, 166(4), 1008-1025. http://dx.doi.org/10.1111/ppl.12870. PMid:30430602.

Chaubet-Gigot, N., Kapros, T., Flenet, M., Kahn, K., Gigot, C., & Waterborg, J. H. (2001). Tissue-dependent enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Molecular Biology, 45(1), 17-30. http://dx.doi.org/10.1023/A:1006487023926. PMid:11247603.

Chen, Z., Wang, J., Ye, M.-X., Li, H., Ji, L.-X., Li, Y., Cui, D. Q., Liu, J. M., & An, X. M. (2013). A novel moderate constitutive promoter derived from poplar (Populus tomentosa Carrière). International Journal of Molecular Sciences, 14(3), 6187-6204. http://dx.doi.org/10.3390/ijms14036187. PMid:23507754.

Chiera, J. M., Bouchard, R. A., Dorsey, S. L., Park, E., BuenrostroNava, M. T., Ling, P. P., & Finer, J. J. (2007). Isolation of two highly active soybean (Glycine max (L.) Merr.) promoters and their characterization using a new automated image collection and analysis system. Plant Cell Reports, 26(9), 1501-1509. http://dx.doi.org/10.1007/s00299-007-0359-y. PMid:17503049.

Christensen, A. H., Sharrock, R. A., & Quail, P. H. (1992). Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Molecular Biology, 18(4), 675-689. http://dx.doi.org/10.1007/BF00020010. PMid:1313711.

Comai, L., Moran, P., & Maslyar, D. (1990). Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Molecular Biology, 15(3), 373-381. http://dx.doi.org/10.1007/BF00019155. PMid:2103458.

Corte, L. E.-D., Mendes, B. M. J., Filho, F. A. A. M., Grosser, J. W., & Dutt, M. (2020). Functional characterization of fulllength and 5′ deletion fragments of Citrus sinensis-derived constitutive promoters in Nicotiana benthamiana. In Vitro Cellular & Developmental Biology, 56(3), 280-289. http://dx.doi.org/10.1007/s11627-019-10044-0.

Coussens, G., Aesaert, S., Verelst, W., Demeulenaere, M., De Buck, S., Njuguna, E., Inzé, D., & Van Lijsebettens, M. (2012). Brachypodium distachyon promoters as efficient building blocks for transgenic research in maize. Journal of Experimental Botany, 63(11), 4263-4273. http://dx.doi.org/10.1093/jxb/ers113. PMid:22523343.

Cui, L., Feng, K., Wang, M., Wang, M., Deng, P., Song, W., & Nie, X. (2016). Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics, 17(1), 636. http://dx.doi.org/10.1186/s12864-016-2968-8. PMid:27527343.

Datta, K., Vasquez, A., Tu, J., Torrizo, L., Alam, M. F., Oliva, N., Abrigo, E., Khush, G. S., & Datta, S. K. (1998). Constitutive and tissue-specific differential expression of the cryIA(b) gene in transgenic rice plants conferring resistance to rice insect pest. Theoretical and Applied Genetics, 97(1-2), 20-30. http://dx.doi.org/10.1007/s001220050862.

Dey, N., Sarkar, S., Acharya, S., & Maiti, I. B. (2015). Synthetic promoters in planta. Planta, 242(5), 1077-1094. http://dx.doi.org/10.1007/s00425-015-2377-2. PMid:26250538.

Dhatterwal, P., Basu, S., Mehrotra, S., & Mehrotra, R. (2019). Genome wide analysis of W-box element in Arabidopsis thaliana reveals TGAC motif with genes down regulated by heat and salinity. Scientific Reports, 9(1), 1681. http://dx.doi.org/10.1038/s41598-019-38757-7. PMid:30737427.

Dong, H., Shi, S., Zhang, C., Zhu, S., Li, M., Tan, J., Yu, Y., Lin, L., Jia, S., Wang, X., Wu, Y., & Liu, Y. (2018). Transcriptomic analysis of genes in soybean in response to Peronospora manshurica infection. BMC Genomics, 19(1), 366. http://dx.doi.org/10.1186/s12864-018-4741-7. PMid:29776333.

Dubey, N. K., Mishra, D. K., Idris, A., Nigam, D., Singh, P. K., & Sawant, S. V. (2018). Whitefly and aphid inducible promoters of Arabidopsis thaliana L. Journal of Genetics, 97(1), 109-119. http://dx.doi.org/10.1007/s12041-018-0887-y. PMid:29666330.

Elmayan, T., & Tepfer, M. (1995). Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Research, 4(6), 388-396. http://dx.doi.org/10.1007/BF01973757. PMid:7581519.

Erpen, L., Tavano, E. C. R., Harakava, R., Dutt, M., Grosser, J. W., Piedade, S. M. S., Mendes, B. M. J., & Mourão Filho, F. A. A. (2018). Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters. Plant Cell Reports, 37(8), 1113-1125. http://dx.doi.org/10.1007/s00299-018-2298-1. PMid:29796947.

Escobar, C., Barcala, M., Portillo, M., Almoguera, C., Jordano, J., & Fenoll, C. (2003). Induction of the Hahsp17.7G4 promoter by root-knot nematodes: Involvement of heat-shock elements in promoter activity in giant cells. Molecular Plant-Microbe Interactions, 16(12), 1062-1068. http://dx.doi.org/10.1094/MPMI.2003.16.12.1062. PMid:14651339.

Escobar, C., De Meutter, J., Aristizábal, F. A., Sanz-Alférez, S., del Campo, F. F., Barthels, N., Van der Eycken, W., Seurinck, J., van Montagu, M., Gheysen, G., & Fenoll, C. (1999). Isolation of the LEMMI9 gene and promoter analysis during a compatible plantnematode interaction. Molecular Plant-Microbe Interactions, 12(5), 440-449. http://dx.doi.org/10.1094/MPMI.1999.12.5.440. PMid:10226377.

Evrard, A., Meynard, D., Guiderdoni, E., Joudrier, P., & Gautier, M.-F. (2007). The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice. Planta, 225(2), 287-300. http://dx.doi.org/10.1007/s00425-006-0347-4. PMid:16845527.

Fassler, J., Landsman, D., Acharya, A., Moll, J. R., Bonovich, M., & Vinson, C. (2002). B-ZIP proteins encoded by the Drosophila genome: Evaluation of potential dimerization partners. Genome Research, 12(8), 1190-1200. http://dx.doi.org/10.1101/gr.67902. PMid:12176927.

Feng, C.-Z., Chen, Y., Wang, C., Kong, Y.-H., Wu, W.-H., & Chen, Y.-F. (2014). Arabidopsis RAV1 transcription factor, phosphorylated by SnRK2 kinases, regulates the expression of ABI3, ABI4, and ABI5 during seed germination and early seedling development. The Plant Journal, 80(4), 654-668. http://dx.doi.org/10.1111/tpj.12670. PMid:25231920.

Filichkin, S. A., Leonard, J. M., Monteros, A., Liu, P.-P., & Nonogaki, H. (2004). A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiology, 134(3), 1080-1087. http://dx.doi.org/10.1104/pp.103.035998. PMid:14976239.

Foster, E., Hattori, J., Labbé, H., Ouellet, T., Fobert, P. R., James, L. E., Iyer, V. N., & Miki, B. L. (1999). A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Molecular Biology, 41(1), 45-55. http://dx.doi.org/10.1023/A:1006229501860. PMid:10561067.

Freitas, E. O., Melo, B. P., Lourenço-Tessutti, I. T., Arraes, F. B. M., Amorim, R. M., Lisei-de-Sá, M. E., Costa, J. A., Leite, A. G. B., Faheem, M., Ferreira, M. A., Morgante, C. V., Fontes, E. P. B., & Grossi-de-Sa, M. F. (2019). Identification and characterization of the GmRD26 soybean promoter in response to abiotic stresses: Potential tool for biotechnological application. BMC Biotechnology, 19(1), 79. http://dx.doi.org/10.1186/s12896-019-0561-3. PMid:31747926.

Fujiwara, T., & Beachy, R. N. (1994). Tissue-specific and temporal regulation of a beta-conglycinin gene: roles of the RY repeat and other cis-acting elements. Plant Molecular Biology, 24(2), 261-272. http://dx.doi.org/10.1007/BF00020166. PMid:8111031.

Godard, K.-A., Byun-McKay, A., Levasseur, C., Plant, A., Séguin, A., & Bohlmann, J. (2007). Testing of a heterologous, wound- and insect-inducible promoter for functional genomics studies in conifer defense. Plant Cell Reports, 26(12), 2083-2090. http://dx.doi.org/10.1007/s00299-007-0417-5. PMid:17671786.

Gowik, U., Burscheidt, J., Akyildiz, M., Schlue, U., Koczor, M., Streubel, M., & Westhoff, P. (2004). cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. The Plant Cell, 16(5), 1077-1090. http://dx.doi.org/10.1105/tpc.019729. PMid:15100398.

Grossi-de-Sa, M. F., Guimarães, L. M., Batista, J. A. N., Viana, A. A. B., Fragoso, R. R., & Silva, M. C. M. (2013). Compositions and methods for modifying gene expression using the promoter of ubiquitin conjugating protein coding gene of soybean plants. United States Patent and Trademark Office US9012720B2.

Gu, C., Guo, Z.-H., Hao, P.-P., Wang, G.-M., Jin, Z.-M., & Zhang, S.-L. (2017). Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies, 58(1), 6. http://dx.doi.org/10.1186/s40529-016-0159-1. PMid:28510189.

Guo, Y. (2021). Gene stacking for broad-spectrum resistance. Nature Food, 2(2), 75. http://dx.doi.org/10.1038/s43016-021-00237-5.

Gurr, S. J., & Rushton, P. J. (2005). Engineering plants with increased disease resistance: How are we going to express it? Trends in Biotechnology, 23(6), 283-290. http://dx.doi.org/10.1016/j.tibtech.2005.04.009. PMid:15922080.

Hahn, K., & Strittmatter, G. (1994). Pathogen-defence gene prp1-1 from potato encodes an auxin-responsive glutathione S-transferase. European Journal of Biochemistry, 226(2), 619-626. http://dx.doi.org/10.1111/j.1432-1033.1994.tb20088.x. PMid:8001577.

Han, Y.-J., Kim, Y.-M., Hwang, O.-J., & Kim, J.-I. (2015). Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Reports, 34(2), 265-275. http://dx.doi.org/10.1007/s00299-014-1705-5. PMid:25410250.

Hansen, E., Harper, G., & McPherson, M. J. (1996). Differential expression patterns of the wound-inducible transgenewun1- uidAin potato roots following infection with either cyst or root knot nematodes. Physiological and Molecular Plant Pathology, 48(3), 161-170. http://dx.doi.org/10.1006/pmpp.1996.0014.

Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R., & Weisshaar, B. (2005). Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Molecular Biology, 57(2), 155-171. http://dx.doi.org/10.1007/s11103-004-6910-0. PMid:15821875.

Hennig, J., Dewey, R. E., Cutt, J. R., & Klessig, D. F. (1993). Pathogen, salicylic acid and developmental dependent expression of a beta1,3-glucanase/GUS gene fusion in transgenic tobacco plants. The Plant Journal, 4(3), 481-493. http://dx.doi.org/10.1046/j.1365-313X.1993.04030481.x. PMid:8220491.

Hernandez-Garcia, C. M., & Finer, J. J. (2014). Identification and validation of promoters and cis-acting regulatory elements. Plant Science, 217-218, 109-119. http://dx.doi.org/10.1016/j.plantsci.2013.12.007. PMid:24467902.

Hernandez-Garcia, C. M., Martinelli, A. P., Bouchard, R. A., & Finer, J. J. (2009). A soybean (Glycine max) polyubiquitin promoter gives strong constitutive expression in transgenic soybean. Plant Cell Reports, 28(5), 837-849. http://dx.doi.org/10.1007/s00299-009-0681-7. PMid:19229538.

Hetzel, J., Duttke, S. H., Benner, C., & Chory, J. (2016). Nascent RNA sequencing reveals distinct features in plant transcription. Proceedings of the National Academy of Sciences of the United States of America, 113(43), 12316-12321. http://dx.doi.org/10.1073/pnas.1603217113. PMid:27729530.

Himmelbach, A., Liu, L., Zierold, U., Altschmied, L., Maucher, H., Beier, F., Müller, D., Hensel, G., Heise, A., Schützendübel, A., Kumlehn, J., & Schweizer, P. (2010). Promoters of the barley germin-like GER4 gene cluster enable strong transgene expression in response to pathogen attack. The Plant Cell, 22(3), 937-952. http://dx.doi.org/10.1105/tpc.109.067934. PMid:20305123.

Hong, J. K., Suh, E. J., Kwon, S.-J., Lee, S. B., Kim, J. A., Lee, S. I., & Lee, Y.-H. (2016). Promoter of chrysanthemum actin confers high-level constitutive gene expression in Arabidopsis and chrysanthemum. Scientia Horticulturae, 211, 8-18. http://dx.doi.org/10.1016/j.scienta.2016.08.006.

Hua, H., Lu, Q., Cai, M., Xu, C., Zhou, D.-X., Li, X., & Zhang, Q. (2007). Analysis of rice genes induced by striped stemborer (Chilo suppressalis) attack identified a promoter fragment highly specifically responsive to insect feeding. Plant Molecular Biology, 65(4), 519-530. http://dx.doi.org/10.1007/s11103-007-9185-4. PMid:17522952.

Jang, I.-C., Choi, W.-B., Lee, K.-H., Song, S. I., Nahm, B. H., & Kim, J.-K. (2002). High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots. Plant Physiology, 129(4), 1473-1481. http://dx.doi.org/10.1104/pp.002261. PMid:12177461.

Jiang, P., Zhang, K., Ding, Z., He, Q., Li, W., Zhu, S., Cheng, W., Zhang, K., & Li, K. (2018). Characterization of a strong and constitutive promoter from the Arabidopsis serine carboxypeptidase-like gene AtSCPL30 as a potential tool for crop transgenic breeding. BMC Biotechnology, 18(1), 59. http://dx.doi.org/10.1186/s12896-018-0470-x. PMid:30241468.

Jofuku, K. D., & Goldberg, R. B. (1989). Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants. The Plant Cell, 1(11), 1079-1093. http://dx.doi.org/10.1105/tpc.1.11.1079. PMid:2562561.

Kakrana, A., Kumar, A., Satheesh, V., Abdin, M. Z., Subramaniam, K., Bhattacharya, R. C., Srinivasan, R., Sirohi, A., & Jain, P. K. (2017). Identification, validation and utilization of novel nematoderesponsive root-specific promoters in Arabidopsis for inducing host-delivered RNAi mediated root-knot nematode resistance. in of Plant Science, 8, 2049. http://dx.doi.org/10.3389/fpls.2017.02049. PMid:29312363.

Kang, T.-J., Kwon, T.-H., Kim, T.-G., Loc, N.-H., & Yang, M.-S. (2003). Comparing constitutive promoters using CAT activity in transgenic tobacco plants. Molecules and Cells, 16(1), 117-122. PMid:14503855.

Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and lowtemperature stress tolerance in tobacco by gene transfer. Plant & Cell Physiology, 45(3), 346-350. http://dx.doi.org/10.1093/pcp/pch037. PMid:15047884.

Kelly, G., Lugassi, N., Belausov, E., Wolf, D., Khamaisi, B., Brandsma, D., Kottapalli, J., Fidel, L., Ben-Zvi, B., Egbaria, A., Acheampong, A. K., Zheng, C., Or, E., Distelfeld, A., David-Schwartz, R., Carmi, N., & Granot, D. (2017). The Solanum tuberosum KST1 partial promoter as a tool for guard cell expression in multiple plant species. Journal of Experimental Botany, 68(11), 2885-2897. http://dx.doi.org/10.1093/jxb/erx159. PMid:28531314.

Khan, Z. H., Agarwal, S., Rai, A., Memaya, M. B., Mehrotra, S., & Mehrotra, R. (2020). Co-expression network analysis of protein phosphatase 2A (PP2A) genes with stress-responsive genes in Arabidopsis thaliana reveals 13 key regulators. Scientific Reports, 10(1), 21480. http://dx.doi.org/10.1038/s41598-020-77746-z. PMid:33293553.

Koch, K. G., Palmer, N. A., Donze-Reiner, T., Scully, E. D., Seravalli, J., Amundsen, K., Twigg, P., Louis, J., Bradshaw, J. D., Heng-Moss, T. M., & Sarath, G. (2020). Aphid-responsive defense networks in hybrid switchgrass. Frontiers in Plant Science, 11, 1145. http://dx.doi.org/10.3389/fpls.2020.01145. PMid:32849703.

Koia, J., Moyle, R., Hendry, C., Lim, L., & Botella, J. R. (2013). Pineapple translation factor SUI1 and ribosomal protein L36 promoters drive constitutive transgene expression patterns in Arabidopsis thaliana. Plant Molecular Biology, 81(4-5), 327-336. http://dx.doi.org/10.1007/s11103-012-0002-3. PMid:23263857.

Koschmann, J., Machens, F., Becker, M., Niemeyer, J., Schulze, J., Bülow, L., Stahl, D. J., & Hehl, R. (2012). Integration of bioinformatics and synthetic promoters leads to the discovery of novel elicitor-responsive cis-regulatory sequences in Arabidopsis. Plant Physiology, 160(1), 178-191. http://dx.doi.org/10.1104/pp.112.198259. PMid:22744985.

Kumar, A., Joshi, I., Kohli, D., Satheesh, V., Abdin, M. Z., Sirohi, A., Srinivasan, R., & Jain, P. K. (2016). Characterization of root-knot nematode responsive and root-specific promoter containing PIN domain from Arabidopsis thaliana (L.) Heynh. Indian Journal of Genetics and Plant Breeding, 76(1), 75. http://dx.doi.org/10.5958/0975-6906.2016.00011.0.

Kumar, D., Patro, S., Ghosh, J., Das, A., Maiti, I. B., & Dey, N. (2012). Development of a salicylic acid inducible minimal sub-genomic transcript promoter from Figwort mosaic virus with enhanced root- and leaf-activity using TGACG motif rearrangement. Gene, 503(1), 36-47. http://dx.doi.org/10.1016/j.gene.2012.04.053. PMid:22561698.

Kummari, D., Palakolanu, S. R., Kishor, P. B. K., Bhatnagar-Mathur, P., Singam, P., Vadez, V., & Sharma, K. K. (2020). An update and perspectives on the use of promoters in plant genetic engineering. Journal of Biosciences, 45(1), 119. http://dx.doi.org/10.1007/s12038-020-00087-6. PMid:33097676.

Kyozuka, J., Fujimoto, H., Izawa, T., & Shimamoto, K. (1991). Anaerobic induction and tissue-specific expression of maize Adh1 promoter in transgenic rice plants and their progeny. Molecular & General Genetics, 228(1-2), 40-48. http://dx.doi.org/10.1007/BF00282445. PMid:1715976.

Laxa, M. (2017). Intron-mediated enhancement: A tool for heterologous gene expression in plants? Frontiers in Plant Science, 7, 1977. http://dx.doi.org/10.3389/fpls.2016.01977. PMid:28111580.

Lee, S. C., Kim, D. S., Kim, N. H., & Hwang, B. K. (2007). Functional analysis of the promoter of the pepper pathogen-induced gene, CAPIP2, during bacterial infection and abiotic stresses. Plant Science, 172(2), 236-245. http://dx.doi.org/10.1016/j.plantsci.2006.08.015.

Leitner-Dagan, Y., Ovadis, M., Shklarman, E., Elad, Y., Rav David, D., & Vainstein, A. (2006). Expression and functional analyses of the plastid lipid-associated protein CHRC suggest its role in chromoplastogenesis and stress. Plant Physiology, 142(1), 233-244. http://dx.doi.org/10.1104/pp.106.082404. PMid:16815957.

Li, H., Wang, Z., Han, K., Guo, M., Zou, Y., Zhang, W., Ma, W., & Hua, H. (2020). Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. Pest Management Science, 76(9), 3177-3187. http://dx.doi.org/10.1002/ps.5872. PMid:32336018.

Li, J., Xu, R.-F., Qin, R.-Y., Ma, H., Li, H., Zhang, Y.-P., Li, L., Wei, P. C., & Yang, J. B. (2014). Isolation and functional characterization of a novel rice constitutive promoter. Plant Cell Reports, 33(10), 1651-1660. http://dx.doi.org/10.1007/s00299-014-1644-1. PMid:24980160.

Li, X., Gao, S., Tang, Y., Li, L., Zhang, F., Feng, B., Fang, Z., Ma, L., & Zhao, C. (2015). Genome-wide identification and evolutionary analyses of bZIP transcription factors in wheat and its relatives and expression profiles of anther development related TabZIP genes. BMC Genomics, 16(1), 976. http://dx.doi.org/10.1186/s12864-015-2196-7. PMid:26581444.

Liu, M., Shi, Z., Zhang, X., Wang, M., Zhang, L., Zheng, K., Liu, J., Hu, X., Di, C., Qian, Q., He, Z., & Yang, D. L. (2019). Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. Nature Plants, 5(4), 389-400. http://dx.doi.org/10.1038/s41477-019-0383-2. PMid:30886331.

Liu, W., Mazarei, M., Rudis, M. R., Fethe, M. H., & Stewart Junior, C. N. (2011). Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing. BMC Biotechnology, 11(1), 108. http://dx.doi.org/10.1186/1472-6750-11-108. PMid:22093754.

Liu, W., Yuan, J. S., & Stewart Junior, C. N. (2013). Advanced genetic tools for plant biotechnology. Nature Reviews. Genetics, 14(11), 781-793. http://dx.doi.org/10.1038/nrg3583. PMid:24105275.

Livne, B., Faktor, O., Zeitoune, S., Edelbaum, O., & Sela, I. (1997). TMV-induced expression of tobacco β-glucanase promoter activity is mediated by a single, inverted, GCC motif. Plant Science, 130(2), 159-169. http://dx.doi.org/10.1016/S0168-9452(97)00210-0.

Llorca, C. M., Potschin, M., & Zentgraf, U. (2014). bZIPs and WRKYs: Two large transcription factor families executing two different functional strategies. Frontiers in Plant Science, 5, 169. http://dx.doi.org/10.3389/fpls.2014.00169. PMid:24817872.

Loake, G. J., Faktor, O., Lamb, C. J., & Dixon, R. A. (1992). Combination of H-box [CCTACC(N)7CT] and G-box (CACGTG) cis elements is necessary for feed-forward stimulation of a chalcone synthase promoter by the phenylpropanoid-pathway intermediate p-coumaric acid. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 9230-9234. http://dx.doi.org/10.1073/pnas.89.19.9230. PMid:1409628.

Lorberbaum, D. S., & Barolo, S. (2015). Enhancers: holding out for the right promoter. Current Biology, 25(7), R290-R293. http://dx.doi.org/10.1016/j.cub.2015.01.039. PMid:25829016.

Louder, R. K., He, Y., López-Blanco, J. R., Fang, J., Chacón, P., & Nogales, E. (2016). Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature, 531(7596), 604-609. http://dx.doi.org/10.1038/nature17394. PMid:27007846.

Lowder, L. G., Zhou, J., Zhang, Y., Malzahn, A., Zhong, Z., Hsieh, T.-F., Voytas, D. F., Zhang, Y., & Qi, Y. (2018). Robust transcriptional activation in plants using multiplexed CRISPR-Act2.0 and mTALEAct systems. Molecular Plant, 11(2), 245-256. http://dx.doi. org/10.1016/j.molp.2017.11.010. PMid:29197638.

Mac, A., Krzymowska, M., Barabasz, A., & Hennig, J. (2004). Transcriptional regulation of the gluB promoter during plant response to infection. Cellular & Molecular Biology Letters, 9(4B), 843-853. PMid:15647801.

Malnoy, M., Reynoird, J. P., Borejsza-Wysocka, E. E., & Aldwinckle, H. S. (2006). Activation of the pathogen-inducible Gst1 promoter of potato after elicitation by Venturia inaequalis and Erwinia amylovora in transgenic apple (Malus x domestica). Transgenic Research, 15(1), 83-93. http://dx.doi.org/10.1007/s11248-005-2943-7. PMid:16475012.

Malnoy, M., Venisse, J.-S., Reynoird, J. P., & Chevreau, E. (2003). Activation of three pathogen-inducible promoters of tobacco in transgenic pear (Pyrus communis L.) after abiotic and biotic elicitation. Planta, 216(5), 802-814. http://dx.doi.org/10.1007/s00425-002-0932-0. PMid:12624768.

Mann, D. G. J., King, Z. R., Liu, W., Joyce, B. L., Percifield, R. J., Hawkins, J. S., LaFayette, P. R., Artelt, B. J., Burris, J. N., Mazarei, M., Bennetzen, J. L., Parrott, W. A., & Stewart Junior, C. N. (2011). Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. BMC Biotechnology, 11(1), 74. http://dx.doi.org/10.1186/1472-6750-11-74. PMid:21745390.

Manners, J. M., Penninckx, I. A., Vermaere, K., Kazan, K., Brown, R. L., Morgan, A., Maclean, D. J., Curtis, M. D., Cammue, B. P., & Broekaert, W. F. (1998). The promoter of the plant defensin gene PDF1.2 from Arabidopsis is systemically activated by fungal pathogens and responds to methyl jasmonate but not to salicylic acid. Plant Molecular Biology, 38(6), 1071-1080. http://dx.doi.org/10.1023/A:1006070413843. PMid:9869413.

Masura, S. S., Parveez, G. K. A., & Ismail, I. (2010). Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. New Biotechnology, 27(4), 289-299. http://dx.doi.org/10.1016/j.nbt.2010.01.337. PMid:20123048.

Mauch-Mani, B., & Slusarenko, A. J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. The Plant Cell, 8(2), 203-212. http://dx.doi.org/10.2307/3870265. PMid:12239383.

Mazarei, M., Teplova, I., Hajimorad, M. R., & Stewart Junior, C. N. (2008). Pathogen phytosensing: Plants to report plant pathogens. Sensors (Basel), 8(4), 2628-2641. http://dx.doi.org/10.3390/s8042628. PMid:27879840.

McElroy, D., Blowers, A. D., Jenes, B., & Wu, R. (1991). Construction of expression vectors based on the rice actin 1 (Act1) 5′ region for use in monocot transformation. Molecular & General Genetics, 231(1), 150-160. http://dx.doi.org/10.1007/BF00293832. PMid:1753941. McElroy, D., Zhang, W., Cao, J., & Wu, R. (1990). Isolation of an efficient actin promoter for use in rice transformation. The Plant Cell, 2(2), 163-171. http://dx.doi.org/10.1105/tpc.2.2.163. PMid:2136633.

Mehrotra, R., & Mehrotra, S. (2010). Promoter activation by ACGT in response to salicylic and abscisic acids is differentially regulated by the spacing between two copies of the motif. Journal of Plant Physiology, 167(14), 1214-1218. http://dx.doi.org/10.1016/j.jplph.2010.04.005. PMid:20554077.

Melo, B. P., Lourenço-Tessutti, I. T., Fraga, O. T., Pinheiro, L. B., De Jesus Lins, C. B., Morgante, C. V., Engler, J. A., Reis, P. A. B., Grossi-de-Sá, M. F., & Fontes, E. P. B. (2021). Contrasting roles of GmNAC065 and GmNAC085 in natural senescence, plant development, multiple stresses and cell death responses. Scientific Reports, 11(1), 11178. http://dx.doi.org/10.1038/s41598-021-90767-6. PMid:34045652.

Melo, B. P., Lourenço-Tessutti, I. T., Paixão, J. F. R., Noriega, D. D., Silva, M. C. M., Almeida-Engler, J., Fontes, E. P. B., & Grosside-Sa, M. F. (2020). Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Scientific Reports, 10(1), 16231. http://dx.doi.org/10.1038/s41598-020-72464-y. PMid:33004844.

Mitchum, M. G., Sukno, S., Wang, X., Shani, Z., Tsabary, G., Shoseyov, O., & Davis, E. L. (2004). The promoter of the Arabidopsis thaliana Cel1 endo-1,4-beta glucanase gene is differentially expressed in plant feeding cells induced by root-knot and cyst nematodes. Molecular Plant Pathology, 5(3), 175-181. http://dx.doi.org/10.1111/j.1364-3703.2004.00216.x. PMid:20565607.

Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: challenges and perspectives. Annual Review of Plant Biology, 61(1), 443-462. http://dx.doi.org/10.1146/annurevarplant-042809-112116. PMid:20192746. Mohan, R., Bajar, A. M., & Kolattukudy, P. E. (1993). Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant Molecular Biology, 21(2), 341-354. http://dx.doi.org/10.1007/BF00019949. PMid:7678769.

Moran Lauter, A. N., Peiffer, G. A., Yin, T., Whitham, S. A., Cook, D., Shoemaker, R. C., & Graham, M. A. (2014). Identification of candidate genes involved in early iron deficiency chlorosis signaling in soybean (Glycine max) roots and leaves. BMC Genomics, 15(1), 702. http://dx.doi.org/10.1186/1471-2164-15-702. PMid:25149281.

Moura, S. M., Freitas, E. O., Ribeiro, T. P., Paes-de-Melo, B., Arraes, F. B. M., Macedo, L. L. P., Paixão, J. F. R., Lourenço-Tessutti, I. T., Artico, S., Valença, D. C., Silva, M. C. M., Oliveira, A. C., Alves-Ferreira, M., & Grossi-de-Sa, M. F. (2021). Discovery and functional characterization of novel cotton promoters with potential application to pest control. Plant Cell Reports, 11, 115. Müller, F., & Tora, L. (2014). Chromatin and DNA sequences in defining promoters for transcription initiation. Biochimica et Biophysica Acta, 1839(3), 118-128. http://dx.doi.org/10.1016/j.bbagrm.2013.11.003. PMid:24275614.

Nakashima, K., Tran, L.-S. P., Van Nguyen, D., Fujita, M., Maruyama, K., Todaka, D., Ito, Y., Hayashi, N., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2007). Functional analysis of a NACtype transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. The Plant Journal, 51(4), 617-630. http://dx.doi.org/10.1111/j.1365-313X.2007.03168.x. PMid:17587305.

Ni, M., Cui, D., Einstein, J., Narasimhulu, S., Vergara, C. E., & Gelvin, S. B. (1995). Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. The Plant Journal, 7(4), 661-676. http://dx.doi.org/10.1046/j.1365-313X.1995.7040661.x.

Nishiuchi, T., Shinshi, H., & Suzuki, K. (2004). Rapid and transient activation of transcription of the ERF3 gene by wounding in tobacco leaves: Possible involvement of NtWRKYs and autorepression. The Journal of Biological Chemistry, 279(53), 55355-55361. http://dx.doi.org/10.1074/jbc.M409674200. PMid:15509567.

Obertello, M., Santi, C., Sy, M.-O., Laplaze, L., Auguy, F., Bogusz, D., & Franche, C. (2005). Comparison of four constitutive promoters for the expression of transgenes in the tropical nitrogen-fixing tree Allocasuarina verticillata. Plant Cell Reports, 24(9), 540-548. http://dx.doi.org/10.1007/s00299-005-0963-7. PMid:15940528.

Pan, Y., Chen, R., Zhu, L., Wang, H., Huang, D., & Lang, Z. (2016). Utilizing modified ubi1 introns to enhance exogenous gene expression in maize (Zea mays L.) and rice (Oryza sativa L.). Journal of Integrative Agriculture, 15(8), 1716-1726. http://dx.doi.org/10.1016/S2095-3119(15)61260-6.

Pandey, S. P., Singh, A. P., Srivastava, S., Chandrashekar, K., & Sane, A. P. (2019). A strong early acting wound-inducible promoter, RbPCD1pro, activates cryIAc expression within minutes of wounding to impart efficient protection against insects. Plant Biotechnology Journal, 17(7), 1458-1470. http://dx.doi.org/10.1111/pbi.13071. PMid:30623549.

Park, H. C., Kim, M. L., Kang, Y. H., Jeon, J. M., Yoo, J. H., Kim, M. C., Park, C. Y., Jeong, J. C., Moon, B. C., Lee, J. H., Yoon, H. W., Lee, S. H., Chung, W. S., Lim, C. O., Lee, S. Y., Hong, J. C., & Cho, M. J. (2004). Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiology, 135(4), 2150-2161. http://dx.doi.org/10.1104/pp.104.041442. PMid:15310827.

Park, H. C., Kim, M. L., Kang, Y. H., Jeong, J. C., Cheong, M. S., Choi, W., Lee, S. Y., Cho, M. J., Kim, M. C., Chung, W. S., & Yun, D. J. (2009). Functional analysis of the stress-inducible soybean calmodulin isoform-4 (GmCaM-4) promoter in transgenic tobacco plants. Molecules and Cells, 27(4), 475-480. http://dx.doi.org/10.1007/s10059-009-0063-6. PMid:19390829.

Park, S.-H., Bang, S. W., Jeong, J. S., Jung, H., Redillas, M. C. F. R., Kim, H. I., Lee, K. H., Kim, Y. S., & Kim, J. K. (2012). Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta, 235(6), 1397-1408. http://dx.doi.org/10.1007/s00425-011-1582-x. PMid:22212906.

Perera, M. R., & Jones, M. G. K. (2004). Expression of the peroxidase gene promoter (Shpx6b) from Stylosanthes humilis in transgenic plants during insect attack. Entomologia Experimentalis et Applicata, 111(3), 165-171. http://dx.doi.org/10.1111/j.0013-8703.2004.00170.x.

Petolino, J. F., & Davies, J. P. (2013). Designed transcriptional regulators for trait development. Plant Science, 201-202, 128-136. http://dx.doi.org/10.1016/j.plantsci.2012.12.006. PMid:23352411.

Plesch, G., Ehrhardt, T., & Mueller-Roeber, B. (2001). Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. The Plant Journal, 28(4), 455-464. http://dx.doi.org/10.1046/j.1365-313X.2001.01166.x. PMid:11737782.
 
Porto, M. S., Pinheiro, M. P. N., Batista, V. G. L., Santos, R. C., Melo Filho, P., & Lima, L. M. (2014). Plant promoters: An approach of structure and function. Molecular Biotechnology, 56(1), 38-49. http://dx.doi.org/10.1007/s12033-013-9713-1. PMid:24122284.

Puzio, P. S., Lausen, J., Heinen, P., & Grundler, F. M. (2000). Promoter analysis of pyk20, a gene from Arabidopsis thaliana. Plant Science, 157(2), 245-255. http://dx.doi.org/10.1016/S0168-9452(00)00287-9. PMid:10960738.

Quilis, J., López-García, B., Meynard, D., Guiderdoni, E., & San Segundo, B. (2014). Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnology Journal, 12(3), 367-377. http://dx.doi.org/10.1111/pbi.12143. PMid:24237606.

Ranjan, A., Westrick, N. M., Jain, S., Piotrowski, J. S., Ranjan, M., Kessens, R., Stiegman, L., Grau, C. R., Conley, S. P., Smith, D. L., & Kabbage, M. (2019). Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis. Plant Biotechnology Journal, 17(8), 1567-1581. http://dx.doi.org/10.1111/pbi.13082. PMid:30672092.

Rasco-Gaunt, S., Liu, D., Li, C. P., Doherty, A., Hagemann, K., Riley, A., Thompson, T., Brunkan, C., Mitchell, M., Lowe, K., Krebbers, E., Lazzeri, P., Jayne, S., & Rice, D. (2003). Characterization of the expression of a novel constitutive maize promoter in transgenic wheat and maize. Plant Cell Reports, 21(6), 569-576. http://dx.doi.org/10.1007/s00299-002-0552-y. PMid:12789432.

Ren, Z., Liu, J., Din, G. M. U., Zhang, H., Du, Z., Chen, W., Liu, T., Zhang, J., Zhao, S., & Gao, L. (2020). Transcriptome analysis of wheat spikes in response to Tilletia controversa Kühn which cause wheat dwarf bunt. Scientific Reports, 10(1), 21567. http://dx.doi.org/10.1038/s41598-020-78628-0. PMid:33299089.

Ribeiro, T. P., Lourenço-Tessutti, I. T., de Melo, B. P., Morgante, C. V., Filho, A. S., Lins, C. B. J., Ferreira, G. F., Mello, G. N., Macedo, L. L. P., Lucena, W. A., Silva, M. C. M., Oliveira-Neto, O. B., & Grossi-de-Sa, M. F. (2021). Improved cotton transformation protocol mediated by Agrobacterium and biolistic combinedmethods. Planta, 254(2), 20. http://dx.doi.org/10.1007/s00425- 021-03666-5. PMid:34216275.

Roca Paixão, J. F., Gillet, F.-X., Ribeiro, T. P., Bournaud, C., Lourenço-Tessutti, I. T., Noriega, D. D., Melo, B. P., de AlmeidaEngler, J., & Grossi-de-Sa, M. F. (2019). Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Scientific Reports, 9(1), 8080. http://dx.doi.org/10.1038/s41598-019-44571-y. PMid:31147630.

Rogers, H. J., Bate, N., Combe, J., Sullivan, J., Sweetman, J., Swan, C., Lonsdale, D. M., & Twell, D. (2001). Functional analysis of cis-regulatory elements within the promoter of the tobacco late pollen gene g10. Plant Molecular Biology, 45(5), 577-585. http://dx.doi.org/10.1023/A:1010695226241. PMid:11414616.

Römer, P., Recht, S., & Lahaye, T. (2009). A single plant resistance gene promoter engineered to recognize multiple TAL effectors from disparate pathogens. Proceedings of the National Academy of Sciences of the United States of America, 106(48), 20526-20531. http://dx.doi.org/10.1073/pnas.0908812106. PMid:19910532.

Ross, E. J. H., Stone, J. M., Elowsky, C. G., Arredondo-Peter, R., Klucas, R. V., & Sarath, G. (2004). Activation of the Oryza sativa non-symbiotic haemoglobin-2 promoter by the cytokinin-regulated transcription factor, ARR1. Journal of Experimental Botany, 55(403), 1721-1731. http://dx.doi.org/10.1093/jxb/erh211. PMid:15258171.

Rushton, P. J., Reinstädler, A., Lipka, V., Lippok, B., & Somssich, I. E. (2002). Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signaling. The Plant Cell, 14(4), 749-762. http://dx.doi.org/10.1105/tpc.010412. PMid:11971132.

Sakai, H., Aoyama, T., & Oka, A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. The Plant Journal, 24(6), 703-711. http://dx.doi.org/10.1046/j.1365-313x.2000.00909.x. PMid:11135105.

Saxonov, S., Berg, P., & Brutlag, D. L. (2006). A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1412-1417. http://dx.doi.org/10.1073/pnas.0510310103. PMid:16432200.

Schiek, B., Hareau, G., Baguma, Y., Medakker, A., Douches, D., Shotkoski, F., & Ghislain, M. (2016). Demystification of GM crop costs: Releasing late blight resistant potato varieties as public goods in developing countries. International Journal of Biotechnology, 14(2), 112. http://dx.doi.org/10.1504/IJBT.2016.077942.

Sheshadri, S. A., Nishanth, M. J., & Simon, B. (2016). Stress-mediated cis-element transcription factor interactions interconnecting primary and specialized metabolism in planta. Frontiers in Plant Science, 7, 1725. http://dx.doi.org/10.3389/fpls.2016.01725. PMid:27933071.

Shirasawa-Seo, N., Mitsuhara, I., Nakamura, S., Murakami, T., Iwai, T., Nishizawa, Y., Hibi, T., & Ohashi, Y. (2002). Constitutive promoters available for transgene expression instead of caMV 35S RNA promoter: Arabidopsis promoters of tryptophan synthase protein β subunit and phytochrome B. Plant Biotechnology (Sheffield, England), 19(1), 19-26. http://dx.doi.org/10.5511/plantbiotechnology.19.19.

Shokouhifar, F., Zamani, M. R., Motallebi, M., Mousavi, A., & Malboobi, M. A. (2011). Construction and functional analysis of pathogen-inducible synthetic promoters in Brassica napus. Biologia Plantarum, 55(4), 689-695. http://dx.doi.org/10.1007/s10535-011-0169-5.

Shukla, N., Yadav, R., Kaur, P., Rasmussen, S., Goel, S., Agarwal, M., Jagannath, A., Gupta, R., & Kumar, A. (2018). Transcriptome analysis of root-knot nematode (Meloidogyne incognita)-infected tomato (Solanum lycopersicum) roots reveals complex gene expression profiles and metabolic networks of both host and nematode during susceptible and resistance responses. Molecular Plant Pathology, 19(3), 615-633. http://dx.doi.org/10.1111/mpp.12547. PMid:28220591.

Singhal, P., Jan, A. T., Azam, M., & Haq, Q. M. R. (2016). Plant abiotic stress: A prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Frontiers in Life Science, 9(1), 52-63. http://dx.doi.org/10.1080/21553769 .2015.1077478.

Song, M.-A., Tiirikainen, M., Kwee, S., Okimoto, G., Yu, H., & Wong, L. L. (2013). Elucidating the landscape of aberrant DNA methylation in hepatocellular carcinoma. PLoS One, 8(2), e55761. http://dx.doi.org/10.1371/journal.pone.0055761. PMid:23437062.

Spitz, F., & Furlong, E. E. M. (2012). Transcription factors: from enhancer binding to developmental control. Nature Reviews. Genetics, 13(9), 613-626. http://dx.doi.org/10.1038/nrg3207. PMid:22868264.

Stålberg, K., Ellerstöm, M., Ezcurra, I., Ablov, S., & Rask, L. (1996). Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta, 199(4), 515-519. http://dx.doi.org/10.1007/BF00195181. PMid:8818291.

Strompen, G., Grüner, R., & Pfitzner, U. M. (1998). An as-1-like motif controls the level of expression of the gene for the pathogenesisrelated protein 1a from tobacco. Plant Molecular Biology 37(5), 871-883. http://dx.doi.org/10.1023/A:1006003916284. PMid:9678582.

Sukno, S., Shimerling, O., McCuiston, J., Tsabary, G., Shani, Z., Shoseyov, O., & Davis, E. L. (2006). expression and regulation of the Arabidopsis thaliana cel1 endo 1,4 beta glucanase gene during compatible plant-nematode interactions. Journal of Nematology, 38(3), 354-361. PMid:19259541.

Sun, B., Sun, G., Meng, Z., Zhang, R., & Guo, S. (2016). A novel constitutive promoter and its downstream 5′ UTR derived from cotton (Gossypium spp.) drive high-level gene expression in stem and leaf tissues. Journal of Integrative Agriculture, 15(4), 755-762. http://dx.doi.org/10.1016/S2095-3119(15)61054-1.

Sun, C., Palmqvist, S., Olsson, H., Borén, M., Ahlandsberg, S., & Jansson, C. (2003). A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. The Plant Cell, 15(9), 2076-2092. http://dx.doi.org/10.1105/tpc.014597. PMid:12953112.

Sunilkumar, G., Connell, J. P., Smith, C. W., Reddy, A. S., & Rathore, K. S. (2002). Cotton alpha-globulin promoter: Isolation and functional characterization in transgenic cotton, Arabidopsis, and tobacco. Transgenic Research, 11(4), 347-359. http://dx.doi.org/10.1023/A:1016322428517. PMid:12212838.

Swartzberg, D., Kirshner, B., Rav-David, D., Elad, Y., & Granot, D. (2008). Botrytis cinerea induces senescence and is inhibited by autoregulated expression of the IPT gene. European Journal of Plant Pathology, 120(3), 289-297. http://dx.doi.org/10.1007/s10658-007-9217-6.

Tao, Y. B., He, L. L., Niu, L. J., & Xu, Z. F. (2015). Isolation and characterization of an ubiquitin extension protein gene (JcUEP) promoter from Jatropha curcas. Planta, 241(4), 823-836. http://dx.doi.org/10.1007/s00425-014-2222-z. PMid:25502690.

Terzaghi, W. B., & Cashmore, A. R. (1995). Light-regulated transcription. Annual Review of Plant Physiology and Plant Molecular Biology, 46(1), 445-474. http://dx.doi.org/10.1146/annurev.pp.46.060195.002305.

Thurau, T., Kifle, S., Jung, C., & Cai, D. (2003). The promoter of the nematode resistance gene Hs1pro-1 activates a nematode-responsive and feeding site-specific gene expression in sugar beet (Beta vulgaris L.) and Arabidopsis thaliana. Plant Molecular Biology, 52(3), 643-660. http://dx.doi.org/10.1023/A:1024887516581. PMid:12956533.

Toquin, V., Grausem, B., Geoffroy, P., & Legrand, M. (2003). Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene: Identification of promoter sequences involved in gene inducibility by various stimuli. Plant Molecular Biology, 52(3), 495-509. http://dx.doi.org/10.1023/A:1024810916909. PMid:12956522.

Tripathi, S. A., Olson, D. G., Argyros, D. A., Miller, B. B., Barrett, T. F., Murphy, D. M., McCool, J. D., Warner, A. K., Rajgarhia, V. B., Lynd, L. R., Hogsett, D. A., & Caiazza, N. C. (2010). Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Applied and Environmental Microbiology, 76(19), 6591-6599. http://dx.doi.org/10.1128/AEM.01484-10. PMid:20693441.

Vernimmen, D., & Bickmore, W. A. (2015). The hierarchy of transcriptional activation: from enhancer to promoter. Trends in Genetics, 31(12), 696-708. http://dx.doi.org/10.1016/j.tig.2015.10.004. PMid:26599498.

Viana, A. A., Fragoso, R. R., Guimarães, L. M., Pontes, N., OliveiraNeto, O. B., Artico, S., Nardeli, S. M., Alves-Ferreira, M., Batista, J. A., Silva, M. C., & Grossi-de-Sa, M. F. (2011). Isolation and functional characterization of a cotton ubiquitination-related promoter and 5’UTR that drives high levels of expression in root and flower tissues. BMC Biotechnology, 11(1), 115. http://dx.doi.org/10.1186/1472-6750-11-115. PMid:22115195.

Viana, V. E., Carlos da Maia, L., Busanello, C., Pegoraro, C., & Costa de Oliveira, A. (2021). When rice gets the chills: Comparative transcriptome profiling at germination shows WRKY transcription factor responses. Plant biology, 23(Suppl. 1), 100-112. http://dx.doi.org/10.1111/plb.13262. PMid:33773005.

Vijayan, J., Devanna, B. N., Singh, N. K., & Sharma, T. R. (2015). Cloning and functional validation of early inducible Magnaporthe oryzae responsive CYP76M7 promoter from rice. Frontiers in Plant Science, 6, 371. http://dx.doi.org/10.3389/fpls.2015.00371. PMid:26052337.

Wang, J., & Oard, J. H. (2003). Rice ubiquitin promoters: Deletion analysis and potential usefulness in plant transformation systems. Plant Cell Reports, 22(2), 129-134. http://dx.doi.org/10.1007/s00299-003-0657-y. PMid:12827439.

Wang, R., Zhu, M., Ye, R., Liu, Z., Zhou, F., Chen, H., & Lin, Y. (2015). Novel green tissue-specific synthetic promoters and cis-regulatory elements in rice. Scientific Reports, 5(1), 18256. http://dx.doi.org/10.1038/srep18256. PMid:26655679.

Wang, X., Lu, J., Chen, H., Shan, Z., Shen, X., Duan, B., Zhang, C., Yang, Z., Zhang, X., Qiu, D., Chen, S., Zhou, X., & Jiao, Y. (2017). Comparative analyses of transcriptome and proteome in response to cotton bollworm between a resistant wild soybean and a susceptible soybean cultivar. Plant Cell, Tissue and Organ Culture, 129(3), 511-520. http://dx.doi.org/10.1007/s11240-017-1196-5.

Wang, X., Replogle, A., Davis, E. L., & Mitchum, M. G. (2007). The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology, 8(4), 423-436. http://dx.doi.org/10.1111/j.1364-3703.2007.00403.x. PMid:20507511.

Wei, K., Chen, J., Wang, Y., Chen, Y., Chen, S., Lin, Y., Pan, S., Zhong, X., & Xie, D. (2012). Genome-wide analysis of bZIP-encoding genes in maize. DNA Research, 19(6), 463-476. http://dx.doi.org/10.1093/dnares/dss026. PMid:23103471.

Wilmink, A., van de Ven, B. C., & Dons, J. J. (1995). Activity of constitutive promoters in various species from the Liliaceae. Plant Molecular Biology, 28(5), 949-955. http://dx.doi.org/10.1007/BF00042079. PMid:7640366.

Wiśniewska, A., Dąbrowska-Bronk, J., Szafrański, K., Fudali, S., Święcicka, M., Czarny, M., Wilkowska,A., Morgiewicz, K., Matusiak, J., Sobczak, M., & Filipecki, M. (2013). Analysis of tomato gene promoters activated in syncytia induced in tomato and potato hairy roots by Globodera rostochiensis. Transgenic Research, 22(3), 557-569. http://dx.doi.org/10.1007/s11248-012-9665-4. PMid:23129482.

Xiao, K., Zhang, C., Harrison, M., & Wang, Z.-Y. (2005). Isolation and characterization of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Molecular Breeding, 15(2), 221-231. http://dx.doi.org/10.1007/s11032-004-5679-9.

Xie, M., He, Y., & Gan, S. (2001). Bidirectionalization of polar promoters in plants. Nature Biotechnology, 19(7), 677-679. http://dx.doi.org/10.1038/90296. PMid:11433282.

Yamada, Y., & Sato, F. (2013). Transcription factors in alkaloid biosynthesis. International Review of Cell and Molecular Biology, 305, 339-382. http://dx.doi.org/10.1016/B978-0-12-407695-2.00008-1. PMid:23890386.

Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cisacting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 10(2), 88-94. http://dx.doi.org/10.1016/j.tplants.2004.12.012. PMid:15708346.

Yanagisawa, S. (2000). Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. The Plant Journal, 21(3), 281-288. http://dx.doi.org/10.1046/j.1365-313x.2000.00685.x. PMid:10758479.

Yang, F., Ding, X., Chen, J., Shen, Y., Kong, L., Li, N., & Chu, Z. (2017a). Functional analysis of the GRMZM2G174449 promoter to identify Rhizoctonia solani-inducible cis-elements in maize. BMC Plant Biology, 17(1), 233. http://dx.doi.org/10.1186/s12870-017-1181-5. PMid:29202693.

Yang, Y., Zhou, Y., Chi, Y., Fan, B., & Chen, Z. (2017b). Characterization of soybean WRKY gene family and identification of soybean wrky genes that promote resistance to soybean cyst nematode. Scientific Reports, 7(1), 17804. http://dx.doi.org/10.1038/s41598-017-18235-8. PMid:29259331.

Yaqoob, A., Ali Shahid, A., Salisu, I. B., Shakoor, S., Usmaan, M., Shad, M., & Rao, A. Q. (2020). Comparative analysis of Constitutive and fiber-specific promoters under the expression pattern of Expansin gene in transgenic Cotton. PLoS One, 15(3), e0230519. http://dx.doi.org/10.1371/journal.pone.0230519. PMid:32187234.

Yevtushenko, D. P., Sidorov, V. A., Romero, R., Kay, W. W., & Misra, S. (2004). Wound-inducible promoter from poplar is responsive to fungal infection in transgenic potato. Plant Science, 167(4), 715-724. http://dx.doi.org/10.1016/j.plantsci.2004.04.023.

Yu, D., Chen, C., & Chen, Z. (2001). Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. The Plant Cell, 13(7), 1527-1540. http://dx.doi.org/10.1105/TPC.010115. PMid:11449049.

Zeng, W., Sun, Z., Cai, Z., Chen, H., Lai, Z., Yang, S., & Tang, X. (2017). Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics, 18(1), 871. http://dx.doi.org/10.1186/s12864-017-4256-7. PMid:29132375.

Zhang, N., McHale, L. K., & Finer, J. J. (2019). Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters. Plant Biotechnology Journal, 17(4), 724-735. http://dx.doi.org/10.1111/pbi.13010. PMid:30191675.

Zhang, Z. L., Xie, Z., Zou, X., Casaretto, J., Ho, T. H., & Shen, Q. J. (2004). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology, 134(4), 1500-1513. http://dx.doi.org/10.1104/pp.103.034967. PMid:15047897.

Zhu, B., Chen, T. H., & Li, P. H. (1995). Activation of two osmotin-like protein genes by abiotic stimuli and fungal pathogen in transgenic potato plants. Plant Physiology, 108(3), 929-937. http://dx.doi.org/10.1104/pp.108.3.929. PMid:7630973.


Submitted date:
08/31/2021

Reviewed date:
09/27/2021

Accepted date:
10/08/2021

61950e43a9539526386528a4 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections