Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00152024
Biotechnology Research and Innovation Journal
Research paper

In silico screening of anti-Parkinsonian multi-target drugs from natural compounds

Alice Nunes Silva Itturriet, Rafaella Sinnott Dias, Frederico Schmitt Kremer

Downloads: 0
Views: 8

Abstract

Parkinson’s disease (PD), a neurodegenerative condition, manifests with tremors, muscle rigidity, and movement difficulties, primarily in individuals over 60 years old. The exact cause is unknown, but it involves the gradual loss of dopamine-producing neurons in the brain. Current treatments include medications like levodopa and dopaminergic agonists, as well as therapies such as physiotherapy and deep brain stimulation surgery. However, the main challenge of PD lies in managing the disease progression and its adverse effects over time. To address the therapeutic bottleneck of the disease, in silico strategies, such as quantitative structure-activity relationships (QSAR) and molecular docking, are particularly effective. In this study, we employed in silico techniques to identify natural compounds with multi target potential for the treatment of PD. The core computational methodologies employed included molecular docking, which predicted the binding affinities of compounds to key PD-related protein targets, followed by molecular dynamics (MD) simulations to assess the stability of these protein-ligand complexes over time. Crucially, the analysis incorporated comprehensive ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) prediction to evaluate the drug-likeness and pharmacokinetic profiles of potential candidates, with a particular emphasis on their predicted blood-brain barrier permeability, a critical factor for central nervous system (CNS) drugs. The investigation successfully identified several natural compounds with significant potential, notably Luteolin, which exhibited strong predicted multi-target activities. These activities include potent inhibition of Monoamine Oxidase-B (MAO-B), a well-established target for symptomatic relief in PD, alongside predicted antioxidant and anti-inflammatory properties, addressing the neurodegenerative aspects of the disease. Despite promising in silico results, we emphasize the need for experimental validation, such as in vitro and in vivo studies to confirm binding, assess neuroprotective effects, and analyze ADMET properties, advancing these compounds as potential treatments for Parkinson’s disease.

Keywords

Parkinson's Disease; Drug Discovery; Chemoinformatics; Virtual Screening

References

Aarón, R. H., Sheila, C.-M., Julio Emmanuel, G.-P., Oscar, J.-G., Aurelio, L.-M., & Jocksan Ismael, M.-C. (2025). In silico strategies for drug discovery: Optimizing natural compounds from foods for therapeutic applications. Discover Chemistry, 2(1), 133. http:// doi.org/10.1007/s44371-025-00201-3.

Abdel-Wahab, B. F., Abdel-Aziz, H. A., & Ahmed, E. M. (2009). Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)- 4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. European Journal of Medicinal Chemistry, 44(6), 2632-2635. http:// doi.org/10.1016/j.ejmech.2008.09.029. PMid:18995932.

Ahmadi, N., Khoramjouy, M., Movahed, M. A., Amidi, S., Faizi, M., & Zarghi, A. (2024). Design, synthesis, in vitro and in vivo evaluation of new imidazo[1,2-a]pyridine derivatives as cyclooxygenase-2 inhibitors. Anti-cancer Agents in Medicinal Chemistry, 24(7), 504-513. http://doi.org/10.2174/011871520626956323122010 4846. PMid:38275051.

Al-Maharik, N. (2019). Isolation of naturally occurring novel isoflavonoids: An update. Natural Product Reports, 36(8), 1156- 1195. http://doi.org/10.1039/C8NP00069G. PMid:30632588.

Almeida, V. L., Lopes, J. C. D., Oliveira, S. R., Donnici, C. L., & Montanari, C. A. (2010). Estudos de relações estruturaatividade quantitativas (QSAR) de bis-benzamidinas com atividade antifúngica. Química Nova, 33(7), 1482-1489. http:// doi.org/10.1590/S0100-40422010000700011.

Armstrong, M. J., & Okun, M. S. (2020). Diagnosis and treatment of Parkinson disease: A review. Journal of the American Medical Association, 323(6), 548-560. http://doi.org/10.1001/ jama.2019.22360. PMid:32044947.

Balestrino, R., & Schapira, A. (2020). Parkinson disease. European Journal of Neurology, 27(1), 27-42. http://doi.org/10.1111/ ene.14108. PMid:31631455.

Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1), 182-217. http://doi.org/10.1124/pr.110.002642. PMid:21303898.

Bharate, S. S. (2021). Carboxylic acid counterions in FDA-approved pharmaceutical salts. Pharmaceutical Research, 38(8), 1307-1326. http://doi.org/10.1007/s11095-021-03080-2. PMid:34302256.

Biswas, S., Mitra, A., Roy, S., Ghosh, R., & Bagchi, A. (2021). Molecular insight into the mechanism of action of some beneficial flavonoids for the treatment of Parkinson’s disease. bioRxiv. In press. http://doi.org/10.1101/2023.04.21.537830.

Bloem, B. R., Okun, M. S., & Klein, C. (2021). Parkinson’s disease. Lancet, 397(10291), 2284-2303. http://doi.org/10.1016/ S0140-6736(21)00218-X. PMid:33848468.

Boukhatem, M. N. (2017). Flavonoids and diarylheptanoids: Neuroprotective activities of phytochemicals. International Journal of Pharmacology Phytochemistry and Ethnomedicine, 6, 82-86. http://doi.org/10.18052/www.scipress.com/IJPPE.6.82.

Boulaamane, Y., Ibrahim, M. A. A., Britel, M. R., & Maurady, A. (2022). In silico studies of natural product-like caffeine derivatives as potential MAO-B inhibitors/AA2AR antagonists for the treatment of Parkinson's disease. Journal of integrative bioinformatics, 19(4), 20210027. https://doi.org/10.1515/jib-2021-0027

Boulaamane, Y., Touati, I., Goyal, N., Chandra, A., Kori, L., Ibrahim, M. A. A., Britel, M. R., & Maurady, A. (2024). Exploring natural products as multi-target-directed drugs for Parkinson’s disease: An in-silico approach integrating QSAR, pharmacophore modeling, and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 42(20), 11167-11184. http://doi.org/10 .1080/07391102.2023.2260879. PMid:37753798.

Bourque, M., & Di Paolo, T. (2022). Neuroactive steroids and Parkinson’s disease. Current Opinion in Endocrine and Metabolic Research, 22, 100312. http://doi.org/10.1016/j.coemr.2021.100312.

Bourque, M., Morissette, M., & Di Paolo, T. (2024). Neuroactive steroids and Parkinson’s disease: Review of human and animal studies. Neuroscience and Biobehavioral Reviews, 156, 105479. http://doi.org/10.1016/j.neubiorev.2023.105479. PMid:38007170.

Calabresi, P., Mechelli, A., Natale, G., Volpicelli-Daley, L., Di Lazzaro, G., & Ghiglieri, V. (2023). Alpha-synuclein in Parkinson’s disease and other synucleinopathies: From overt neurodegeneration back to early synaptic dysfunction. Cell Death & Disease, 14(3), 176. http://doi.org/10.1038/s41419-023-05672-9. PMid:36859484.

Carradori, S., Ortuso, F., Petzer, A., Bagetta, D., De Monte, C., Secci, D., De Vita, D., Guglielmi, P., Zengin, G., Aktumsek, A., Alcaro, S., & Petzer, J. P. (2018). Design, synthesis and biochemical evaluation of novel multi-target inhibitors as potential antiParkinson agents. European Journal of Medicinal Chemistry, 143, 1543-1552. http://doi.org/10.1016/j.ejmech.2017.10.050. PMid:29126727.

Cerchia, C., Nasso, R., Mori, M., Villa, S., Gelain, A., Capasso, A., Aliotta, F., Simonetti, M., Rullo, R., Masullo, M., De Vendittis, E., Ruocco, M. R., & Lavecchia, A. (2019). Discovery of novel naphthylphenylketone and naphthylphenylamine derivatives as cell division cycle 25B (CDC25B) phosphatase inhibitors: Design, synthesis, inhibition mechanism, and in vitro efficacy against melanoma cell lines. Journal of Medicinal Chemistry, 62(15), 7089-7110. http://doi.org/10.1021/acs.jmedchem.9b00632. PMid:31294975.

Cole, T. J., Short, K. L., & Hooper, S. B. (2019). The science of steroids. Seminars in Fetal & Neonatal Medicine, 24(3), 170- 175. http://doi.org/10.1016/j.siny.2019.05.005. PMid:31147162.

De, S., Kumar, A., Shah, S. K., Kazi, S., Sarkar, N., Banerjee, S., & Dey, S. (2022). Pyridine: The scaffolds with significant clinical diversity. RSC Advances, 12(24), 15385-15406. http://doi.org/10.1039/ D2RA01571D. PMid:35693235.

De-la-Torre, P., Martínez-García, C., Gratias, P., Mun, M., Santana, P., Akyuz, N., González, W., Indzhykulian, A. A., & Ramírez, D. (2024). Identification of druggable binding sites and small molecules as modulators of TMC1. bioRxiv. In press. http:// doi.org/10.1101/2024.03.05.583611.

Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and Python bindings. Journal of Chemical Information and Modeling, 61(8), 3891-3898. http://doi.org/10.1021/ acs.jcim.1c00203. PMid:34278794. EMBL-EBI. (2024). AlphaFold protein structure database. https:// alphafold.ebi.ac.uk/

Eryilmaz, I. E., Erer, S., Zarifoglu, M., Egeli, U., Karakus, E., Yurdacan, B., Cecener, G., Tunca, B., Colakoglu, B., Bora Tokcaer, A., Saka, E., Demirkiran, M., Akbostanci, C., Dogu, O., Kaleagasi, H., Kenangil, G., Cakmur, R., & Elibol, B. (2020). Contribution of functional dopamine D2 and D3 receptor variants to motor and non-motor symptoms of early onset Parkinson’s disease. Clinical Neurology and Neurosurgery, 199, 106257. http:// doi.org/10.1016/j.clineuro.2020.106257. PMid:33039854.

Fu, G., Zhang, W., Du, D., Ng, Y. P., Ip, F. C. F., Tong, R., & Ip, N. Y. (2017). Diarylheptanoids from rhizomes of Alpinia officinarum inhibit aggregation of α-synuclein. Journal of Agricultural and Food Chemistry, 65(31), 6608-6614. http://doi.org/10.1021/ acs.jafc.7b02021. PMid:28707886.

Ganapathy, G., Preethi, R., Moses, J. A., & Anandharamakrishnan, C. (2019). Diarylheptanoids as nutraceutical: A review. Biocatalysis and Agricultural Biotechnology, 19, 101109. http:// doi.org/10.1016/j.bcab.2019.101109. PMid:32288931.

Ghobadian, R., Mahdavi, M., Nadri, H., Moradi, A., Edraki, N., Akbarzadeh, T., Sharifzadeh, M., Bukhari, S. N. A., & Amini, M. (2018). Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities. European Journal of Medicinal Chemistry, 155, 49-60. http:// doi.org/10.1016/j.ejmech.2018.05.031. PMid:29857276. GitHub. (2024). BAMBU tool v2. https://github.com/omixlab/ bambu-v2

Gonzalez-Latapi, P., Bayram, E., Litvan, I., & Marras, C. (2021). Cognitive impairment in Parkinson’s disease: Epidemiology, clinical profile, protective and risk factors. Behavioral Sciences, 11(5), 74. http://doi.org/10.3390/bs11050074. PMid:34068064.

Guidotti, I. L., Neis, A., Martinez, D. P., Seixas, F. K., Machado, K., & Kremer, F. S. (2023). Bambu and its applications in the discovery of active molecules against melanoma. Journal of Molecular Graphics & Modelling, 124, 108564. http:// doi.org/10.1016/j.jmgm.2023.108564. PMid:37453311.

Guidotti, I. L., Goulart, L. M., de Menek, G. L., Furtado, E. G., Martinez, D. P., & Kremer, F. S. (2024). Caramel: A web-based QSAR tool for melanoma drug discovery. Software Impacts, 19, 100623. http://doi.org/10.1016/j.simpa.2024.100623.

Gureev, A. P., & Popov, V. N. (2019). Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochemical Research, 44(10), 2273-2279. http://doi.org/10.1007/s11064- 018-02711-2. PMid:30617864.

Hiremathad, A., Patil, M. R., Chethana, K. R, Chand, K., Santos, M. A., & Keri, R. S. (2015). Benzofuran: An emerging scaffold for antimicrobial agents. RSC Advances, 5(117), 96809-96828. http:// doi.org/10.1039/C5RA20658H.

Horne, R. I., Andrzejewska, E. A., Alam, P., Brotzakis, Z. F., Srivastava, A., Aubert, A., Nowinska, M., Gregory, R. C., Staats, R., Possenti, A., Chia, S., Sormanni, P., Ghetti, B., Caughey, B., Knowles, T. P. J., & Vendruscolo, M. (2024). Discovery of potent inhibitors of α-synuclein aggregation using structure-based iterative learning. Nature Chemical Biology, 20(5), 634-645. http://doi.org/10.1038/ s41589-024-01580-x. PMid:38632492.

Katsoulaki, E. E., Dimopoulos, D., & Hadjipavlou-Litina, D. (2025). Multitarget compounds designed for Alzheimer, Parkinson, and Huntington neurodegeneration diseases. Pharmaceuticals, 18(6), 831. http://doi.org/10.3390/ph18060831. PMid:40573227.

Kong, Q., Zhang, H., Wang, M., Zhang, J., & Zhang, Y. (2021). The TAAR1 inhibitor EPPTB suppresses neuronal excitability and seizure activity in mice. Brain Research Bulletin, 171, 142-149. http:// doi.org/10.1016/j.brainresbull.2021.03.018. PMid:33811954.

Koszła, O., Stępnicki, P., Zięba, A., Grudzińska, A., Matosiuk, D., & Kaczor, A. A. (2021). Current approaches and tools used in drug development against Parkinson’s disease. Biomolecules, 11(6), 897. http://doi.org/10.3390/biom11060897. PMid:34208760.

Křížová, L., Dadáková, K., Kašparovská, J., & Kašparovský, T. (2019). Isoflavones. Molecules, 24(6), 1076. http://doi.org/10.3390/ molecules24061076. PMid:30893792.

Lv, B., Xing, S., Wang, Z., Zhang, A., Wang, Q., Bian, Y., Pei, Y., Sun, H., & Chen, Y. (2024). NRF2 inhibitors: Recent progress, future design and therapeutic potential. European Journal of Medicinal Chemistry, 279, 116822. http:// doi.org/10.1016/j.ejmech.2024.116822. PMid:39241669.

Mao, Akhtar, J., Zhang, X., Sun, L., Guan, S., Li, X., Chen, G., Liu, J., Jeon, H.-N., Kim, M. S., No, K. T., & Wang, G. (2021). Comprehensive strategies of machine-learning-based quantitative structure-activity relationship models. iScience, 24(9), 103052. http://doi.org/10.1016/j.isci.2021.103052. PMid:34553136.

Meng, F., Xi, Y., Huang, J., & Ayers, P. W. (2021). A curated diverse molecular database of blood-brain barrier permeability with chemical descriptors. Scientific Data, 8(1), 289. http:// doi.org/10.1038/s41597-021-01069-5. PMid:34716354.

Moon, & Paek, S. H. (2015). Mitochondrial dysfunction in Parkinson’s disease. Experimental Neurobiology, 24(2), 103-116. http:// doi.org/10.5607/en.2015.24.2.103. PMid:26113789. National Library of Medicine. (2024). PubChem. https:// pubchem.ncbi.nlm.nih.gov/

Parajulee, A., & Kim, K. (2023). Structural studies of serotonin receptor family. BMB Reports, 56(10), 527-536. http:// doi.org/10.5483/BMBRep.2023-0147. PMid:37817438.

Peña-Díaz, S., Pujols, J., Vasili, E., Pinheiro, F., Santos, J., Manglano-Artuñedo, Z., Outeiro, T. F., & Ventura, S. (2022). The small aromatic compound SynuClean-D inhibits the aggregation and seeded polymerization of multiple α-synuclein strains. The Journal of Biological Chemistry, 298(5), 101902. http:// doi.org/10.1016/j.jbc.2022.101902. PMid:35390347.

Pickrell, A. M., & Youle, R. J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 85(2), 257-273. http://doi.org/10.1016/j.neuron.2014.12.007. PMid:25611507.

Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E. (2017). Parkinson disease. Nature Reviews. Disease Primers, 3(1), 17013. http:// doi.org/10.1038/nrdp.2017.13. PMid:28332488.

Prachayasittikul, S., Pingaew, R., Worachartcheewan, A., Sinthupoom, N., Prachayasittikul, V., Ruchirawat, S., & Prachayasittikul, V. (2017). Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini-Reviews in Medicinal Chemistry, 17(10), 869. http://doi.org/10.2174/138955751666 6160923125801. PMid:27670581.

Rajput, A., Sharma, P., Kumar, N., Kaur, S., & Arora, S. (2023). Neuroprotective activity of novel phenanthrene derivative from Grewia tiliaefolia by in vitro and in silico studies. Scientific Reports, 13(1), 2444. http://doi.org/10.1038/s41598-023-29446- 7. PMid:36765125.

Rasool, S., Shomali, T., Truong, L., Croteau, N., Veyron, S., Bustillos, B. A., Springer, W., Fiesel, F. C., & Trempe, J. F. (2024). Identification and structural characterization of small molecule inhibitors of PINK1. Scientific Reports, 14(1), 7739. http:// doi.org/10.1038/s41598-024-58285-3. PMid:38565869. RCSB. (2024). RCSB Protein Data Bank (RCSB PDB). https:// www.rcsb.org/

Rutigliano, G., Accorroni, A., & Zucchi, R. (2018). The case for TAAR1 as a modulator of central nervous system function. Frontiers in Pharmacology, 8, 987. http://doi.org/10.3389/ fphar.2017.00987.

Sabbir, M. G., Speth, R. C., & Albensi, B. C. (2022). Loss of cholinergic receptor muscarinic 1 (CHRM1) protein in the hippocampus and temporal cortex of a subset of individuals with alzheimer’s disease, Parkinson’s disease, or frontotemporal dementia: Implications for patient survival. Journal of Alzheimer’s Disease, 90(2), 727-747. http://doi.org/10.3233/JAD-220766. PMid:36155524.

Santarsiero, A., Bochicchio, A., Funicello, M., Lupattelli, P., Choppin, S., Colobert, F., Hanquet, G., Schiavo, L., Convertini, P., Chiummiento, L., & Infantino, V. (2020). New synthesized polyoxygenated diarylheptanoids suppress lipopolysaccharideinduced neuroinflammation. Biochemical and Biophysical Research Communications, 529(4), 1117-1123. http:// doi.org/10.1016/j.bbrc.2020.06.122. PMid:32819574.

Saripuddin, M., Suliman, A., Sameon, S. S., & Jorgensen, B. N. (2022). Random undersampling on imbalance time series data for anomaly detection. In MLMI’21: Proceedings of the 2021 4th International Conference on Machine Learning and Machine Intelligence. New York: Association for Computing Machinery. http://doi.org/10.1145/3490725.3490748.

Sharma, R., Kumar, D., Jha, N. K., Jha, S. K., Ambasta, R. K., & Kumar, P. (2017). Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochimica et Biophysica Acta. Molecular Basis of Disease, 1863(1), 324-336. http://doi.org/10.1016/j.bbadis.2016.09.010. PMid:27639832.

Shuai, W., Bu, F., Zhu, Y., Wu, Y., Xiao, H., Pan, X., Zhang, J., Sun, Q., Wang, G., & Ouyang, L. (2023). Discovery of Novel indazole chemotypes as isoform-selective JNK3 inhibitors for the treatment of Parkinson’s disease. Journal of Medicinal Chemistry, 66(2), 1273-1300. http://doi.org/10.1021/acs.jmedchem.2c01410. PMid:36649216.

Silva Rocha, S. F. L., Olanda, C. G., Fokoue, H. H., & Sant’Anna, C. M. R. (2019). Virtual screening techniques in drug discovery: Review and recent applications. Current Topics in Medicinal Chemistry, 19(19), 1751-1767. http://doi.org/10.2174/156802 6619666190816101948. PMid:31418662.

Sun, D. J., Zhu, L. J., Zhao, Y. Q., Zhen, Y. Q., Zhang, L., Lin, C. C., & Chen, L. X. (2020). Diarylheptanoid: A privileged structure in drug discovery. Fitoterapia, 142, 104490. http:// doi.org/10.1016/j.fitote.2020.104490. PMid:32017968.

Suraweera, T., Rupasinghe, H. P. V., Dellaire, G., & Xu, Z. (2020). Regulation of Nrf2/ARE pathway by dietary flavonoids: A friend or foe for cancer management? Antioxidants, 9(10), 973. http:// doi.org/10.3390/antiox9100973. PMid:33050575.

Tolosa, E., Garrido, A., Scholz, S. W., & Poewe, W. (2021). Challenges in the diagnosis of Parkinson’s disease. Lancet Neurology, 20(5), 385-397. http://doi.org/10.1016/S1474-4422(21)00030-2. PMid:33894193.

Tóth, B., Hohmann, J., & Vasas, A. (2018). Phenanthrenes: A promising group of plant secondary metabolites. Journal of Natural Products, 81(3), 661-678. http://doi.org/10.1021/acs.jnatprod.7b00619. PMid:29280630.

Umer, S. M., Shamim, S., Khan, K. M., & Saleem, R. S. Z. (2023). Perplexing polyphenolics: The isolations, syntheses, reappraisals, and bioactivities of flavonoids, isoflavonoids, and neoflavonoids from 2016 to 2022. Life, 13(3), 736. http://doi.org/10.3390/ life13030736. PMid:36983891.

Viegas, F. P. D., Gontijo, V. S., Freitas Silva, M., Ortiz, C. J. C., Reis Rosa Franco, G., Ernesto, J. T., Damasio, C. M., Silva, I. M. F., Campos, T. G., & Viegas, C. (2022). Curcumin, resveratrol and cannabidiol as natural key prototypes in drug design for neuroprotective agents. Current Neuropharmacology, 20(7), 1297-1328. http://doi.org/10.2174/1570159X19666210712152532. PMid:34825873.

Vuletić, V., Rački, V., Papić, E., & Peterlin, B. (2021). A systematic review of Parkinson’s disease pharmacogenomics: Is there time for translation into the clinics? International Journal of Molecular Sciences, 22(13), 7213. http://doi.org/10.3390/ijms22137213. PMid:34281267.

Wang, L., Li, C., & Luo, K. (2024a). Biosynthesis and metabolic engineering of isoflavonoids in model plants and crops: A review. Frontiers in Plant Science, 15, 1384091. http://doi.org/10.3389/ fpls.2024.1384091. PMid:38984160.

Wang, J., Wei, J., Pu, T., Zeng, A., Karthikeyan, V., Bechtold, B., Vo, K., Chen, J., Lin, T. P., Chang, A. P., Corey, E., Puhr, M., Klocker, H., Culig, Z., Bland, T., & Wu, B. J. (2024b). Cholinergic signaling via muscarinic M1 receptor confers resistance to docetaxel in prostate cancer. Cell Reports. Medicine, 5(2), 101388. http://doi.org/10.1016/j.xcrm.2023.101388. PMid:38262412.

Wu, X. F., & Zheng, F. (2017). Synthesis of carboxylic acids and esters from CO2. Topics in Current Chemistry, 375(1), 4. http:// doi.org/10.1007/s41061-016-0091-6. PMid:27957706.

Yi, C., Liu, X., Chen, K., Liang, H., & Jin, C. (2023). Design, synthesis and evaluation of novel monoamine oxidase B (MAO-B) inhibitors with improved pharmacokinetic properties for Parkinson’s disease. European Journal of Medicinal Chemistry, 252, 115308. http:// doi.org/10.1016/j.ejmech.2023.115308. PMid:37001389.

Zhang, P., Liu, Y., Jia, L., Ci, Z., Zhang, W., Liu, Y., Chen, J., Cao, Y., & Zhou, G. (2021). SP600125, a JNK-specific inhibitor, regulates in vitro auricular cartilage regeneration by promoting cell proliferation and inhibiting extracellular matrix metabolism. Frontiers in Cell and Developmental Biology, 9, 630678. http:// doi.org/10.3389/fcell.2021.630678. PMid:33816478. ZINC. (2024). ZINC database. https://zinc.docking.org/


Submitted date:
12/03/2024

Accepted date:
07/07/2025

68c0794ea95395098b0b3f94 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections