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Highlights

« Although the significant number of reports on plants carrying transgenes conferring specific characteristics, little is known about
plant-specific promoters, mainly those that are agronomically relevant, such as cotton and soybean. This review highlights promising
plant promoters applied to molecular breeding and conserved cis-acting elements from promoters responsive to different biotic
stresses in soybean, raising new possibilities for constructing synthetic and optimized promoters.
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KEYWORDS Abstract: Promoters are upstream gene regulatory sequences recognized by transcription
factors (TFs) involved in controlling transcription initiation and progression. For modern crop
improvement, the design of efficient gene constructs relies on promoter efficiency, tissue
specificity, and other characteristics that allow the introgression of agronomically relevant traits

Soybean promoters;
Transcription

regulation; to overcome biotic and abiotic stresses. Several constitutive viral promoters, such as pCaMV355,
Plant promoters; remain widely employed in the transgenic plant generation, but their indiscriminate use leads
Stress-inducible to gene silencing triggering and metabolic penalties impacting plant fitness. The identification
genes; and functional characterization of plant-derived promoters can unveil alternatives to commonly
Plant genetic used non-homologous promoters; however, knowledge over them remains limited, especially
engineering. for crops. This review summarizes plant promoters used to drive foreign gene expression in

homologous and heterologous systems, focusing on inducible soybean promoters from genes
upregulated by different biotic stresses. Analyses of these soybean promoters revealed 22 co-
incident cis-acting elements that can be used for synthetic engineering promoters responsive to
multiple biotic stresses and, therefore, efficiently drive gene expression, conferring desirable
traits in transgenic soybean. In addition, we also revisited commercial and protected promoters to
provide an update on soybean promoters and gain new insights into superior crops’ development.
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Introduction

New approaches in biotechnology have allowed considerable
progress in the introduction of beneficial traits to improve
crops for higher production under normal and stressful
conditions. Despite several transcriptional and translational
mechanisms in the control of gene expression because of
posterior processes (e.g., splicing, RNA/protein transport,
gene silencing, ubiquitination), those involving promoter-
driven gene transcription are the most important in plants.
This strategy is advantageous when the goal is to incorporate
new traits into crops by driving transgene expression
(Hernandez-Garcia & Finer, 2014).

Theoretically, promoters are regulatory regions upstream
of genes that grant specific transcription rates. They can be
classified according to the position of the regulatory sequences
relative to the transcription starting site (TSS): core promoters
include minimal cis-elements, such as TATA and GACA boxes
(located at -10 and -35 bp of the TSS, respectively), required
for basal transcription in eukaryotic cells. They are widely
distributed, and the assembly of pre-initiation of transcription
pre-initiation of transcription complex (PIC) complex derives
from them (Louder et al., 2016). Proximal promoters are
typically located within 1,000 bp upstream of the TSS and
encompass key specific regulatory sequences recognized by
specific TFs in a cell fate-dependent manner. Finally, distal
promoters comprise long-distance regulatory sequences whose
chromatin topology imposes physical interactions with the
basal transcription machinery, either favorable or unfavorable,
enhancing or suppressing gene transcription, depending on
the nature of their cis-elements.

Transcription regulation is determined by the interaction
of several enhancers or silencers in the DNA sequence

and specialized proteins, designated transcription factors
(TFs), which recognize conserved cis-elements and interact
simultaneously with the basic transcriptional machinery. Since
TFs can be dynamically present or absent in cells, depending
on life stage, cell type, physiological conditions and hormone
signals, biotic- and abiotic-stresses, transcriptional regulation
of gene expression is finely-tuned regulated, resulting in
appropriated transcription rates in consonance with all sorts
of internal and environmental signals (Melo et al., 2021).
Overall, genes can be classified into two main categories,
based on their expression profile: i. constitutive genes (also
referred to as housekeeping genes), whose expression is
nearly constant across tissues/organs at all developmental
stages and under all environmental conditions; or ii. regulated
genes, whose expression can increase a thousand-fold in
response to specific stimuli. They can also be classified as
spatiotemporally regulated (tissue or lifespan specific) or
induced promoters (hormone-, abiotic stress-, wounding-,
pathogen-inducible expression). Their common characteristic
is that they are uniquely transcribed by RNA polymerase
[l (RNA pol Il). So naturally, the promoters of these genes
harbor sites for RNA pol Il and are collectively designated
pol Il promoters (Bitas et al., 2016; Kummari et al., 2020).
A compelling and universal correlation suggests that
constitutive genes are generally driven by CpG promoters
(previously referred to as TATA-less), whereas most regulated
genes are strongly controlled by TATA-containing promoters
(Miller & Tora, 2014). In plants, a comprehensive analysis of
thousands of core promoter sequences showed a high incidence
of AT base pairs, with particularly strong AT enrichment around
-30 bp, suggesting that TATA-like promoters are present
in 31% of plant promoters (Hetzel et al., 2016). TATA-like
promoters confer highly regulated gene expression, with
initiation concentrated at the TSS and nearby regulatory
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sites, including canonical CAT-boxes and Inr sequences,
in addition to the downstream 5’'UTR. Some genes exhibit
TSS variants, typically in response to tissue differentiation,
physiological regulation, and genetic variability (Hetzel et al.,
2016), which impose additional levels of transcriptional
regulation. A comprehensive mapping of Arabidopsis
nascent RNA found “TYA(+1)YYN” and “TYA(+1)GGG” as a
consensus Inr (Hetzel et al., 2016) that could be predicted
using several algorithms. For CAT-boxes, 5 (T/C)(A/G)(A/G)
CCAATC(A/G)3’ is considered the consensus sequence and
can recruit NFY, which enhances gene activation across TFs
through nucleosome replacement (Vernimmen & Bickmore,
2015). Unlike GC-boxes, the CAT box is position-dependent,
typically occurring around -60 to -100. TATA-containing genes
are generally not involved in essential cellular functions
(Bae et al., 2015). Similarly, CAAT boxes are rarely found in
constitutively expressed genes in all cell types (Tripathi et al.,
2010).

Briefly, CpG promoters display GC-rich regions with several
CpG sites (Saxonov et al., 2006), i.e., cytosine bound to
guanosine 5" phosphate, where cytosine may or may not be
methylated as an epigenetic mark. When unmethylated, CpG
islands (typically exhibiting dispersed SCTs of 50-100 bp) are
recognized by TFs that recruit RNA pol Il for transcription
initiation. In plants, methylation patterns of CpG islands are
strikingly uniform, negatively correlating with constitutive
expression of housekeeping genes (Song et al., 2013). Another
feature of CpG promoters is the presence of additional
regulatory core sequences, such as GC-box (KRGGCGKRRY,
usually GGGCGG motif - about -40 to -100) and DRE and
TCT motifs (Lorberbaum & Barolo, 2015). DRE motifs are
predictable TATCGATA sequences in proximal promoters
(-200 bp). They positively regulate transcription in different
ways, depending on the enhancer function (Lorberbaum &
Barolo, 2015), but at different rates with fluctuation up to
50-fold, likely associated with the number of GC-box and
proximal enhancers.

Besides the cis-elements of the core promoter, the
combination of different regulatory sequences recognized
by TFs delineates the induction pattern of a gene and,
therefore, the promoter’s responsiveness. The ACGT core
motif, found in G-boxes, C-boxes, A-boxes, and ABRE (ABA
binding responsive element), is recognized by bZIPs in many
promoters. To date, plant genomes encompass dozens of
bZIPs in different species [(75 in Arabidopsis thaliana, 89 in
rice, 125 in maize, 131 in soybean, and 69 in tomato (Fassler
et al., 2002; Wei et al., 2012; Llorca et al., 2014; Li et al.,
2015; Wang et al., 2015)]. The bZIPs are frequently linked to
the control of normal plant morphophysiology and specific
responses to biotic and abiotic stresses. Similarly, W-box is
the WRKY-recognized cis-element (consensus: C/TTGACC/T)
detected in several gene promoters responsive to multiple
developmental stresses and processes, such as senescence
(Basu et al., 2014; Llorca et al., 2014; Sheshadri et al.,
2016). Along these lines, some TF families integrate hormonal
signaling and physiological remodeling. The cis-elements
recognized by these TFs are valuable sources of multiple-
response regulatory sequences for promoter engineering.

AP2/ERF TFs control processes of floral development,
seed germination, and yield regulation. Considering the
common hormonal branch of these processes and responses

to multiple stresses, mainly coordinated by salicylic acid
(SA), jasmonic acid (JA), ethylene (ETH), and abscisic acid
(ABA), AP2/ERF TFs also respond to environmental signals
(Cui et al., 2016; Gu et al., 2017) by recognizing the A/
GCCGAC motif in DRE (Basu et al., 2014) and ERFb (Yamada
& Sato 2013), and CAACA in RAVb elements (Feng et al.,
2014; Moran Lauter et al., 2014). The same is reported for
NAC TFs, which recognize NACr elements (ACACGCATGT)
(Yamaguchi-Shinozaki & Shinozaki 2005).

Therefore, studies of gene function and global variation
in gene expression provide the most abundant reliable
information on inducible promoters. From this, useful
features on expression kinetics, specific induction or
repression profile, and time or tissue dependence can be
obtained, which allow retrieving useful promoters for a
predictable increase in gene expression, in a specific tissue,
under specific conditions, with minimal penalties on plant
yield (Porto et al., 2014; Bitas et al., 2016; Kummari et al.,
2020). The variety of TFs, the different cis-elements they
recognize, and the plasticity of the DNA-binding domain in
interacting with secondary regulatory sequences (partially
divergent from canonical cis-elements) make promoters’
engineering a promising and enthusing research field in
synthetic biology and molecular breeding. Furthermore, the
application and use of synthetic promoters have expanded
the concern for regulating the expression of different genes
of interest in response to pathogen attack or other specific
stimuli (Koschmann et al., 2012).

Herein, we have attempted to summarize the progress
in the elucidation and functional characterization of plant-
specific promoter sequences, primarily regulated promoters,
whose impact of conserved cis-elements associated with
response to multiple stimuli can provide a useful tool for crop
engineering. Our analysis focused on soybean genes highly
responsive to several biotic stresses and uncovered 22 co-
incidental cis-acting elements of 50 genes upregulated by
viruses, fungi, insects, and nematodes. We also reexamined
commercial and patent-protected plant promoters, which
revealed that constitutive and regulated promoters have
been continuously patented; however, constitutive promoters
are five times more characterized and protected annually
(213.36 + 108.84) than regulated ones (46.45 + 21.89).
Overall, all data provide an updated dataset for projecting
transgene expression in plants and designing synthetic
promoters in soybean, setting new trends in the field in
modern agribusiness.

Constitutive plant promoters

Constitutive promoter encompasses transcriptional
regulatory regions widely expressed in plant tissues and
organs, not regulated by specific conditions or specific
transcription factors, universally applied in transgene
expression in plants (Jiang et al., 2018; Ali & Kim, 2019;
Kummari et al., 2020).

Viral promoters, such as cauliflower mosaic virus
(pCaMV35S), peanut chlorotic streak virus (pPC1SV), and
figwort mosaic virus (pFMV) promoters have been used in
plant transformation over the years and are the most widely
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used constitutive promoters in plant engineering. However,
in most cases, plant constitutive promoters might be a more
suitable option for plant transformation due to their plant
origin. Additionally, plant transcriptional regulatory regions
harbor cis-acting elements compatible with basal and plant
cell-specific transcription factors, allowing precise regulation
of gene expression compatible with their regulatory machinery
(Mittler & Blumwald 2010; Bitas et al., 2016).

Despite its strong quasi-universal gene expression capacity,
pCaMV35S has become the most widely used constitutive
viral promoter in transgenic plants. However, its activity is
generally low in reproductive tissues, prompting a demand
for plant tissue-specific promoters towards the expression of
genes whose phenotypical effect is relevant in flower buds,
anthers, pollen, and related tissues (Moura et al., 2021).
In addition, excessively high transcript levels generated under
viral promoter’s control can interplay some pleiotropic effects
on transgenic plants (Freitas et al., 2019). For example, higher
transcriptional ratio is frequently associated with protein
accumulation and, primarily in non-target plant tissues, might
be energy costly for the plant. Furthermore, simultaneous
expression of different transgenes under the control of the
same promoter usually triggers post-transcriptional gene
silencing mechanisms (Freitas et al., 2019).

Plant constitutive promoters have emerged as a viable
solution to these limitations (Porto et al., 2014). These
promoters can be specifically applied to regulate plant
resistance for pathogen or herbicide-related genes, thus
improving plant performance under diverse conditions.
Constitutive plant promoters can drive gene expression in
most tissues and organs at different stages of development
(Bhattacharyya et al., 2012; Jiang et al., 2018). Nonetheless,
they can be a strategy for priming the defense of transgenic
plants against abiotic or biotic stresses, as the target
protein will be continuously produced (Singhal et al., 2016;
Kummari et al., 2020).

Another feature to be addressed over plant constitutive
promoters relies on the evidence that constitutive promoters
of monocots and eudicots are usually more efficient in
homologous systems (Wilmink et al., 1995). The most commonly
used constitutive promoters in monocot crops are the rice
Actin1 (pOsAct1) (McElroy et al., 1990, 1991), the maize
Ubiquitin 1and 2 (pZmUbi1 and pZmUbi2) (Christensen et al.,
1992), and Alcohol Dehydrogenase1 (pZmAdh1) (Kyozuka et al.,
1991). As summarized in Table 1, several monocot promoters
have been identified and evaluated for application in plant
transformation as alternatives to viral options.

The rice pOsActin1 was used to drive the Bacillus
thuringiensis Cry1A(b) gene expression in indica and japonica
rice-varieties, leading to Cry1A(b) protein levels similar
to those driven by pCaMV35S. Efficient expression of the
gene ensured plant protection against yellow stem borer
(Scirpophaga incertulas) larvae (Datta et al., 1998).

Other monocot-specific promoters have also been
applied to control insects, fungi, viruses, and nematodes.
The ubiquitin extension protein (pUep 1) promoter from the oil
palm tree could drive B-glucuronidase expression (uidA; GUS)
transiently in different plant tissues, including embryogenic
calli, embryoid, immature embryo, young leaf, green leaf,
mesocarp, and meristematic tissues (Masura et al., 2010).
Interestingly, it has also reported the potential for use in

dicot systems, displaying transcriptional regulatory activity in
tobacco (Masura et al., 2010). The pAPX, pPGD1, and pR1G1B
from rice were also investigated using GFP as a reporter
gene in the homologous system. All promoters were highly
active in the whole plant at vegetative and reproductive
stages, and the pPGD1 showed excellent transcriptional
activity as similarly observed for the well-characterized
pZmUbi-1 (Park et al., 2012). The same approach was
applied to analyze the pOsUbi1 promoter driving GUS gene
expression in native plants compared to pZmUbi1 and rice
Gibberellic Acid Insensitive (pGAl) promoters. The expression
levels were higher when pOsUbi 1 was employed, followed by
pZmUbi1 and pGAI, standing pOsUbi1 as a promising promoter
for synthetic biology, capable of driving constitutive gene
expression in rice (Bhattacharyya et al., 2012), as has also
been shown for pOsCont (Li et al., 2014).

Expressive progress on promoters’ characterization
in monocots has been made, but it remains limited to
certain species, such as rice (0. sativa) and corn (Z. mays).
Few precedents in the literature report characterization
of promoters in other important monocot crops, such as
wheat (Trictum ssp.), sugarcane (Sacharum ssp.), barley
(Hordeum vulgare), and several others, limiting the
expression of transgenes in these plant systems under the
control of endogenous promoters. Eudicot characterized
promoters are distributed in a slightly wider variety of plants
(Table 2); however, most precedents describe promoters from
Arabidopsis and tobacco (Nicotiana ssp.) while regulatory
sequences from important agronomic crops, such as soybean
(Glycine max), common bean (Phaseolus vulgaris), and
cotton (Gossipium ssp. ), are not widely reported.The pMtHP
promoter of the Medicago truncatula PR-10 related gene drove
GUS expression in different tissues and organs of A. thaliana
at various developmental stages. The MtHP:::GUS expression
was higher than the expression detected in CaMV35S:::GUS
plants (Xiao et al., 2005). The pVR-ACS1 promoter naturally
regulates the expression of an auxin-inducible ACC synthase
gene (VR-ACS1) in V. radiata L. (mung bean). In situ assays
in tobacco and Arabidopsis showed 4- to 6- fold higher
protein levels for both GUS and luciferase compared with
pCaMV35-constructs (Cazzonelli et al., 2005), highlighting a
better performance of plant-specific constitutive promoters
compared with viral promoters.

The soybean (G. max) polyubiquitin promoter (pGmUbi)
was evaluated by driving GFP expression in stably transformed
soybean. Tissues carrying pGmuUbi:::GFP showed a 2- to
5-fold increase in gene expression compared to constructs
containing the pCaMV35S promoter (Chiera et al., 2007;
Hernandez-Garcia et al., 2009). Recently, the upstream
regulatory region of the GmUBC4 gene was isolated from
soybean by TAIL-PCR, uncovering a plant inducible promoter
designated pUceS8.3, which has been cloned and patented for
using in plant expression vectors (Grossi-de-Sa et al., 2013).
The core promoter of pUceS8.3 exhibits a sequence motif
pattern, as the presence of the TATA-Box, CAT-Box, initiator
element (Inr) consensus, and low GC content, characteristic of
TATA-containing promoters. In silico analysis of pUceS8. 3 cis-
acting elements showed the presence of hundreds of DNA
motifs and its ability to drive gene expression was reported
in different tissues of A. thaliana, including root, stem, leaf,
and flower bud (Grossi de Sa et al., 2013).
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Table 1. Constitutive promoters of monocot plants used in transgenic plants.

Source Host Promoter Reporter Gene Comments Ref.
Oryza sativa 0. sativa (rice) pOsActint GUS High levels of reporter gene expression in McElroy et al.
(rice) transformed rice protoplasts. (1990)

Zea mays Nicotiana Alcohol GUS Mainly induced in roots after 24h of anaerobic Kyozuka et al.
(maize) tabacum dehydrogenase treatment (up to 81-fold). (1991)
(tobacco) (pAdh-1)
Z. mays (maize)  Z. mays (maize)  Ubiquitin Chloramphenicol CAT assays of protoplasts extracts indicated higher Christensen et al.
and N. tabacum  (pZmUbi1 and acetyl expression in monocot maize (10-fold increase) (1992)
(tobacco) pZmUbi2) transferase than in dicot tobacco (one-tenth the level)
(CAT) compared with pCaMV35S constructs.
O. sativa (rice) 0. sativa (rice) pOsActint CrylA(b) Cry1Ab content varied in the tissues and organs Datta et al. (1998)
studied; protein levels in leaves and stems were
similar for pCaMV35S and pOsActin1 promoter
plants.
O. sativa (rice) 0. sativa (rice) pOsCc1 GFP Displayed particular high activity in calli and roots  Jang et al. (2002)
with 3-fold higher potential than the pOsAct1
promoter and comparable expression to the light-
regulated RbcS promoter in leaves.
Z. mays (maize)  Triticum pH2B GUS Wheat: stronger expression in floral tissues and Rasco-Gaunt et al.
aestivum in the young part of leaves and roots; Maize: (2003)
(wheat) stronger activity in leaves and roots.
and Z. mays
(maize)
O. sativa (rice) 0. sativa (rice) pOsUbi1 and GUS Activity levels were 8 to 35-fold higher in Wang & Oard
pOsUbi2 transgenic rice, respectively, compared with the (2003)
pCaMV35S construct.
Palm oil Palm oil and Ubiquitin GUS Transient expression in all palm oil tissues tested Masura et al.
N. tabacum extension and in tobacco. The highest potential was found (2010)
(tobacco) protein (pUep1) for pZmUbi1, pCaMV35S, and pUep1 constructs.
Panicum P. virgatum pPvUbI1/ GUS Strong constitutive expression in all plants Mann et al. (2011)
virgatum (switchgrass), pPvUbi2 analyzed, being good candidates for monocot and
(switchgrass) 0. sativa (rice) dicot transformation.
and N. tabacum
(tobacco)
0. sativa (rice) 0. sativa (rice) PAPX, pPGD1 GFP High activity in the whole plant at vegetative and  Park et al. (2012)
and pR1G1B reproductive stages, but low activity specifically
in ovary and pistil filaments.
O. sativa (rice), 0. sativa (rice) pOsUbi1 and GUS Higher expression when using rice pOsUbi 1 Bhattacharyya et al.
Z. mays (maize) pZmUbit promoter than the maize pZmuUbi1. (2012)
O. sativa (rice) 0. sativa (rice) Gibberellic GUS GUS expression was lower than the rice and maize  Bhattacharyyaet al.
acid insensitive pZmUbi1 promoters. (2012)
(PGAI)
Brachypodium Z. mays (maize)  pEF1a and GUS pUBI10-GUS plants contained 6- to 14-fold more Coussens et al.
distachyon pUB110 GUS protein, whereas the pEF1a-GUS plants had (2012)
3- to 6-fold more protein than the pCaMV35S
construct.
Ananas comosus  A. thaliana pSUI1 and pL36 GUS GUS expression in all tissues at similar levels of Koia et al. (2013)
(pineapple) pCaMV35S.
Marchantia M. polymorpha PMpEF1a GUS Strong meristematic expression and greater Althoff et al.
polymorpha activity in female sexual tissues. (2014)
0. sativa (rice) 0. sativa (rice) pOsCon1 GUS Comparable activity to pOsCc1, pOsAct1, or Li et al. (2014)

pZmUbi promoters in most tissues, but more
active than the pCAMV35S promoter in roots,
seeds, and calli.
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Table 2. Constitutive promoters of eudicot plants used in transgenic plants.

Source Host Promoter Reporter Gene Comments Ref.
N. tabacum N. tabacum ptCUP GUS Activity detected in all organs studied, being Foster et al.
(tobacco) (tobacco) at similar levels in leaves of ptCUP and (1999)
pCaMV35S plants.
A. thaliana N. tabacum pPTSB1 and GUS Both promoters showed 50% or more activity Shirasawa-
(tobacco) pPPHYB compared to pCaMV35S promoter Seo et al. (2002)
N. tabacum N. tabacum Polyubiquitin Chloramphenicol ~ CAT expression was almost twice as high as Kang et al. (2003)
(tobacco) (tobacco) (Tubi.u4) acetyl transferase  pCaMV35S in the leaves evaluated.
(CAT)
A. thaliana Allocasuarina pUBQ1 GUS The pUBQ1 and pCaMV35S promoters Obertello et al.
verticillata were minimally active, with pUBQ1 being (2005)
inadequate for A. verticillata.
M. truncatula M. truncatula, PMtHP GUS Expression detected in all tissues analyzed Xiao et al. (2005)
A. thaliana and generally similar to or higher than that of
Trifolium repens pCaMV355-GUS plants.
(white clover)
Vigna radiata N. tabacum pVR-ACS1 GUS/Luciferase Protein and expression levels were generally Cazzonelli et al.
(Mung bean) (tobacco) 4-to 6-fold higher for both reporter genes (2005)
and A. thaliana in comparison with plants containing the
pCaMV35S.
G. max Phaseolus lunatus  Polyubiquitin GFP pGmubi with and without its intronic region Chiera et al.
(soybean) (Lima bean) (pGmubi) and displayed 5- and 2- fold higher expression (2007)
pGmHSP90L compared with pCaMV35S, respectively. The
full-length pGmMHSP90L promoter displayed 4-
times increase in activity.
G. max G. max Polyubiquitin GFP pGmubi-GFP plants generally had higher GFP Hernandez-
(soybean) (soybean) (pGmubi) expression than pCaMV35S-GFP plants. Garcia et al.
(2009)
G. hirsutum A. thaliana pUceA1.7 GUS Expression levels were equal to or higher than  Viana et al.
(cotton) those of pCaMV35S. Activity was 7-fold higher ~ (2011)
in flowers, 2-fold in roots and similar in leaves
and stems.
Populus A. thaliana and pPtMCP GUS Activity detected in all tissues and organs Chen et al. (2013)
tomentosa N. tabacum studied, but at lower levels than in pCaMV35S-
(tobacco) GUS plants.
A. thaliana A. thaliana PALTCTP GUS Small (0.3 kb) promoter with high activity in Han et al. (2015)
all tissues, representing ~55% of the reporter
gene expression in pCaMV35S-GUS plants.
A. thaliana Agrostis pTCTP BAR High BAR expression in all tissues, Han et al. (2015)
stolonifera corresponding to ~46-86% of that in
(creeping pCaMV35S-BAR plants.
bentgrass)
Jatropha curcas J. curcas and A. pJcUEP GUS pJcUEP and pCaMV35S had similar activities in ~ Tao et al. (2015)
thaliana stems, mature leaves and female flowers, but
pCaMV35S was more effective in young leaves
and inflorescences.
Chrysanthemum A. thaliana and pCmActin GUS Higher GUS expression in C. morifolium Hong et al. (2016)
morifolium C. morifolium compared to pCaMV35S and exhibited similar
(White Wing) activity in all A. thaliana tissues, not being
detected in seeds.
G. hirsutum N. tabacum PGhEF1A1.7 GUS Activity was higher in leaves and stems and Sun et al. (2016)
(cotton) (tobacco) similar in flower and roots using pCaMV35S as

a comparison.
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Table 2. Continued...

Source Host Promoter Reporter Gene Comments Ref.
Solanum A. thaliana, PKST1 GFP Exhibited guard cell expression in all species Kelly et al. (2017)
tuberosum S. tuberosum, evaluated, being the first dicot-originated
(potato) N. tabacum, guard cell promoter active in monocots.

Cucumis sativus
(cucumber),
Vitis vinifera
(grape) and H.
vulgare (barley),
Citrus sinensis
(sweet orange)
and Solanum
lycopersicum
(tomato)
A. thaliana N. benthamiana PAtSCPL30 GUS Strong activity in almost all tissues, displaying  Jiang et al. (2018)
fragments 2 times more transgene expression than the
pCaMV35S.
C. sinensis C. sinensis pCsCYP, GUS mRNA levels were up to 60-41.8% of the value  Erpen et al.
(sweet orange) (sweet orange) pCsGAPC2, obtained for pCaMV35S in leaves, stems, and (2018)
pCsEF1 roots.
G. hirsutum G. hirsutum pGhSCFP Expansin Activity was higher in cotton fibers than in Yaqoob et al.
(cotton) (cotton) (CPEXPA1) other parts of the plant, whereas pCaMV35S- (2020)
driven expression was low in fibers but
continuous in all tissues.
C. sinensis (sweet  N. benthamiana pCsGAPC2, GUS pCsCYP promoter activity was not affected by  Corte et al.
orange) pCsEF1 and any deletion. Truncated fragments of pCsEF1 (2020)
fragments had higher GUS expression in leaves.

From cotton (Gossypium hirsutum), the pGhEF1A1.7 promoter
with its 5’-untranslated region (5’UTR) was transcriptionally
fused to the uidA reporter gene and evaluated in tobacco.
The reported gene activity was remarkably higher in leaves
and stems compared to pCaMV35S::GUS plants and similar to
pCaMV35S in flowers and roots (Sun et al., 2016). Likewise,
the pUceA1.7 cotton promoter resulted in 7-fold higher GUS
expression in flowers, 2-fold higher expression in roots, and
similar expression levels in leaves and stems compared to
pCaMV35S (Viana et al., 2011; Basso et al., 2020). Higher
gene expression levels in flowers are particularly useful in
cotton since its floral buds are attacked by the coleopteran
Anthonomus grandis, the cotton boll weevil (CBW).
The coleopteran insect lays eggs into the floral buds, and the
larva develops by feeding on their reproductive structures,
impairing fiber production (Ribeiro et al., 2021). Recently,
Moura et al. (2021) have described two uncharacterized
cotton promoters, pGhERF105 and pGhNc-HARBI1, highly
responsive to CBW infestation and active in vegetative and
reproductive tissues, potentially applied to insect-pest
control. A complete list of eudicots constitutively expressed
promoters can be found in Table 2.

Inducible/regulated plant promoters
responsive to biotic stresses

Plants are constantly exposed to biotic stresses, such as
insects, nematodes, fungi, bacteria, and viruses. Insect attack
and pathogen infection can induce plant defense mechanisms
by activating or inhibiting the expression of different genes
that are regulated through the activity of their respective
promoters and transcription factors (Figure 1). With the
advances in transcriptome sequencing, it has been possible
to identify many genes induced by biotic stresses that may
have numerous biotechnological applications in basic and
applied research (Dong et al., 2018; Shukla et al., 2018;
Koch et al., 2020; Ren et al., 2020). Moreover, a detailed
study of promoters driving expression and regulation of biotic
stress-responsive genes has identified attractive promoters
with the potential to be used in the development of efficient
transgenic plants resistant to several economically important
insect-pests and pathogens that threaten global food
production (Baruah et al., 2020). Promoters of defense-related
genes induced by biotic stresses are of particular interest
to plant improvement research and have been explored
for use in genetically engineered plants for regulation of
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Figure 1. Schematic diagram of gene expression control by constitutive and inducible promoters in plants. (A) Gene expression
controlled by constitutive promoters. Basal transcription factors recognize canonical cis-elements in core promoters as well as in
proximal and distal regulatory regions. By multiple protein-protein and protein-DNA interactions, the regulatory region is sterically
adjusted to accommodate the transcription factors and other pre-initiation complexes (PIC) proteins in the transcription bubble.
Conceptually, constitutive promoters allow the expression in most plant tissues, independent of environmental conditions, leading
to high levels of gene expression and protein accumulation in engineered plants; (B) Stress-inducible promoters respond to multiple
environmental signals, usually coordinated by phytohormones. Facing some abiotic or biotic adversity, plants release hormones,
such as ABA, JA, SA, and ETH, which stimulate the transcription of stress-responsive TFs. These TFs recognize specific cis-actin
elements in promoter regions and, collectively, drive gene expression. Mechanistically, the transcription initiation coordinated by
constitutive and inducible promoters is the same. The difference between the two stems from the dependence on specific TFs,
whose expression varies with plant tissues, developmental stage, and environmental signals.
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transgene expression (Gurr & Rushton 2005; Ali & Kim 2019;
Kummari et al., 2020).

An ideal promoter should have a strong response against
a broad spectrum of pathogens and/or insect-pests and be
rapidly induced in response to the biotic stress. The major
advantage of the stress-inducible promoters over the
constitutive promoters is the suppression of the transgene
expression upon repression of biotic stress stimuli to avoid
unnecessary energy consumption that is required for other
plant physiological processes and, consequently, any fitness
penalty in plant growth and development (Kasuga et al., 2004;
Nakashima et al., 2007; Quilis et al., 2014; Boni et al., 2018).

Thus, inducible promoters must drive an absence or very
low levels of basal background expression in the plant to
ensure successful plant protection from insects and pathogens.
Although the availability of identified inducible promoters
is relatively low, some promoters are increasingly used for
transgene expression in plants (Quilis et al., 2014; Liu et al.,
2019; Pandey et al., 2019). In addition, characterization of
inducible promoters and identification of key pathogen-
inducible cis-acting elements have enabled the engineering
of diverse types of synthetic inducible promoters that have
also been employed in the development of elite crops (Ali &
Kim, 2019). More importantly, regulated promoters allow for
the direction of gene expression only in specific organs, such
as roots and flowers, thereby limiting the ectopic protein
accumulation at the site of pathogens infection (Singhal et al.,
2016). Hence, each application must be evaluated separately
to select the best available promoter and decide on the
best strategy, tailored to specific pathosystems, resulting
in a perfect balance between agronomic and molecular
characteristics. Previously described inducible promoters in
plants are described in Table 3, and the following sections
describe relevant features of promoters responsive to the
major biotic stress conditions faced by plants.

Insect-inducible promoters

Several inducible promoters have been explored to
engineer insect-resistant transgenic plants. Pandey et al.
(2019) demonstrated that Arabidopsis transgenic lines
expressing GUS under the control of the rose RbPCD1 promoter
were strongly wound-inducible by H. armigera and M. persicae
as early as 5h after insect infestation. In addition, strong
wound-inducible GUS expression was observed in stably
transformed chickpea leaves and transiently agroinfiltrated
cotton sepals, rose petals, gladiolus tepals, and tobacco
leaves, indicating that it is active in a wide range of plant
species. Moreover, the RbPCD1 promoter was evaluated to
drive Cry1Ac gene expression in Arabidopsis and tomato
transgenic plants, leading to a 4.5- to 27- fold increase in
Cry1Ac expression in the transgenic lines compared with
lines under CaMV35 promoter control. Phenotypically,
the transgenic plants exhibited higher insect mortality
and a stable protective effect against insect-pest attacks
(Pandey et al., 2019).

Similarly, the expression of GUS and GFP reporter genes
under the control of the S. humilis peroxidase (Shpx6b)
gene promoter was induced in transgenic tobacco plants in
response to the attack by the chewing and sucking insects
Phthorimaea operculella and M. persicae, indicating that

the Shpxéb promoter may be useful for the development of
transgenic plants resistant to insect-pests (Perera & Jones,
2004). Godard et al. (2007) showed that the potato proteinase
inhibitor Il (Pinll) promoter was able to drive the wound-
and insect-inducible GUS expression in Picea glauca (white
spruce), Arabidopsis, or tobacco. Li et al. (2020) observed
that the rice hydroperoxide lyase (OsHPL2) gene promoter was
significantly upregulated after herbivory of C. suppressalis,
but not after feeding of Nilaparvata lugens, mechanical
wounding, abscisic acid, jasmonic acid or salicylic acid
treatments. Despite the advantages of inducible promoters
over constitutive promoters that have been widely used
in the genetic engineering of many plants, the trade-offs
between inducibility and strength should be considered for
practical biotechnological application.

Nematode-inducible promoters

Inducible promoters have also been explored to improve
plant tolerance to phytonematodes. For instance, the
promoters of the NRRS genes from Arabidopsis, At1¢74770 and
At2g18140, were used in the development of transgenic
Arabidopsis expressing the GUS reporter gene. Bioassays with
the transgenic plants revealed that both promoters were
responsive to the root-knot nematode (RNK) M. incognita,
regulating GUS activity in roots and galls (Kakrana et al.,
2017). Using a similar experimental strategy, Mitchum et al.
(2004) evaluated a nematode-inducible promoter that is
expressed in roots. Tobacco and Arabidopsis lines harboring
the Arabidopsis endo-1,4-8-glucanase (Cel1) promoter
transcriptionally fused to the uidA gene were infected with M.
incognita, Globodera tabacum and H. schachtii. The authors
observed Cel1-driven GUS expression in the giant-cells of the
tobacco roots infected with M. incognita 11-13 days after
inoculation, but GUS expression was not detected in syncytia
of the tobacco or Arabidopsis roots induced by G. tabacum
and H. schachtii, respectively.

Other promoters from genes related to defensive pathways
were also explored to achieve application for nematode
tolerance. The Hahsp17.7G4 gene encodes a small heat shock
protein involved in embryogenesis and stress responses.
The validation of the sunflower Hahsp17.7G4 promoter
demonstrated that it was responsible for mediating high GUS
expression in tobacco galls, particularly in the latter stages
of M. incognita infection, but not in other root regions.
Furthermore, the nematode-inducible promoter regulated
GUS activity primarily in giant cells (Escobar et al., 2003).
These studies demonstrated preferential or specific induction
of promoters in the gall or syncytia structures upon nematode
infection by bioassays performed in transgenic plants.

Fungus-inducible promoters

Over the past decade, various plant promoters have been
tested to regulate gene expression upon plant-pathogenic
fungi. Himmelbach et al. (2010) isolated and functionally
analyzed the barley GER4c gene promoter. Strong transient
expression of GUS under the control of the GER4c promoter
was observed in barley leaves inoculated with B. graminis
f. sp. hordei. To further evaluate the promoter, the authors
stably introduced it into barley transgenic lines. Bioassays
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Table 3. Insect/Pathogen-responsive promoters isolated from plants.

Gene (s)

Promoter (s)

Source of the
promoter

Insect/Pathogen
responsible for the
induction

Reporter gene

Ref.

RbPCD1 gene

peroxidase gene
(Shpxéb)

proteinase inhibitor
Il (pinll)
hydroperoxide lyase
gene (OsHPL2)

putative subtilisin/
chymo-trypsin
inhibitor
flavin-containing
monooxygenase
(W250), speckle-type
POZ protein (A360),
early flowering 4
(A080)

Hahsp17.7G4 gene
AT1G26530 gene
Hs1re-' gene

CYP97A29, DFR, FLS,
NIK and PMEI genes

endo-B-1,4-glucanase
(cellulase) gene

pyk20 gene

cell endo 1,48
glucanase gene
(Atcel1)

Cel1 endo-1,4-8
glucanase gene

LEMMI9 gene

wun1 gene

germin-like GER4 gene

polyphenol oxidase 12
gene (GmaPPO12)

GRMZM2G 174449 gene

CYP76M7 gene

RbPCD1 promoter

Shpx6b promoter

pinll promoter

OsHPL2 promoter

B1-A04 promoter

W250 promoter,
A360 promoter, AO80
promoter

Hahsp17.7G4 promoter
AT1G26530 promoter
Hs 1! promoter

CYP97A29 promoter,
DFR promoter,

FLS promoter, NIK
promoter, PMEI
promoter

NtCel7 promoter

pyk20 promoter

Atcel1 promoter

Cel1 promoter

LEMMI9 promoter

wun1 promoter

GER4c promoter

GmaPPO12 promoter

GRMZM2G 174449
promoter

CYP76M7 promoter

Rosa bourboniana

Stylosanthes humilis

S. tuberosum

0. sativa

0. sativa

A. thaliana

Helianthus annuus
A. thaliana
Beta vulgaris

S. lycopersicum

N. tabacum

A. thaliana

A. thaliana

A. thaliana

S. lycopersicum

S. tuberosum

H. vulgare

G. max

Z. mays

0. sativa

Helicoverpa armigera,
Myzus persicae

Phthorimaea
operculella, M.
persicae

Bradysia spp., Pissodes
strobi

Chilo suppressalis

C. suppressalis

Bemisia tabaci
(W250 promoter), M.
persicae (A360 and
A080 promoters)

M. incognita
M. incognita
Heterodera schachtii

Globodera
rostochiensis

H. glycines, M.
incognita, H.
schachtii, G. tabacum
H. schachtii

M. incognita

M. incognita

M. incognita
G. pallida, M.
Jjavanica,

Blumeria graminis

f. sp hordei B.
graminis f. sp tritici,
Rhynchosporium
secalis

Phytophthora sojae,
Phytophthora capsici

Rhizoctonia solani

Magnaporthe oryzae

GUS

GUS/GFP

GUS

GUS

GUS

GUS

GUS
GUS
GUS
GUS

GUS

GUS

GUS

GUS

GUS
GUS

GUS

GUS

GUS/GFP

GUS

Pandey et al. (2019)

Perera & Jones (2004)

Godard et al. (2007)

Li et al. (2020)

Hua et al. (2007)

Dubey et al. (2018)

Escobar et al. (2003)
Kumar et al. (2016)
Thurau et al. (2003)

Wisniewska et al.
(2013)

Wang et al. (2007)

Puzio et al. (2000)

Sukno et al. (2006)

Mitchum et al. (2004)

Escobar et al. (1999)
Hansen et al. (1996)

Himmelbach et al.
(2010)

Chai et al. (2013)

Yang et al. (2017b)

Vijayan et al. (2015)
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Table 3. Continued...

Gene (s) Promoter (s) Source of the Insect/Pathogen Reporter gene Ref.
promoter responsible for the
induction
senescence-associated  SAG12 promoter, A. thaliana Botrytis cinerea GUS Swartzberg et al.
gene (SAG12, SAG13) SAG13 promoter (SAG12 and SAG13 (2008)
promoters),
Trichoderma
harzianum T39S
(SAG13 promoter)
phenylalanine PAL1 promoter A. thaliana Peronospora parasitica GUS Mauch-Mani &
ammonia-lyase 1 gene Slusarenko (1996)
(PALT)
osmotin-like protein OSML13 promoter, Solanum commersonii P, infestans GUS Zhu et al. (1995)
gene (OSML13, pOSML81 promoter
OSML8T)
puroindoline-a gene PinA promoter T. aestivum Magnaporthe grisea GUS Evrard et al. (2007)
(PinA)
OsNAC6 gene OsNAC6 promoter O. sativa M. grisea GUS Nakashima et al.
(2007)
prp1-1 gene prp1-1 promoter S. tuberosum P. infestans GUS Hahn & Strittmatter
(1994)
Pgst1 gene Pgst1 promoter S. tuberosum Erwinia amylovora, GUS Malnoy et al. (2006)
Venturia inaequalis
ACC oxidase - LEACO1T ~ LEACO1 promoter S. lycopersicum Tobacco mosaic virus GUS Blume & Grierson
gene (TMV), Cladosporium (1997)
fulvum, Powdery
mildew
plastid lipid- ChrC promoter C. sativus Sphaerotheca GUS Leitner-Dagan et al.
associated protein fuliginea (Oidium sp.) (2006)
ChrC gene
defensin PDF1.2 gene PDF1.2 promoter A. thaliana Alternaria GUS Manners et al. (1998)
brassicicola, B.
cinerea
anionic peroxidase tap1 promoter, tap2 S. lycopersicum Fusarium solani f. GUS Mohan et al. (1993)
gene (tap1, tap2) promoter sp. pisi
calmodulin methyl At4935987 promoter, A. thaliana Peronospora tabacina GUS/GFP Banerjee et al. (2013)
transferase gene At4935985 promoter
(At4935987),
senescence associated
gene (At4935985)
proteinase inhibitor- win3. 12T promoter Hybrid poplar (Populus F. solani GUS Yevtushenko et al.
like gene (win3.12) trichocarpa x Populus (2004)
deltoides)
calmodulin isoform-4 GmCaM-4 promoter G. max Pseudomonas syringae GUS Park et al. (2009)
gene (GmCaM-4) pv. Tabaci
acid-O- COMTII promoter N. tabacum TMV, Phytophthora GUS Toquin et al. (2003)
methyltransferase of parasitica var.
class Il gene (COMTII) nicotianae
CAPIP2 gene CAPIP2 promoter Capsicum annuum P. syringae pv. tabaci GUS Lee et al. (2007)
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Table 3. Continued...

Gene (s) Promoter (s) Source of the Insect/Pathogen Reporter gene Ref.
promoter responsible for the
induction
hypersensitivity hsr203J promoter, N. tabacum E. amylovora GUS Malnoy et al. (2003)
related gene 5gd24 promoter (str246C and hsr203J
(hsr203J), sensitivity promoters), P.
related gene (str246C) syringae pv. tabaci
(str246C promoter), P.
syringae pv. syringae
(str246C and hsr203J
promoters)
basic B-1,3-glucanase gg(b50 promoter N. tabacum TMYV, potato virus GUS Livne et al. (1997)

gene

acidic 1,3-B-glucanase  gluB promoter S. tuberosum
gene (gluB)

acidic B-1,3-glucanase ~ PR-2d promoter N. tabacum
gene (PR-2)

Pathogenesis-related PR-1a promoter N. tabacum
protein of group 1

gene (PR-1)

gf-2.8 germin gene gf-2.8 promoter T. aestivum

Y (PVY), cucumber
mosaic virus (CMV)

TMV, P. infestans GUS Mac et al. (2004)

TMV GUS Hennig et al. (1993)
TMV GUS Strompen et al. (1998)
TMV GUS Berna & Bernier (1999)

with B. graminis f. sp. hordei and Rhynchosporium secalis
demonstrated robust induction of GUS expression in leaves
upon infection. In addition, high induction of GUS expression
was observed in transgenic wheat plants that were generated
through a transient expression system after inoculation with
B. graminis f. sp. tritici and hordei (Himmelbach et al., 2010).

The soybean polyphenol oxidase 12 gene (GmPPO12)
promoter is strongly induced by the oomycetes P. sojae and P.
capsici. Transient expression assays in Nicotiana benthamiana
showed 8.2- and 10.8-fold increase in GUS activity levels upon
P. capsici infection at 0.5 and 2 h, respectively. Additionally,
high GUS activity was demonstrated in stable transgenic
soybean hairy roots following P. sojae infection (Chai et al.,
2013). Likewise, the inducible activity of the poplar Win3. 12T
promoter (Yevtushenko et al., 2004), A. thaliana PAL1 and
PDF1.2 promoters (Mohan et al., 1993; Mauch-Mani &
Slusarenko, 1996), T. aestivum PinA promoter (Evrard et al.,
2007), O. sativa OsNAC6 promoter (Nakashima et al., 2007),
Solanum tuberosum Prp1 promoter (Hahn and Strittmatter
1994) and S. lycopersicum LEACO1 promoter (Blume &
Grierson, 1997) under fungal infection has also been reported.

Yang et al. (2017a) reported that engineered rice lines
expressing the GUS reporter gene under the control of the
GRMZM2G 174449 promoter isolated from maize, whose gene
responds to R. solani infection, exhibited a 3-fold increase
in GUS activity in leaves after 8 h of inoculation with the
fungus (Yang et al., 2017a). Another study demonstrated that
transgenic soybean plants expressing GFP under the control of
soybean chitinase gene promoter in Phakopsora pachyrhizi-
challenged plants exhibited GFP fluorescence around fungal
appressorium 24 and 72 h post-infection (Cabre et al., 2021).

Genetic constructs harboring the maize proteinase
inhibitor and the potato carboxypeptidase inhibitor genes
under the control of the wound- and pathogen-inducible
Mpi promoter from maize were used to transform rice.
Subsequently, evaluation of the transgenic plants indicated
increased resistance to the insect-pest C. suppressalis and
the fungus M. oryzae without penalty to the plant phenotype
(Quilis et al., 2014). This study exemplifies how inducible
promoters hold great potential for the development of
insect-pest- and disease-resistant plants.

cis-acting co-incident elements in soybean
promoters from genes responsible for
broad-spectrum biotic stress conditions: new
perspectives for synthetic promoter design

Gene stacking for broad-spectrum resistance is expected
to be applied in the development of transgenic plants to
improve the agronomic performance of important crops (Guo
2021). However, despite considerable efforts to identify and
characterize new promoters for soybean genetic engineering,
the availability of effective inducible promoters is far from
satisfactory, and it will be worthwhile to continue exploring
such promoters for use not only in plant research, but also
in commercial transgenic plants.

To identify putative cis-regulatory elements (CREs)
commonly found in soybean gene promoters related to biotic
stress, we selected 50 top-list upregulated genes using six
transcriptome-wide expression data in which soybean was
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subjected to several pests, including: one virus (Soybean
Mosaic Virus - SMV - (Zhang et al., 2019), two caterpillars
(H. armigera and Lamprosema indicate - (Wang et al., 2017;
Zeng et al., 2017), two fungi (Sclerotinia Sclerotiorum and
Fusarium oxysporum - (Chang et al., 2019; Ranjan et al.,
2019), and one nematode (M. javanica) (Beneventi et al.,
2013). The gene list and their respective annotations are
shown in Supplementary Table S1. The promoter sequence of
each biotic stress-related gene was identified and downloaded
from the soybean genome (G. max - Wm82.a2.v1), available
on Phytozome v13 (https://phytozome-next.jgi.doe.gov/).
A motif search was performed by the in silico tool PLACE
(https://www.dna.affrc.go.jp/PLACE/?action=newplace),
taking 2.0 Kb of regulatory sequences upstream of the
predicted Transcription Start Site (TSS). A Venn analysis
(http://bioinformatics.psb.ugent.be/webtools/Venn/) was
performed with all putative regulatory motifs identified by
the PLACE analyses, in order to identify CREs common across

to all evaluated promoter sequences. To identify the over-
represented transcription factor (TF) families, considering
all 50 soybean promoters, we used the PlantPAN database
v3.0 (http://plantpan.itps.ncku.edu.tw/). The list of CREs
and respective TFs is presented in Table 4.

We found 22 co-occurring CREs in all the promoters
evaluated, including regulatory motifs related to basal or
light-regulated expression in plants, such as CAATBOX1 (5’-
CAAT-3’), CCAATBOX1 (5’-CCAAT-3’), GATABOX (5’-GATA-
3’), IBOX (5’-GATAA-3’), and TATABOX5 (5’-TTATTT-3’).
In addition, 15 of the 22 CREs screened in the promoter of
the 50 biotic stress-related soybean genes were linked to
tissue-specific activity and several stimuli or stress responses,
as phytohormonal responses, dehydration response, or fungal
elicitor activation (Table 4).

Interestingly, a recent study using 13 genes acting as a
protein phosphatase 2A (PP2A)-related hub in A. thaliana,
co-expressed under several abiotic stress conditions (cold,

Table 4. Relevant cis-elements commonly present in the promoter sequences of 50 biotic stress-related genes in soybean.

Motif name Consensus sequence’ TF family Activity References
ARR1AT NGATT ARR1 Cytokinin response Sakai et al. (2000)
Ross et al. (2004)
CACTFTPPCA1 YACT Mesophyll specific Gowik et al. (2004)
Wang et al. (2015)
DOFCOREZM AAAG Dof Carbon metabolism Yanagisawa (2000)
and stress responses
TAAAGSTKST1 TAAAG Dof Guard-cell specific Plesch et al. (2001)
EBOXBNNAPA CANNTG bHLH/MYB Seed-specific Stalberg et al. (1996)
Hartmann et al. (2005)
GT1CONSENSUS GRWAAW GT1-like Seed-specific, SA- and  Terzaghi & Cashmore
light-responses (1995)
Buchel et al. (1999)
GT1GMSCAM4 GAAAAA GT1-like Fungal-elicitors and Park et al. (2004)
salt responses
GTGANTG10 GTGA Pollen-specific Rogers et al. (2001)
Bate & Twell (1998)
POLLEN1LELAT52 AGAAA Pollen-specific Filichkin et al. (2004)
MYCCONSENSUSAT CANNTG bHLH Dehydration and ABA Abe et al. (2003)
response
ATATT Root-specific Elmayan & Tepfer
(1995)
WBOXATNPR1 TTGAC WRKY Salicylic acid response  Yu et al. (2001)
and disease resistance
WBOXHVISO1 TGACT WRKY Sugar metabolism Sun et al. (2003)
WBOXNTERF3 TGACY WRKY Wounding response Nishiuchi et al. (2004)
WRKY710S TGAC WRKY Pathogenesis-related Zhang et al. (2004)

and GA responses

This list does not include CREs involved in basal expression or light-regulated responses. (*) R=GorA; Y=TorC; W=AorT; N=A

orTorCorG
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drought, heat, osmotic, genotoxic, salt, and wounding)
identified 16 CREs co-occurring in the promoters of these
13 genes (Khan et al., 2020). A comparative analysis
between 16 CREs found in A. thaliana, with the 22 CREs
screened by our analyses using the promoter sequences
of 50 biotic-stress related soybean genes, revealed the
co-occurrence of 14 CREs in both datasets, including
tissue-specific activity-related motifs (CACTFTPPCA1,
TAAAGSTKST1, EBOXBNNAPA, GT1CONSENSUS, GTGANTG10,
POLLEN1LELAT52 and ROOTMOTIFTAPOX1), carbon or sugar
metabolisms (DOFCOREZM and WBOXHVISO1), phytohormone
response (ARR1AT, MYCCONSENSUSAT, and WRKY710S), biotic
stimulus (GT1GMSCAM4, WBOXATNPR1, and WRKY710S)
or abiotic stimulus (DOFCOREZM, MYCCONSENSUSAT, and
WBOXNTERF3). Considering the frequency of CREs in each
promoter of the 50 biotic stress-related soybean genes
and their specific trans-acting TFs, we observed an over-
representation of regulatory motifs that act as binding sites for
specific TF families, such as MYB, DOF, bHLH, and WRKY, as was
found for co-expressed Arabidopsis genes (Khan et al., 2020);
which may indicate conserved transcriptional regulation and
a crosstalk between pathways required for plant responses
to multiple stresses. The highest occurrence was observed
for WRKY members, the trans-acting factor binding to the
W-box cis-regulatory elements. The WRKY TFs are known
regulators involved in plant defense responses to pathogens,
such as fungi, insects, and nematodes, as well as to abiotic
stresses, such as drought, salinity, wounding, chilling and
heat (Yu et al., 2001; Bencke-Malato et al., 2014; Yang et al.,
2017a; Dhatterwal et al., 2019; Viana et al., 2021).

The identification of trans-acting factors and respective
cis-regulatory motifs regulating the spatial and temporal
activity of a plant promoter sequence is crucial to construct
an effective synthetic promoter. Our data evidenced the
co-occurrence of 14 CREs in 50 biotic stress-related soybean
promoters, also found in 13 co-expressed gene promoters
of stress-responsive Arabidopsis (Khan et al., 2020). Hence,
we suggested that the 14 CREs identified in this study could
be used to construct synthetic promoters with efficient
transcriptional activity.

The basic composition of a synthetic promoter is the core,
also known as the minimal promoter region, and the different
specific cis-elements, where they will synergistically regulate
transgene expression. When designing a synthetic promoter,
the focus should be on the architecture, which means choosing
different positions, nucleotide sequences, combinations,
and amounts of inducible cis-elements (Dey et al., 2015).
Typically, these cis-elements are chosen from other known
sequences, and precedents in the literature, particularly
for biotic stress responses, have reported a considerable
number of engineered promoters responsive to different
pathogens and pathogenesis-related hormones associated
to tissue specificity-associated elements.

Elements such as silencers, insulators, and enhancers,
as well as their combined transcription factors, play an
important role (Spitz & Furlong, 2012). Like native promoters,
synthetics still require appropriate transcriptional activators
and repressors for precise regulation of transgenes (Liu et al.,
2013; Petolino & Davies, 2013). The development of promoter
libraries and the use of other computational tools allow the
design of different cis-regulatory elements for synthetic

promoters and could evolve into an effective way to evaluate
and find new regulatory sequences. In practice, synthetic
promoters not only consent to engineered gene expression
regulation, but also shorten and optimize the length of
constructs, facilitating genetic modification of target
organisms. Most synthetic plant promoters are a precise
combination of well-characterized specific cis-elements and
properly interspaced core motifs (Banerjee et al., 2013; Ali
& Kim, 2019; Kummari et al., 2020). Specific CREs related
to biotic stresses and/or hormones already employed in
synthetic promoters are summarized in Table 5.

Naturally, given the functional and structural conservation
of plant TFs, coupled with predictive bioinformatics
algorithms (upon cis-elements conservation and distribution in
endogenous promoters), and wide data from gene expression
variation in soybean, it is possible to create an integrated
omics pipeline to design genetic constructs precisely focused
on controlling specific pests.

Commercial and patent-protected plant pro-
moters

Ongoing efforts to explore plant promoters for biotechnology
applications have promising implications for developing
optimized crops with stable yield and profitable production.
The vast knowledge accumulated on promoter regulation, as
outlined above, paves the way for precise control of transgene
expression in genetically modified (GM) crops, allowing the
minimization of undesired effects and the exploitation of
new traits to be engineered. Furthermore, the possibility to
control transgene expression spatially and temporally can
have a notable impact on food biosecurity, since transgene
expression can be directed to inedible plant tissues and
towards the development of environmentally friendly GM
crops with less environmental impact, by aiming to improve
insect-pest and disease resistance and reduce the use of
chemical defenses.

The potential role of inducible promoters in these
challenges is highlighted not only by the growing number
of scientific publications, but also by the number of patent
applications. A search for patent applications on the World
Intellectual Property Organization (WIPO) PatentScope
database from 2011 to April 2021, using different combinations
of keywords and logical operators adopted, are presented in
Supplementary Table S2. This search disclosed 2,347 patent
applications related to constitutive promoters in plants, all
filed by biotechnology companies in 18 countries (Figure 2A).
A similar search for plant promoters induced by biotic
stresses revealed 511 patent applications, most of them
filed by biotechnology companies, with some contributions
from universities, in 11 countries (Figure 2B). Despite the
continuous tendency toward the search for novel plant
promoters, the scenario of commercial transgenic crops
available worldwide seems to go in the opposite direction.

We searched for plant promoters used in commercial
GM varieties of cotton and soybean, considered as the two
major GM eudicot crops grown worldwide, listed in GM
Approval Database of International Service for the Acquisition
of Agri-biotech Applications (ISAAA) (https://www.isaaa.
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Table 5. CREs employed in synthetic plant promoters responsible for different biotic stresses and hormones related.
Nature of the promoter CREs Reference
Pathogen-inducible W- box ((T)TGAC(C/T)) Rushton et al. (2002)
D- box (GGAACC) Shokouhifar et al. (201 1)
GCC box (AGCCGCC)
JERE(AGACCGCC)
DRE (TACCGACAT)
Box S (AGCCACC)
Gst-1 box (S and W boxes)
PR1-motif (ACGTCATAGATGTGGCGGCA Mazarei et al. (2008)
TATATTCTTCAGGACTTTTC) Liu et al. (2011)
SARE (TTCGACCTCC)
JAR (TTCGACCTCC and ACGTG)
ERE (AGCCGCC)
UTP boxes (ATAGAAGAAGAGACCC Romer et al. (2009)
consensus)
SA inducible TGACG motif of F-Sgt promoter Kumar et al. (2012)
Wounding-, JA, and JASE1 (CGTCAATGAA) and JASE2 Xie et al. (2001)
leaf senescence-inducible (CATACGTCGTCAA)
p-coumaric acid (4-CA) H-box (CCTACC(N)7CT) and the G-box Loake et al. (1992)
(CACGTG)
SA/ABA inducible ACGT - Pmec minimal promoter Mehrotra & Mehrotra (2010)
Country Codes
AU Australia
BR Brazil
CA Canada
A B CN China
2100 4 430 I DE Germany
DK Denmark
2070 4 e :Z Europear;::aait:nt Office
FR France
«» 2040 & GB United Kingdom
5 5 4101 IL Israel
T 576, 3 IN India
| L] = 400 L KR Korea (South)
< 1504 B 2’ ] MX Mexico
] € NL Netherlands
.c:"w % 45 - RU Russian Federation
o 100 o SE Sweden
SG Singapore
us United States of America
50 zA South Africa
0 Hl—lmﬁ”'—' 0 y L H W W W WA ——
US EP CN GB KR AU NL SG DE FR IL BR CARU DK IN ZA ES US EP AU GB DE SE CN IN 2ZA MX ES
Priority Country Priority Country

Figure 2. Distribution of patent applications by 1st priority country filed for plant promoters according to WIPO Patentscope, from
2011 to 2021. (A) Data on constitutive plant promoters; (B) Regulated promoters in plants induced by biotic stress.

org/) and in the Biosafety Clearing-House (BCH) database
of Living Modified Organisms (LMOs) (http://bch.cbd.int/)
(Figure 3). Most of the identified promoters are used for

strong constitutive transgene expression, with the exception
of seed-specific promoters of the B-conglycinin a’ subunit
and Kunitz trypsin inhibitor (KTi3) genes of soybean, and
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Figure 3. Promoters applied for the development of commer-
cially approved GM soybean and cotton crops listed in the GM
Approval Database of the International Service for the Acquisition
of Agri-biotech Applications (ISAAA) and in the Biosafety Clear-
ing-House (BCH) database of Living Modified Organisms (LMOs).
P-35S-CaMV, cauliflower mosaic virus 35S promoter; P-h4a748-
ARATH, Arabidopsis thaliana histone H4 gene promoter; P-ubi10-
ARATH, A. thaliana polyubiquitin10 gene promoter; P-TSF1, A.
thaliana elongation factor EF-1a gene promoter; P-Act2, A.
thaliana actin 2 gene promoter; P-34S-FMV, figwort mosaic virus
34S promoter; P-PCSV, peanut chlorotic streak virus promoter;
P-CVMV, cassava vein mosaic virus promoter; P-ubi1-MAIZE,
Zea mays ubiquitin1 gene promoter; P-4ocs_delta_mas-SYNTH,
4ocsAMas2’ synthetic promoter; P-AHAS-TOBAC, N. tabacum
acetohydroxy acid synthase gene promoter; P-mac-1, mac-1
synthetic promoter; P-ACT8-ARATH, A. thaliana actin 8 gene
promoter; P-Ps7s7, subterranean clover stunt virus promoter;
P-AGP, G. hirsutum a-globulin B gene promoter; P-Hsp81-2, A.
thaliana heat shock protein 81-2 gene promoter; P-7Sa-SOYBN,
G. max a’ subunit of B-conglycinin gene promoter; P-AHAS-
ARATH, A. thaliana acetohydroxy acid synthase gene promoter;
P-SAMS, G. max S-adenosyl-L-methionine synthetase gene pro-
moter; P-SCP1-SYNTH, SCP1 synthetic promoter, P-SMP-SYNTH,
synthetic minimal plant promoter; P-rbcS-ARATH, A. thaliana
ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene
promoter; P-KTi3, G. max Kunitz trypsin inhibitor gene promot-
er; P-CMP-CYLCV, Cestrum yellow leaf curling virus promoter;
P-HD4-HELAN, Helianthus annuus homeodomain-leucine zipper
4 gene promoter. It was considered promoters driven transgenes
related to major crop traits. Promoters controlling reporter
or selection markers genes and stacked GM events were not
considered. Promoters’ designation was considered according
to the patent register.

the a-globulin B gene of cotton (Jofuku & Goldberg, 1989;
Fujiwara & Beachy, 1994; Sunilkumar et al., 2002). There is a
predominance of the use of plant virus promoters to maximize
gene expression, such as pCaMV35S, figwort mosaic virus
(FMV), cassava vein mosaic virus promoters, among others.
These promoters are sometimes combined with other viral
elements, like the 5’ leader sequences of tobacco etch virus
(TEV) and tobacco mosaic virus (Supplementary Table S3).
In some cases, plant virus promoters are joined to the
5’ elements of plant genes, as in the combination of the
pCaMV35S promoter with the 5’ UTR and transit peptide

of Petunia hybrida chlorophyll a/b-binding protein in GM
GHB119 cotton event (Bayer CropScience) or with the 5’
UTR of P hybrida HSP 70 gene in MON88701 and Bollgard
IITM Monsanto cotton events. The 5’ UTR of the O. sativa
tapetum-specific E1 gene was assembled with pCaMV35S
and pPs7s7 promoter of subterranean clover stunt virus in
T303-3 (Bayer) and T304-40 (BASF) cotton events, respectively.

The synthetic promoters available are modular combinations
of plant virus promoters with enhanced activity, except for the
P-4ocs_delta_mas-SYNTH, which is a modular combination of
mannose synthase gene promoter and octopine synthase gene
enhancers from Ti plasmid from Agrobacterium tumefaciens
(Ni et al., 1995). pmac-1, for example, is a combination of
pCaMV35S and Ti plasmid mannopine synthetase promoters,
showing 3 to 15 times expression of a double pCaMV35S
(Comai et al., 1990). The plant minimal synthetic promoter
(P-SMP-SYNTH), found in the SYHTOH2 soybean event
(Syngenta), includes core sequences from the Cestrum yellow
leaf curling virus and pCaMV35S virus promoters associated
with CaMV and FMV 35S enhancers.

Most of the plant promoters regulating transgene
expression identified in commercial GM soybean and cotton
crops are from well-known constitutive genes, such as those
encoding actin, ubiquitin, histone, elongation factor EF-1a,
and ribulose-1,5-bisphosphate carboxylase. Some of these
promoters were modified with the addition of plant introns,
which are used to enhance transgene expression (Laxa, 2017).
For example, the A. thaliana histone H4 gene promoter
combined with the intron Il of the histone H3 gene was able to
increase gene expression up to 70-fold (Chaubet-Gigot et al.,
2001). This modified promoter is present in the Enlist E3™
(Dow AgroSciences) and FG72 (Bayer CropScience) commercial
GM soybean events and in the GlyTol™ and GHB811 Bayer
CropScience cotton events. Similarly, the maize ubiquitin
intron |, which can enhance up to 5-fold the transgene
expression guided by the ubiquitin promoter (Pan et al., 2016),
was used in the 281-24-236 cotton event (Dow AgroSciences).
Plant promoters are also employed in GM crops combined
with viral elements, such as FMV and CaMV35S enhancers and
TEV 5’ leader sequence (Supplementary Table S3). The Actin
8 promoter, for example, was modified by including an
upstream pCaMV35S enhancer as well as the actin 8 5’ UTR
and intron sequences to drive the 5-enolpyruvylshikimate-
3-phosphate synthase gene in Monsanto Roundup Ready™
Flex™ GM cotton event.

The higher number of patents related to constitutive
promoters, which is a current trend, and the predominance
of GM crops with strong constitutive promoters reflect the
GM traits explored to date. The majority of GM soybean and
cotton events were developed for insect resistance through
the high expression of B. thurigiensis Cry genes or tolerance
to glyphosate and glufosinate-ammonium herbicides by
expressing high levels of 5-enolpyruvylshikimate-3-phosphate
synthase and phosphinothricin N-acetyltransferase genes,
respectively. Few GM events show improved oilseed quality,
such as the altered fatty acid composition in soybean and
reduced gossypol levels in cotton, for which seed-specific
promoters were applied.

Another issue to analyze is the cost and time for the
development and release of a GM event. The entire process,
including event selection, large-scale testing in multiple
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locations, regulatory dossier, and registration affairs, can
take about 10 years with an estimated cost of over US$
2 billion (Schiek et al., 2016). This means that new trends
take a decade to be brought into a biotechnology product.
Also, the high costs of releasing a GM crop, exploring new
traits, sometimes with low economic value products, are
a barrier for non-profit institutions, even though these
institutions are hubs where most of the basic exploratory
research is performed.

Considering all the accumulated information on plant
stress-inducible genes, supported by high-throughput genome
analyses, and the molecular tools for promoter cis-acting
elements identification, some questions can be raised.
Why are research advances on this topic not widely applied
to the development of GM crops? Why is the availability
of effective inducible promoters far from satisfactory?
The establishment of a list of effective promoters for the
introgression of specific traits in GM plants depends strongly
on the knowledge of the reactivity of certain plant genes,
their kinetics and their mode of expression in multiple
situations. Thus, the first step in genetic engineering relies
on the identification of genes whose expression profiles
converge on the characteristics that need to be explored
in GM plants and whose promoters can be employed in
expression cassette design. Functional characterization of
genes in crop plants remains featureless, imposing barriers to
the wide availability of inducible promoters, which justifies
the hallmarked abundance of GM (commercial or not) plants
with transgenes driven by viral promoters. In summary, the
more gene function is known, the more inducible promoters
will be available for molecular plant breeding.

Final remarks

Considerable success has been achieved in the last few
decades on promoters’ characterization and engineering. They
have a direct impact on the molecular selection of plants and
promote the release of new crops. However, several issues
related to transgene expression must be addressed to avoid
compromising crop yield and biosafety. Viral constitutive
promoters remain widely employed to drive the expression
of genes of interest and have provided high transcripts
and protein levels in a large number of plant species. Most
patent-protected transgenic crops have transgene expression
driven by viral constitutive promoters. Nonetheless, the
indiscriminate expression of transgenes in engineered plants
can impose energy costs that affect plant fitness. With
the advancements in the genome and transcriptome-wide
analyses, novel monocot and eudicot constitutive promoters
have been characterized and introduced into model and
crop plants, demonstrating a new way to partially overcome
the typical complications of using viral promoters. Notably,
constitutive plant promoters do not interplay a fine-tuned
control of gene expression and, for specific conditions, still,
impair plant yield. Moreover, most of them do not exhibit
significant expression in specific plant tissues and do not
represent the best choice for improving specific traits, such
as insect-pest and disease controls.

In this light, we reviewed the progress made over the
past 10 years on characterizing inducible plant promoters,
primarily those involved in biotic stress responses. Several
promoters have been described as responsible for insect-pest
attack and applied in constructs encompassing Cry-based
toxins, followed by other promoters responsible for certain
nematodes and fungi species, but more information is still
needed for other pests. A promising alternative is the use of
synthetic promoters harboring cis-acting elements already
characterized in a broad spectrum of promoters from genes
induced by multiple biotic stresses. By revisiting transcriptome
data from soybean subjected to multiple biotic stresses, we
have pointed out several co-incident conserved cis-elements
in promoters of genes responsible to virus, insect, fungi, and
phytonematodes, providing a new set of elements suitable for
promoter design, consistent with elements already described
in previous reports in the literature. Our analyses reinforce
the need to study the function of genes, their expression
profile and the regulatory networks to which they belong,
as an efficient way to obtain basic data for biotechnological
selection.

Finally, genome editing has opened a new era in the
design of synthetic promoters. The CRISPR activation and
CRISPR interference techniques, referred to as CRISPRa/
CRISPRi, occupy an unexplored place in the field of gene
expression control dispensing with the need for cis-
element engineering. In this case, by using a dCas9-based
strategy, a sgRNA molecule is able to direct transcriptional
modulator complexes to a region of a specific promoter,
up- or down-regulating target genes (Lowder et al., 2018;
Roca Paixao et al., 2019; Melo et al., 2020). Collectively,
knowledge over different promoters in different plant systems
coupled with the precise design of synthetic promoters and
CRISPRa/CRISPRi transcriptional modulator complexes can
effectively modernize plant genetic engineering, fueling the
biotechnological goal of successfully expressing multiple
transgenes in a single superior crop with higher productivity
and multiple desirable traits.
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Supplementary material accompanies this paper.
Supplementary Table S1. Dataset of soybean biotic stress-related genes. The 50 soybean genes were selected from 06 transcrip-
tomes of several biotic stresses, including a virus, a phytonematode, different caterpillars, and fungi.

Supplementary Table S2. Search strategy and total patent entries for constitutive plant promoters and regulated promoters in
plants induced by biotic stress in WIPO PatentScope database.

Supplementary Table S3. Soybean and Cotton promoters and transgenes in commercial plants.
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