
RESEARCH PAPERS

Biotechnology Research and Innovation, 2025, 9(1): e2025024. https://doi.org/10.4322/biori.00152024

2452-0721/2452-0721 © 2025 Sociedade Brasileira de Biotecnologia. This is an Open Access article distributed under the 
terms of the Creative Commons Attribution-NonCommercial-NoDerivatives license, which permits unrestricted non-com-
mercial use, distribution, and reproduction in any medium provided the original work is properly cited and the work is 
not changed in any 

In silico screening of anti-Parkinsonian multi-target drugs from 
natural compounds

Alice Nunes Silva Itturrieta, Rafaella Sinnott Diasa, Frederico Schmitt Kremera,*

aOmixlab, Bioinformatics Laboratory, Center of Technological Development, Federal University of Pelotas – UFPel, Pelotas, RS, Brazil

Highlights
•	 QSAR models trained for PD targets and BBB permeability using public datasets
•	 Identified 107,825 BBB-permeable compounds and ranked the top 100 using QSAR models
•	 Docking revealed top candidates with multitarget potential against PD targets
•	 The top 10 compounds showed strong binding to multiple key targets for Parkinson’s disease

Received 03 December, 2024; Accepted 07 July, 2025.

KEYWORDS
Parkinson's Disease;
Drug Discovery;
Chemoinformatics;
Virtual Screening.

Abstract: Parkinson’s disease (PD), a neurodegenerative condition, manifests with tremors, muscle rigidity, 
and movement difficulties, primarily in individuals over 60 years old. The exact cause is unknown, but 
it involves the gradual loss of dopamine-producing neurons in the brain. Current treatments include 
medications like levodopa and dopaminergic agonists, as well as therapies such as physiotherapy and deep 
brain stimulation surgery. However, the main challenge of PD lies in managing the disease progression and 
its adverse effects over time. To address the therapeutic bottleneck of the disease, in silico strategies, such 
as quantitative structure-activity relationships (QSAR) and molecular docking, are particularly effective. In 
this study, we employed in silico techniques to identify natural compounds with multi target potential for 
the treatment of PD. The core computational methodologies employed included molecular docking, which 
predicted the binding affinities of compounds to key PD-related protein targets, followed by molecular 
dynamics (MD) simulations to assess the stability of these protein-ligand complexes over time. Crucially, 
the analysis incorporated comprehensive ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) 
prediction to evaluate the drug-likeness and pharmacokinetic profiles of potential candidates, with a 
particular emphasis on their predicted blood-brain barrier permeability, a critical factor for central nervous 
system (CNS) drugs. The investigation successfully identified several natural compounds with significant 
potential, notably Luteolin, which exhibited strong predicted multi-target activities. These activities include 
potent inhibition of Monoamine Oxidase-B (MAO-B), a well-established target for symptomatic relief in 
PD, alongside predicted antioxidant and anti-inflammatory properties, addressing the neurodegenerative 
aspects of the disease. Despite promising in silico results, we emphasize the need for experimental 
validation, such as in vitro and in vivo studies to confirm binding, assess neuroprotective effects, and 
analyze ADMET properties, advancing these compounds as potential treatments for Parkinson’s disease.
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Introduction

Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder in the world. The degeneration 
of dopaminergic neurons in the substantia nigra (SN), 
as well as the intracellular accumulation of the protein 
α-synuclein in the nervous system, forming inclusions known 
as Lewy Bodies are some of the main characteristics of the 
disease (Balestrino & Schapira, 2020). Current projections 
estimate that the global prevalence of Parkinson’s disease 
will rise to about 9 million cases by 2030. Some risk factors 
for this cognitive decline include age, oxidative stress, and 
environmental and genetic factors. Physicians diagnose PD 
through a medical evaluation that confirms at least two of 
the following primary motor symptoms: rigidity, bradykinesia, 
tremor, and postural instability (Gonzalez-Latapi et al., 2021; 
Koszła et al., 2021).

There is still no cure for PD, that is, no therapy is capable 
of inhibiting the progression of the disease, but there are 
several resources available to help control its symptoms 
(Tolosa et al., 2021). Treatment focuses predominantly on the 
dopaminergic pathway. Currently, the gold standard therapy 
for this disease is the dopamine precursor levodopa. Other 
therapies used to manage the pathology include dopamine 
agonists, monoamine oxidase B (MAO-B) inhibitors, catechol-
O-methyltransferase (COMT) inhibitors, and deep brain 
stimulation (DBS), among others (Armstrong & Okun, 2020).

Given the multifactorial nature of PD and the limitations 
of current symptom-based treatments, there is a growing 
interest in identifying compounds that can target multiple 
pathological pathways. The use of in silico methods to 
identify multitarget natural compounds remains limited 
(Aarón et al., 2025). Few studies integrate techniques such as 
QSAR and molecular docking to discover bioactive molecules 
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that target multiple pathways of disease progression. This 
limited exploration slows the development of more effective, 
disease-modifying therapies (Boulaamane et al., 2022).

In vitro and in vivo assays are commonly used in the initial 
identification of new and more effective pharmacotherapies. 
However, the discovery of new therapeutic agents through 
experimental methods is a time-consuming and costly 
process. For this reason, computational methods (in silico) 
are extensively employed, particularly in early stages, such as 
hit identification (Silva Rocha et al., 2019). One of the most 
effective methodologies for drug design and optimization is 
quantitative structure-activity relationship (QSAR) modeling. 
QSAR’s main objective is to build mathematical models that 
can relate chemical structure to the biological activity of 
analogous compounds. In other words, it identifies chemical 
structures that have satisfactory inhibitory effects and low 
toxicity on specific targets (Almeida et al., 2010; Mao et al., 
2021).

Here, we present the development of QSAR models for 
the PD molecular target, along with the virtual screening of 
drugs using these models in combination with other in silico 
methods, aiming to identify molecules with potential activity 
against multiple molecular targets of PD.

Materials and methods

Data acquisition

We obtained the data for this study from multiple public 
databases, which were selected to comprehensively cover 
molecular targets implicated in PD, as well as natural 
compounds for virtual screening. Initially, we retrieved 
bioactivity data against PD-related targets from the PubChem 
BioAssays database (National Library of Medicine, 2024), a 
large repository maintained by the National Institutes of 
Health (NIH) that includes high-throughput screening results. 

Table 1 presents the molecular targets, their associated 
BioAssay IDs, and the number of active and inactive 
compounds evaluated for each target.

To evaluate the ability of compounds to cross the blood-
brain barrier (BBB), we utilized data from the B3DB dataset 
(Meng et al., 2021). Moreover, we downloaded an extensive 
collection of natural compounds in SDF format from the 
ZINC database (ZINC, 2024), encompassing 224,205 different 
molecules.

Each of the molecular targets selected from the 
PubChem BioAssays HTS datasets plays a relevant role in PD 
pathogenesis. The α-Synuclein protein is a known target in 
PD for its contribution to its pathogenesis through anomalous 
conformations that cause cellular dysfunction and neuronal 
death (Calabresi et al., 2023); CDC25B (Cell Division Cycle 
25B) is one of three human phosphatases that play a key role 
in controlling the activation of cyclin-dependent kinases. It 
regulates the entry into mitosis and responses to DNA damage 
checkpoints. Disruptions can lead to cancer and possibly PD 
(Sharma et al., 2017); CHRM1, the Muscarinic Acetylcholine 
Receptor Subtype M1, regulates basal ganglia function and 
motor control. Targeting M1 receptors may help treat motor 
symptoms and cognitive impairments in Parkinson’s disease 
(Sabbir et al., 2022); DRD1 (Dopamine Receptor type 1), 
DRD2 (Dopamine Receptor type 2), and DRD3 (Dopamine 
Receptor type 3) play crucial roles in regulating several 
physiological functions mediated by the neurotransmitter 
dopamine, including the control of voluntary movement, reward 
processes, hormonal regulation and blood pressure. Medications 
that target dopaminergic neurotransmission are widely used 
in the treatment of a variety of neurological disorders, such 
as PD (Eryilmaz et al., 2020); HTR2A (Serotonin 2A Receptor), 
a protein located in the cell membrane that is involved in the 
transmission of serotonin signals in the brain, This serotonin 
receptor is involved in mood, sleep, cognition, and motor 
control. It may be linked to impulsive behavior in PD patients 
(Vuletić et al., 2021); MAPK10/JNK3 (Mitogen-Activated Protein 
Kinase 10/c-Jun N-terminal Kinase 3) is involved in cell signaling 

Table 1. Data obtained from PubChem BioAssays for training of QSAR (Quantitative Structure-Activity Relationship) models for 
Parkinson’s Disease molecular targets.

Molecular Target PubChem BioAssays ID
Number of Compounds

Active Inactive

α-Synuclein 652106 501 362,541

α-Synuclein (gene expression) 1671193 173 135,948

CHRM1 588852 4,555 354,661

DRD1 641 3,413 54,292

DRD2 485358 1,779 333,884

MAPK10 746 366 59,422

Nrf2 624171 1,243 394,692

PINK1 624263 823 396,204

TAAR1 624466 5,374 357,211

TAAR1 651783 1,972 428
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related to apoptosis and neurodegenerative disorders. JNK3 
inhibitors are promissing candidates for Parkinson’s disease 
treatment (Shuai et al., 2023); Nrf2 (Nuclear Factor Erythroid 
2-Related Factor 2) is a protein that plays a crucial role in 
regulating the cellular response to oxidative stress as well as 
other cellular damage, making it a promising therapeutic target 
in several conditions associated with oxidative stress (Gureev 
& Popov, 2019); PINK1 (PTEN-Induced Protein Kinase 1) is a 
mitochondrial protein essential for maintaining mitochondrial 
function. Mutations in PINK1 may lead to hereditary PD, and 
it is a target for therapies aimed at restoring mitochondrial 
function (Pickrell & Youle, 2015). TAAR1 (Trace Amine-
Associated Receptor 1) is a type of neurotransmitter receptor 
present in the central nervous system. This receptor regulates 
monoamine transmission and is a potential target for treating 
neuropsychiatric and neurodegenerative disorders, including 
Parkinson’s disease (Rutigliano et al., 2018).

Model training and validation

The BAMBU tool (GitHub, 2024), developed to train, run, 
and straightforwardly validate QSAR models, was used to 
train specific models for molecular targets of PD based on 
the PubChem BioAssays High-Throughput Screening (HTS) 
datasets (Guidotti et al., 2023, 2024). Additionally, BAMBU was 
used to train models based on the B3DB dataset to evaluate 
which molecules have an affinity to overcome the blood-brain 
barrier (Meng et al., 2021). Due to the imbalanced nature of 
HTS datasets, we employed Random Undersampling for class 
balancing (Saripuddin et al., 2022). All substances were then 
transformed into 1024-bit Morgan Fingerprints, a molecular 
representation that converts chemical substructures into binary 
vectors, enabling classification algorithms to associate these 
characteristics with a target characteristic. The preprocessed 
datasets were randomly split into training (75%) and testing 
(25%) datasets. To train the predictive models, we have 
evaluated different classification algorithms, including Logistic 
Regression (LR), Extremely Randomized Trees (ET), and Gradient-
Boosting Trees (GB). For each molecular target, BAMBU utilized 
the training dataset for both training and hyperparameter 
optimization. Finally, we evaluated the best model for each 
algorithm using the testing datasets to identify the final models.

Analysis with data from natural compounds

To identify potential new medications for PD, the ZINC 
database (ZINC, 2024) was utilized, which indexes a wide 
range of compounds, including natural molecules. Models 
previously trained with the BAMBU tool were used to select 
molecules that demonstrated relevant activity. In this study, 
we downloaded the structures of 224,205 natural compounds 
from ZINC and employed the QSAR models trained using 
BAMBU to score each one. Then, we computed a consensus 
score using the individual probabilities of activity for each 
target and selected the top 100 molecules for further analysis.

Molecular docking

We have utilized the molecular docking software Autodock 
Vina (Eberhardt et al., 2021) to assess the affinity between 

the selected natural compounds and different targets of PD, 
using proteins previously characterized in the literature. The 
structures of these targets were obtained from the Protein Data 
Bank (RCSB, 2024), when experimentally derived structures were 
available, or from AlphafoldDB otherwise (EMBL-EBI, 2024).

From the literature, residues relevant to interaction with 
these targets were identified (Table 2) and used to construct a 
grid box to cover them during the docking process, with a 20 Å 
padding around the binding site. Additionally, for each target, 
100 decoy molecules were randomly selected from the ZINC 
natural compound dataset and used as a negative control for the 
docking analysis. Positive controls were derived from literature 
and include endogenous molecules with known biological 
activity or synthetic inhibitors with well-established activity. 
For the decoy molecules, we calculated a significance threshold 
by considering the mean binding energy minus two standard 
deviations (μ - 2σ). In this analysis, we considered a candidate 
compound with a score below this threshold as a statistically 
rare event and thus a potential hit, as it falls outside the range 
where approximately 95% of non-binding decoys would score, 
assuming a normal distribution (De-la-Torre et al., 2024).

Workflow

An overview of the virtual screening strategy, comprising 
the steps for data collection, QSAR model training, QSAR-
based and molecular docking-based virtual screening, and 
molecular docking positive controls, is presented in Figure 1.

Results

QSAR modelling

The search for targets with potential anti-Parkinson activity 
was conducted using the PubChem BioAssays database (see 
Table 1). The models produced by the BAMBU tool, based 
on the selected targets, were ranked based on the F1 Score 
metric. Table 3 presents the validation results of the best 
models for each target, including the metrics accuracy, 
recall, precision, F1 Score, and ROC AUC.

After the model training and validation stage using the 
BAMBU tool, we employed it in the virtual screening process 
to identify promising molecules. At this stage, the selection 
of substances took into account not only their potential 
effectiveness against PD but also their ability to cross the 
blood-brain barrier. Then, aiming to prospect new drug 
candidates for PD, the previously chosen targets were used 
as filtering criteria for natural compounds obtained from 
the ZINC database. A total of 107,825 molecules from the 
natural compounds dataset were predicted to be able to 
pass the blood-brain barrier and were ranked based on the 
average probability of activity for the molecular targets. We 
have selected the top 100 natural compounds based on the 
average probability of activity computed by the QSAR models.

Molecular docking

The execution of molecular docking was conducted using 
residues derived from the targets, previously identified in the 
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Table 2. Molecular targets used in the molecular docking analysis for the screening of candidate natural compounds with 
multi-target activity against Parkinson’s Disease, including Accession Codes on PDB or Alphafold DB, and the Residues used to 
define the grid-box.

Molecular targets PDB/AlphafoldDB Binding site residues
α-synuclein 1XQ8 Ala30, Val37, Ala56, Val63, Leu38, Thr44, Gly93, Lys97, Val95, Gln99

CDC25B 1QB0 Glu431, Met531, Tyr528, Glu474, Arg479, Phe475, Ser476, Glu478, Ser477, Lys394
CHRM1 5CXV Trp164, Leu167, Val168, Glu170, Leu174, Gln177, Phe182, Ser184, Gln185, Pro186, 

Ile188, Glu397, Trp400, Glu401, Tyr404
DRD1 7CKX Asp103, Ser107, Ser198, Ser202, Phe288, Phe289, Asn292, Trp321
DRD2 6VMS Cys182, Ile183, Phe110, Val111, Asp114, Cys118, Thr119, Ile122, Val190, Ser193, 

Ser197, Trp386, Phe389, Phe390, Tyr408, Ser409, The 412, Tyr416
DRD3 3PBL Tyr365, Phe345, Ile183, His349, Val189, Phe106, Val86, Tyr373, Asp110, Thr369, 

Trp342, Val111, Cys114, Ser196, Phe346, Ser193, Ser192, Val350
HTR2A 6WGT Arg137, Glu318, Trp336, Phe332, Gly369, Ser242, Asp155, Val156, Val235, Phe339, 

Phe340
MAPK10 1JNK Ser30, Glu402, Phe48, Glu397, Leu317, Lys328, Ser217, Thr226, Gly71, Val78, 

Phe209, Leu210, Phe218, Met220
Arg227, Arg230, Tyr223, Thr226, Arg188, Asn194, Asp207, Ala211, Asp189, Asp207, 
Ser40, Ala218, Ser40, Glu402

NRF2 7O7B Arg456, Leu464, Val470 - Asn475, Val478, Lys487, Glu492, Gly505, Ala452, Met484, 
Arg499, Asp500, Arg503, Asn482, Arg456, Ala510, Lys506, Val509, Arg512, Lys518

PINK1 6EQI Ser 65, Ser 228, Ser 230, Tyr 198, Ile 44, Val 70, Gly 47, Thr 305, Arg 282, Asn 283, 
Ala 46, Arg 333, Ser 375, Lys 380, Asp 379, Arg 374, Gln 378, TYr 404

TAAR1 Q96RJ0 Trp89, Asp103, Cys182, Trp264, Phe267, Phe268, Asn286, Trp291, Tyr294

Figure 1. Workflow used for the virtual screening of natural compounds against multiple Parkinson’s Disease molecular targets 
using QSAR and Molecular Docking.
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literature as crucial for the protein’s activity and essential 
for pharmacological action. For this purpose, we created grid 
boxes that covered all selected residues for each target, with 
a 20 Å padding around them. The average docking energy was 
used as a consensus score to rank the compounds and select 
potential multi-target compounds. Table 4 presents the results 
of this phase, where negative values ​​indicate the energy 
resulting from docking. Table 5 includes the docking results 
for the negative (decoy) molecules and positive controls.

Discussion

James Parkinson’s seminal study of “tremulous palsy” remains 
relevant today, with many of the original clinical insights still 
valid. In addition to characteristic motor symptoms such as 
tremors, Parkinson’s disease is now recognized for a range of 
non-motor manifestations including cognitive problems, sleep 
disturbances, and depression. Advances in understanding the 
underlying pathology and neurophysiological mechanisms 
have led to the development of effective therapies such as 
L-DOPA administration and deep brain stimulation. However, 
these therapies are palliative, and the disease continues to be 
progressive and debilitating, highlighting the urgent need for 
research to find ways to slow its progression and identify early 
signs before motor symptoms appear (Balestrino & Schapira, 
2020; Bloem et al., 2021; Poewe et al., 2017).

Using a combination of QSAR modelling and molecular 
docking, we were able to identify molecules with potential 
activity against the molecular targets of PD. The most 
promising molecules are listed below, along with their 
descriptions, mechanisms of action, and relationship to 
Parkinson’s disease.

QSAR modelling

The comprehensive evaluation of predictive models, as 
detailed in Table 3, underscores the performance of the 

QSAR models trained using the BAMBU tool. These targets 
range from neurological components, such as α-Synuclein 
and dopamine receptors (DRD1, DRD2), to essential cellular 
regulators, including MAPK10, Nrf2, and PINK1. We have 
assessed the model’s efficacy using a suite of standard 
classification metrics, including Accuracy, Recall, Precision, 
F1-score, and ROC AUC, which provide a multifaceted 
perspective on its predictive capabilities and robustness 
across various biological contexts. A detailed analysis of 
the results reveals a heterogeneous landscape of model 
performance, contingent on both the specific molecular 
target and the chosen machine learning algorithm. Notably, 
the Logistic Regression (LR) model applied to α-Synuclein 
(gene expression) demonstrated exceptional performance, 
achieving the highest accuracy (78.16%) and F1-score 
(80.41%), alongside a strong ROC AUC (84.13%), indicating its 
particular suitability for this prediction task. Conversely, the 
Nrf2 model, also employing LR, presented a unique scenario 
with an outstanding ROC AUC (85.84%) and near-perfect 
precision (95.37%), yet a significantly lower recall (32.8%). 
Therefore, these results highlight a critical trade-off: while 
the model’s optimistic predictions are highly reliable, it 
concurrently misses a substantial number of actual positive 
instances. Such divergent performances underscore the 
imperative of selecting and optimizing models based on the 
specific objectives and the relative importance of minimizing 
false positives versus false negatives in a given research 
or clinical application. The study further highlights the 
practical application of various machine learning algorithms. 
Extremely Randomized Trees (ET) emerged as a frequently 
deployed algorithm, demonstrating competitive performance 
across multiple targets, including CHRM1, DRD1, DRD2, 
PINK1, and TAAR1, suggesting its broad applicability and 
robustness for diverse biological datasets. These varied 
algorithmic performances, coupled with the target-specific 
nuances, collectively emphasize the need for a thorough, 
context-dependent evaluation when developing and applying 
predictive models in molecular biology, ensuring that the 

Table 3. Results of the evaluation of predictive models trained by the BAMBU tool.

Molecular Target
Pubchem 

BioAssays ID
Algorithm

Accuracy 
(%)

Recall 
(%)

Precision (%)
F1 
(%)

ROC AUC 
(%)

α-Sinucleine 652106 LR 68.53 71.30 64.06 67.49 72.93

α-Sinucleine (gene expression) 1671193 LR 78.16 81.25 79.59 80.41 84.13

CHRM1 588852 ET 68.96 61.65 72.72 66.73 75.35

DRD1 641 ET 67.31 60.10 69.19 64.32 72.78

DRD2 485358 ET 76.63 64.99 83.78 73.2 81.74

MAPK10 746 GB 72.13 69.23 73.26 71.19 78.73

Nrf2 624171 LR 65.27 32.8 95.37 48.82 85.84

PINK1 624263 ET 68.69 66.23 74.38 70.07 74.49

TAAR1 624466 LR 70.75 73.29 69.44 71.31 76.99

TAAR1 651783 ET 63.08 72.92 56.91 63.93 67.88

LR: Logistic Regression; ET: Extremely Randomized Trees; GB: Gradient-Boosting Trees.
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chosen model aligns optimally with the scientific question 
at hand.

Natural compounds as potential targets

The molecular docking results reveal distinct groups of 
drugs based on their primary targets, suggesting diverse 
mechanisms of action for potential therapeutic applications 
in PD. Key targets include dopamine receptors (DRD1, DRD2, 
DRD3), proteins involved in oxidative stress and mitochondrial 
regulation (NRF2, PINK1), as well as other relevant proteins 
such as α-synuclein and MAPK10.

Potential dopamine receptor modulators, such as compounds 
ZINC000015968006, ZINC000015969573, ZINC000002121309, 
ZINC000002117475, and ZINC000828327486, demonstrate 
strong binding affinities to dopamine receptors, particularly 
the D2 receptor (DRD2). These receptors play a crucial 
role in motor control and cognitive function, which are 
significantly affected in PD. For example, ZINC000002121309 
exhibits high binding energy with DRD2 and DRD1, suggesting 
it could modulate dopaminergic signaling pathways. The 
affinity of these compounds for multiple dopamine receptors 
also indicates potential utility in managing the non-motor 
symptoms of PD by providing broader dopaminergic 
modulation.

Compounds such as ZINC000085626058, ZINC000095909830, 
Z I N C 0 0 0 0 0 1 7 9 9 3 4 0 ,  Z I N C 0 0 0 0 1 5 9 6 8 0 0 6 ,  a n d 
ZINC000085567782 are potential modulators of oxidative 
stress and mitochondrial function, exhibiting significant 
affinities for targets like NRF2 and PINK1. These proteins 
are crucial for the cellular response to oxidative stress 
and maintaining mitochondrial health, which is essential 
in preventing PD neuronal death (Pickrell & Youle, 2015). 

ZINC000015968006 and ZINC000085567782, for instance, bind 
strongly to PINK1, suggesting a role in promoting mitochondrial 
quality control and reducing oxidative damage, which are 
crucial in PD pathogenesis (Moon & Paek, 2015).

Drugs targeting protein aggregation and neuroinflammation, 
such as ZINC000085626058 and ZINC000015969573, also 
show promising results. These compounds exhibit binding 
to α-synuclein, a protein that aggregates in the brains of 
patients with PD and plays a key role in disease progression. 
By inhibiting α-synuclein aggregation, these compounds could 
potentially slow or prevent the spread of toxic aggregates 
in the brain, providing a novel approach to PD therapy 
(Horne et al., 2024).

ZINC000085626058 - This compound belongs to the class 
of diarylheptanoids, a class of lipophilic natural compounds 
found in plants, which are distinguished by having two 
aromatic rings connected by a linear aliphatic chain 
composed of seven carbon atoms (Ganapathy et al., 2019), 
and are found in the botanical genera Zingiber, Curcuma, 
Alpinia, Alnus and Myrica. These compounds have gained 
increasing recognition due to their diverse biological and 
pharmaceutical properties, being considered promising as 
therapeutic agents. Its medicinal properties encompass a 
wide range of effects, including anti-inflammatory, antitumor, 
antioxidant, antiestrogenic, and hepatoprotective activities, 
as well as action against leishmaniasis and neuroprotective 
effects (Sun et al., 2020).

A study led by Mohamed Nadjib Boukhatem examines 
the neuroprotective potential of natural compounds found 
in plants, including flavonoids and diarylheptanoids. Some 
proposed biological activities include improvements in brain 
health due to their antioxidant, anti-inflammatory, and 
neuroprotective properties. This study addresses several 

Table 5. Negative and Positive controls used for the docking studies.

Target

Negative Control Binding Energies (kcal/Mol) Positive Control Binding Energies (KCal / Mol)

Reference
mean

standard 

deviation
threshold Molecule Binding Energy

α-Sinuclein -5.99776 1.038920 -8.075599 Synuclean-D -6.036 Peña-Díaz et al. (2022)

CDC25B -6.71143 1.015351 -8.742133 ethyl 3-((3-methoxynaphthalen-

1-yl)amino)benzoate

-6.218 Cerchia et al. (2019)

CHRM1 -4.98297 0.965017 -6.913004 Dicyclomine -6.905 Wang et al. (2024b)

DRD2 -8.78078 1.700788 -12.182355 Dopamine -4.720 Beaulieu & Gainetdinov (2011)

DRD1 -7.05852 1.043366 -9.145252 Dopamine -5.256 Beaulieu & Gainetdinov (2011)

DRD3 -7.96998 1.362163 -10.694307 Dopamine -4.766 Beaulieu & Gainetdinov (2011)

HTR2A -7.14645 1.119327 -9.385104 Serotonin -5.303 Parajulee & Kim (2023)

MAPK10 -6.28831 1.085737 -8.459783 SP600125 -8.308 Zhang et al. (2021)

NFR2 -6.53026 1.091089 -8.712437 ML385 -7.866 Lv et al. (2024)

PINK1 -8.43227 1.478935 -11.390141 PRT062607 -8.364 Rasool et al. (2024)

TAAR1 -7.12747 1.096570 -9.320611 EPPTB -7.946 Kong et al. (2021)

Negative controls are derived from a random sample of 100 natural compounds extracted from the ZINC database (ZINC, 2024), serving as a decoy 
to estimate the mean and standard deviation of the binding energy of natural compounds for the selected targets. Positive controls are molecules 
with activity already demonstrated by experimental methods, and when available, those with usage already approved by the U.S. Food and Drug 
Administration (FDA).



Anti-Parkinsonian multi-targets drugs 9-16

literature reviews. Diarylheptanoids were tested using cell 
lines stressed with oxygen peroxide (H2O2) and glutamate. 
This test mimics the oxidative stress attributed to the 
development of neurodegenerative disorders. A variety of 
plants, such as Girsium setidens, Aster scaber, Passiflora 
actinia, Ginkgo biloba, Acel nikoense, Alnus glutinosa, 
Panax ginseng, Schisandra chinensis, Rehmannia glutinosa, 
Flammulina velutipes, Rhododendron fortune, Morusalba, 
and Carya cathayensis Sarg., have recently been identified 
as containing flavonoids and/or diarylheptanoids that can 
neutralize the neurodegenerative effects of oxidative stress. 
The antioxidant capacity of flavonoids and diarylheptanoids 
is crucial in the search for effective therapies and the 
prevention of diseases, especially Parkinson’s disease. These 
compounds offer new perspectives for the development of 
innovative treatments that target the mechanisms underlying 
neurodegenerative diseases, due to the limitations of current 
therapies (Boukhatem, 2017).

Another study, conducted by Guangmiao Fu et al., 
investigated how diarylheptanoids derived from the rhizomes 
of the plant Alpinia officinarum can interfere with the 
aggregation of the protein α-synuclein, a process associated 
with the progression of neurodegenerative diseases such as 
Parkinson’s. Using laboratory tests and computer simulations, 
the researchers investigated the impact of these compounds 
on the formation of α-synuclein aggregates. The results 
indicated that certain diarylheptanoids have the potential 
to prevent this aggregation, suggesting that they could be 
explored as treatments for neurodegenerative conditions. 
Researchers extracted and purified diarylheptanoids from the 
rhizomes of Alpinia officinarum. They then conducted a series 
of in vitro experiments to investigate how these compounds 
might affect the aggregation of the α-synuclein protein. 
This included aggregation tests, fluorescence spectroscopy 
analysis, and electron microscopy observation to examine 
the formation of α-synuclein aggregates in the presence of 
the diarylheptanoids.

Furthermore, in silico studies were conducted using 
molecular modeling to explore the possible interaction 
mechanisms between the compounds and α-synuclein. As 
a result, they discovered that certain diarylheptanoids 
extracted from Alpinia officinarum can significantly 
reduce the formation of clumps of the protein α-synuclein, 
associated with Parkinson’s disease. Laboratory tests have 
shown a notable reduction in both the quantity and size 
of these clumps in the presence of these compounds. 
Additional analyses confirmed these results, suggesting 
that diarylheptanoids have the potential to be developed 
as therapies to halt the progression of neurodegenerative 
diseases (Fu et al., 2017).

In addition to the cited studies, Anna Santarsiero 
et. al. investigated the potential of new, recently 
synthesized diarylheptanoid polyoxygenates in combating 
neuroinflammation triggered by lipopolysaccharide (LPS). The 
researchers synthesized polyoxygenated diarylheptanoids and 
tested them in in vitro and in vivo experiments to evaluate 
their effect on inflammation. Using microglial cell cultures in 
in vitro experiments and animal models in in vivo experiments, 
the researchers investigated the effects of the compounds 
on both the inflammatory response and brain function. This 
comprehensive approach enabled a thorough analysis of 

the potential of these compounds to mitigate LPS-induced 
neuroinflammation and to gain a better understanding of 
the mechanisms underlying this effect. Following the study, 
polyoxygenated diarylheptanoids demonstrated remarkable 
efficacy in reducing neuroinflammation induced by LPS, both 
in in vitro experiments and in an in vivo model. They were 
able to reduce the production of inflammatory substances. 
Additionally, they demonstrated benefits in preserving brain 
function and reducing histopathological damage, with results 
suggesting that these compounds have therapeutic potential 
for treating neuroinflammatory conditions (Santarsiero et al., 
2020). ZINC000085626058 exhibited strong binding affinities 
across several key targets, including DRD2 (-11.6 kcal/mol), 
DRD3 (-10.2 kcal/mol), HTR2A (-9.0 kcal/mol), and TAAR1 
(-10.1 kcal/mol). Notably, its affinity for DRD2 (-11.6 kcal/
mol) approaches the negative control threshold of -12.18 
kcal/mol. It significantly surpasses the positive control 
Dopamine (-4.72 kcal/mol), suggesting a potent interaction 
with this crucial dopaminergic receptor. Similarly, its binding 
to DRD3 (-10.2 kcal/mol) and HTR2A (-9.0 kcal/mol) is more 
favorable than that of their respective positive controls, 
Dopamine (-4.766 kcal/mol) and Serotonin (-5.303 kcal/mol), 
further supporting its potential for modulating dopaminergic 
and serotonergic pathways. While its binding to α-Synuclein 
(-7.3 kcal/mol) did not meet the stringent negative control 
threshold (-8.076 kcal/mol), it still demonstrated a more 
favorable interaction than the α-Synuclein positive control 
Synuclean-D (-6.036 kcal/mol).

ZINC000095909830 - This compound belongs to the class 
of phenanthrenes and derivatives, an uncommon class 
of aromatic compounds that may be formed during the 
oxidative combination of aromatic rings found in stilbene 
precursor compounds. These compounds are found in a 
wide variety of plants, primarily within the Orchidaceae 
family. Other botanical families, such as Hepaticae, 
Betulaceae, Dioscoreaceae, and Combretaceae, also present 
some varieties of these compounds (Tóth et al., 2018). 
Phenanthrenes exhibit a diverse range of biological effects, 
including antiproliferative activities, antimicrobial properties 
(against viruses, bacteria, and fungi), and functions as anti-
inflammatory, antioxidant, antiallergic, muscle relaxant, and 
anxiolytic agents (Tóth et al., 2018). A study conducted by 
Ankita Rajput et al. investigated the neuroprotective activity 
of a phenanthrene derivative isolated from the Grewia 
tiliaefolia plant, where chemical components were extracted 
from the leaves and roots of the Grewia tiliaefolia plant and 
purified to obtain the desired phenanthrene derivative. The 
chemical structure was determined by analyses such as nuclear 
magnetic resonance spectroscopy and mass spectrometry. 
In vitro tests were conducted on neuronal cells to assess 
the neuroprotective properties of the compound, including 
cell viability assays and analysis of inflammatory cytokine 
expression. In silico studies were conducted to investigate the 
mechanisms of analysis of the phenanthrene derivative, using 
molecular modeling and computer simulation techniques. The 
results obtained in in vitro and in silico studies provide strong 
evidence of the neuroprotective activity of the synthesized 
phenanthrene derivative. This discovery opens the way for the 
development of new therapeutic approaches with significant 
potential in the treatment of neurodegenerative diseases, 
such as Parkinson’s disease. Furthermore, in silico studies 
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were fundamental in elucidating the molecular mechanisms 
underlying the compound’s neuroprotective effect, offering 
crucial insights for the development of more specific and 
effective therapeutic interventions (Rajput et al., 2023).

ZINC000095909830 showed a favorable multi-target binding 
profile in our docking analysis, with a mean binding energy 
of -8.88 kcal/mol. This compound exhibited strong affinities 
for DRD2 (-11.7 kcal/mol) and PINK1 (-11.6 kcal/mol). For 
DRD2, its binding energy of -11.7 kcal/mol is very close to 
the stringent negative control threshold of -12.18 kcal/mol 
and significantly outperforms the positive control Dopamine 
(-4.72 kcal/mol), suggesting a potent interaction. Similarly, 
its affinity for PINK1 (-11.6 kcal/mol) surpasses the negative 
control threshold of -11.39 kcal/mol. It is more favorable than 
the positive control PRT062607 (-8.364 kcal/mol), indicating a 
strong potential for modulating mitochondrial function. While 
its binding to other targets, such as α-Synuclein (-7.4 kcal/
mol), did not reach the decoy threshold, it was still more 
favorable than the α-Synuclein positive control Synuclean-D 
(-6.036 kcal/mol).

ZINC000001799340 - This compound belongs to the class 
of Pyridines and derivatives. They have a six-membered 
heterocyclic ring that contains a nitrogen atom and are 
present in a variety of natural compounds, in addition to being 
used in therapeutic applications, such as niacin (nicotinic 
acid) and Nicotinamide Adenine Dinucleotide (NAD+), playing 
roles such as substrate or cofactor in biological processes 
(Prachayasittikul et al., 2017). Its biological activity is 
extensive, containing antiviral, antibacterial, anticancer, 
antifungal, antidiabetic, antimicrobial, antitubercular, and 
antioxidant action (De et al., 2022). A study conducted by 
Ghobadian et al. (2018) explored the creation and analysis of 
new compounds known as tetrahydrocarbazole benzyl pyridine 
hybrids, designed to act as highly effective and selective 
inhibitors of butyrylcholinesterase (BChE). Furthermore, the 
capability of these compounds to exert neuroprotective and 
β-secretase inhibition activities, both critical therapeutic 
targets in neurodegenerative conditions, was also evaluated. 
Tetrahydrocarbazole-benzyl-pyridine hybrids were synthesized 
and structurally characterized using techniques such as NMR 
spectroscopy and mass spectrometry. They were then tested 
to selectively inhibit BChE and evaluate its neuroprotective 
activity in neuronal cells. In parallel, previous studies also 
evaluated their inhibitory activity on β-secretase, a key 
enzyme associated with Alzheimer’s disease (AD), through 
specific biochemical assays. Although the trial was aimed 
at AD, the researchers concluded that tetrahydrocarbazole 
benzyl pyridine hybrids showed promise as candidates for the 
development of new therapies. The results highlighted the 
remarkable ability of these compounds to selectively inhibit 
BChE, an enzyme related to neurodegenerative disorders such 
as AD, in addition to exhibiting neuroprotective activity in 
neuronal cells, indicating a significant potential in mitigating 
cellular damage associated with neurodegenerative conditions 
(Ghobadian et al., 2018), which could be of great value 
for PD. A recent study conducted by Ahmadi et al. (2024) 
aimed to develop new potent and selective inhibitors of 
cyclooxygenase-2 (COX-2), a central enzyme in the production 
of prostaglandins from arachidonic acid that is associated with 
several pathophysiological conditions, including DP, based on 
imidazo[1,2-a]pyridine derivatives, through a rational design 

process. Furthermore, researchers evaluated the biological 
activities of these compounds, including their COX-2 inhibitory 
effects, analgesic activity, and antiplatelet potential, to 
contribute to the development of more effective and safe 
therapies. The investigations were conducted using molecular 
docking, specifically with the AutoDock Vina software, to 
analyze the interaction of the designed compounds with 
COX-2. A total of 15 synthesized derivatives were obtained 
through a series of five reaction steps. COX-2 inhibitory 
activities were assessed using a Cayman fluorescent kit, 
while analgesic effects were determined using behavioral 
tests, and antiplatelet activity was evaluated using the Born 
method. The results suggest that the developed compounds 
have potential as selective and effective COX-2 inhibitors, 
in addition to demonstrating analgesic and antiplatelet 
effects. These findings could provide important insights to 
advance the development of more effective treatments for 
conditions related to COX-2 activity, such as inflammation 
and pain (Ahmadi et al., 2024).

ZINC000001799340 demonstrated a compelling binding 
profile across multiple PD targets, with an overall mean 
binding energy of -8.89 kcal/mol. This compound exhibited 
powerful interactions with DRD2 (-11.4 kcal/mol) and PINK1 
(-11.6 kcal/mol). Its DRD2 binding affinity of -11.4 kcal/mol, 
while slightly less negative than the -12.18 kcal/mol threshold, 
remains substantially more favorable than the positive control 
Dopamine (-4.72 kcal/mol), indicating a robust interaction. 
More notably, for PINK1, ZINC000001799340 achieved a binding 
energy of -11.6 kcal/mol, which surpasses the negative 
control threshold of -11.39 kcal/mol and is considerably more 
favorable than the positive control PRT062607 (-8.364 kcal/
mol). This strong affinity for PINK1 suggests its potential role 
in mitochondrial quality control. Furthermore, its binding to 
HTR2A (-9.8 kcal/mol) also exceeded the negative control 
threshold of -9.385 kcal/mol and was superior to the positive 
control Serotonin (-5.303 kcal/mol).

Carboxylic acids: ZINC000015968006, 
ZINC000015968013 and ZINC000085567782

Z INC000015968006,  Z INC000015968013,  and 
ZINC000085567782 belong to the class of Carboxylic Acids. 
They have been extensively employed as versatile attachment 
points in modifications and the formation of carbon structures. 
They are a class of organic compounds that contain the 
carboxyl functional group (COOH). They have a wide range 
of applications across various sectors, including the food 
industry, medicine, chemistry, and materials manufacturing 
(Wu & Zheng, 2017).

The functional group of carboxylic acids plays a crucial role 
in the biochemistry of living organisms and the development 
of pharmaceuticals. Several natural substances, such as amino 
acids, triglycerides, and prostanoids, have the carboxyl group. 
Furthermore, this functional group is common in different 
classes of drugs. More than 450 drugs containing carboxylic 
acid have been launched on the market worldwide, ranging 
from non-steroidal anti-inflammatory drugs (NSAIDs) to 
antibiotics, anticoagulants, and cholesterol-lowering statins. 
The ability of the carboxylic group to form hydrogen bonds 
and electrostatic interactions is crucial for its functions in 
drug-target interactions (Bharate, 2021). These compounds 
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demonstrated significant binding affinities to several key PD 
targets. Notably, all four compounds showed exceptionally 
strong binding to DRD2, with energies ranging from -11.0 to 
-11.5 kcal/mol for ZINC000015968006 (-11.0 kcal/mol), 
ZINC000015969573 (-11.3 kcal/mol), ZINC000015968013 
(-11.5 kcal/mol), and ZINC000085567782 (-12.5 kcal/mol). 
For DRD2, the negative control threshold is -12.18 kcal/
mol, and the positive control is Dopamine at -4.72 kcal/mol. 
ZINC000085567782, in particular, achieved an impressive 
-12.5 kcal/mol, surpassing the negative control threshold and 
demonstrating a superior affinity compared to Dopamine. All 
four also showed robust binding to PINK1, with values ranging 
from -11.2 to -12.1 kcal/mol. Specifically, ZINC000015969573 
(-12.1 kcal/mol), ZINC000015968013 (-12.0 kcal/mol), and 
ZINC000015968006 (-11.7 kcal/mol) all surpassed the PINK1 
negative control threshold of -11.39 kcal/mol, and all four 
were more favorable than the positive control PRT062607 
(-8.364 kcal/mol).

Steroids: ZINC000085567782

This compound belongs to the Steroids class. Steroids 
are complex organic molecules formed by four rings that 
perform a wide range of functions in multicellular organisms. 
They are part of the structure of cell membranes, including 
dietary cholesterol, and play multiple regulatory roles, 
acting as internal endocrine hormones through structural 
modifications of cholesterol (Cole et al., 2019). Neuroactive 
steroids, including estrogens, progesterone, and their 
metabolites, play a role in modulating brain functions and 
may influence PD risk and symptoms. PD, primarily idiopathic, 
is more prevalent in men, who experience earlier onset 
and more severe neurodegeneration than women. Evidence 
suggests that ovarian hormones, such as 17β-estradiol 
and progesterone, provide neuroprotective effects on 
dopaminergic neurons, with more prolonged exposure to 
endogenous ovarian hormones associated with reduced PD 
risk. However, the benefits of postmenopausal hormone 
therapy remain inconclusive due to conflicting observational 
studies influenced by various factors. Animal studies support 
the neuroprotective effects of these hormones, including their 
metabolites, which modulate GABAA receptors. Androgens 
have not shown consistent protective or harmful effects in 
PD, though testosterone therapy may benefit energy levels 
and physical function in testosterone-deficient men (Bourque 
& Di Paolo, 2022; Bourque et al., 2024). ZINC000085567782 
exhibited one of the most potent binding profiles among the 
screened compounds, with an overall mean binding energy 
of -9.20 kcal/mol. Its exceptional affinity for DRD2 at -12.5 
kcal/mol not only significantly surpasses the positive control 
Dopamine (-4.72 kcal/mol) but also exceeds the highly 
stringent negative control threshold of -12.18 kcal/mol, 
indicating a particularly strong and favorable interaction 
with this critical receptor. The compound also demonstrated 
compelling binding to PINK1 (-11.2 kcal/mol), a target crucial 
for mitochondrial health, showing an affinity comparable 
to the negative control threshold (-11.39 kcal/mol) and 
more favorable than the positive control PRT062607 (-8.364 
kcal/mol). Furthermore, its binding to DRD3 (-10.7 kcal/
mol) aligns perfectly with the negative control threshold 

of -10.69 kcal/mol and significantly outperforms Dopamine 
(-4.766 kcal/mol).

ZINC000828327486- This compound belongs to the class 
of isoflavonoids, also known as isoflavones, which constitute 
a category of phenolic compounds widely present in plants 
from the Fabaceae family (such as soybeans, chickpeas, and 
red clover). From a structural point of view, isoflavonoids 
have a B ring connected to the C-3 position of the C ring, 
which has a 3-phenylchroman skeleton (Al-Maharik, 2019; 
Křížová et al., 2019). Isoflavonoids have shown antioxidant 
properties due to their ability to neutralize free radicals by 
donating hydrogen atoms from the hydroxyl group linked 
to the benzene ring. This mechanism helps protect against 
damage caused by oxidation and damage to macromolecules, 
leading to a reduction in low-density lipoprotein (LDL) levels 
(Wang et al., 2024a). Additionally, isoflavonoids stimulate 
the activation and expression of antioxidant enzymes such as 
catalase (CAT), superoxide dismutase (SOD) and glutathione 
(GSH), while decreasing the activation and expression 
of hepatic malondialdehyde (MDA) through regulation of 
the Nrf2 and Peroxisome Proliferator-Activated Receptor-
gamma (PPARγ) pathways (Suraweera et al., 2020). A study 
conducted by Biswas et al. (2021) aimed to identify potential 
flavonoids with activity against the Parkin protein, which 
is associated with Parkinson’s disease. To achieve this, the 
researchers obtained Parkin’s crystal structure and performed 
structural modifications to correct the missing residues. They 
then evaluated the stereochemical quality of the modified 
Parkin model, as well as its relationship with the amino 
acid sequence and the three-dimensional structure. This 
approach allowed the identification of potential flavonoids 
with therapeutic potential for PD. In this study, a variety of 
ligand molecules, including baicalein, apigenin, epicatechin, 
chrysin, daidzein, and quercetin, among others, were 
recovered and optimized. These molecules are flavonoids 
recognized for their neuroprotective properties, as reported 
in previous studies. Afterwards, ADMET and Lipinski filtering 
of the selected candidate flavonoids were performed. The 
structure of the Parkin protein was submitted to the CASTp 
server to identify ligand-binding sites within the protein. 
Subsequently, the protein and ligand molecules were prepared 
using Discovery Studio 2.5 to optimize angles and binding 
to the Parkin protein, followed by molecular docking. In 
conclusion, scientists highlight the potential of flavonoids 
as therapeutic agents for Parkinson’s disease, highlighting 
their ability to interact with the Parkin protein. The presence 
of -OCH3 and -OH groups in flavonoid molecules facilitates 
a variety of interactions with Parkin’s amino acid residues, 
contributing to its therapeutic efficacy.

Furthermore, our results suggest that flavonoids may 
protect Parkin against mutations associated with the 
development of PD, potentially slowing its progression. 
However, the exact mechanism by which flavonoids exert their 
effects in Parkinson’s disease requires further investigation. 
However, this research concluded that the therapeutic 
potential of flavonoids in Parkinson’s disease warrants 
further exploration, paving the way for the development 
of new treatment strategies (Biswas et al., 2021). Searches 
carried out in the literature indicate that studies relating 
less common phenolic compounds, such as isoflavonoids and 
neoflavonoids, have not been conducted in depth.
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ZINC000828327486 presented a noteworthy multi-target 
binding profile with a mean binding energy of -9.25 kcal/
mol. This compound demonstrated powerful interactions 
with DRD1 (-9.5 kcal/mol), DRD3 (-10.1 kcal/mol), MAPK10 
(-10.0 kcal/mol), and PINK1 (-11.7 kcal/mol). For DRD1, 
its binding energy of -9.5 kcal/mol surpasses the negative 
control threshold of -9.145 kcal/mol and is considerably more 
favorable than the positive control, Dopamine (-5.256 kcal/
mol). Similarly, for DRD3, its -10.1 kcal/mol affinity, while 
just shy of the -10.69 kcal/mol threshold, still dramatically 
outperforms the positive control Dopamine (-4.766 kcal/
mol). Its interaction with MAPK10 (-10.0 kcal/mol) stands 
out as particularly strong, surpassing the negative control 
threshold of -8.46 kcal/mol and being substantially more 
favorable than the positive control SP600125 (-8.308 kcal/
mol). Furthermore, for PINK1, ZINC000828327486 exhibited 
a binding energy of -11.7 kcal/mol, exceeding the negative 
control threshold of -11.39 kcal/mol and outperforming the 
positive control PRT062607 (-8.364 kcal/mol).

ZINC000002117475 - This compound belongs to the class 
of Neoflavonoids (NFs). They are a notable category of 
flavonoids present in nature, characterized by their distinct 
molecular structure of C6–C3–C6 (4-phenylcoumarin). Although 
they are not commonly found in foods and consumable 
plants, they are widely distributed, occurring in more than 
50 plant species belonging to several botanical families, 
including Fabaceae, Clusiaceae, Leguminosae, Rubiaceae, 
Passifloraceae, Thelypteridaceae, and Polypodiaceae. NFs 
have been associated with a wide range of health benefits, 
exhibiting a diversity of biological activities. These activities 
include actions against osteoporosis, anti-inflammatory 
properties, antimicrobial effect, antiparasitic activity, 
antiandrogenic effects, anti-allergic properties, antioxidant 
capacity, antifungal activity, antidiabetic potential, and 
anticancer effect (Umer et al., 2023).

ZINC000002117475 stands out for its exceptional binding 
affinity to the Dopamine D2 receptor (DRD2) at -12.8 kcal/mol. 
This binding energy is not only significantly more favorable 
than the positive control Dopamine (-4.72 kcal/mol) but also 
surpasses the stringent negative control threshold of -12.18 
kcal/mol, positioning it as one of the most potent DRD2 
binders identified. Beyond DRD2, it also showed strong binding 
to DRD3 (-10.3 kcal/mol), closely approaching the negative 
control threshold (-10.69 kcal/mol) and outperforming the 
positive control Dopamine (-4.766 kcal/mol). Furthermore, 
its affinity for HTR2A (-10.1 kcal/mol) significantly exceeded 
the negative control threshold of -9.385 kcal/mol and was 
much more favorable than the positive control Serotonin 
(-5.303 kcal/mol). The mean binding energy for this compound 
across all targets was -9.33 kcal/mol. While neoflavonoids 
are a less explored class in the context of PD compared to 
other flavonoids, their reported wide range of biological 
activities, including antioxidant and anti-inflammatory 
effects, combined with these outstanding docking results, 
strongly advocate for ZINC000002117475 as a prime candidate 
for further investigation into its therapeutic mechanisms in 
Parkinson’s disease.

ZINC000002121309 - This compound belongs to the 
class of Benzofurans. Benzofurans are heterocyclic 
organic compounds that result from the combination of a 
benzene ring with a furan ring. This class of compounds is 

widespread and is also present in many artificially produced 
pharmaceuticals and agrochemicals. Due to their distinctive 
structure, these compounds have diverse applications in 
both industry and pharmaceuticals (Hiremathad et al., 
2015). Benzofuran-derived compounds bring several benefits 
to human health. They have antifungal, vasodilatory, 
antituberculous, anti-inflammatory, antiprotozoal, 
antioxidant, anticonvulsant, anticancer, anti-HIV, analgesic, 
antiparasitic, lipid-lowering, antidiabetic, antihypertensive, 
antimalarial, anti-Alzheimer’s, hypothermiantarrhythmic 
properties (Abdel-Wahab et al., 2009).

Chao Yi et al. (2023) conducted a study aimed at 
developing, synthesizing, and evaluating new monoamine 
oxidase B inhibitors with improved pharmacokinetic properties 
for the treatment of Parkinson’s disease. To this end, they 
carried out the rational design of the compounds, utilizing 
molecular modeling and structure-activity approaches to 
design compounds with potential MAO-B inhibitory activity 
and ideal pharmacokinetic properties, followed by the 
synthesis of the compounds in the laboratory. Soon after, 
a pharmacological evaluation was conducted, in which 
the synthesized compounds were tested for their selective 
inhibitory capacity against MAO-B. Fifteen compounds were 
tested in comparison to safinamide, a medicine already known 
and used to inhibit MAO-B. For in vivo tests, the compound 
that showed the most benefits was compound 14 (C14), 
indicating that it dose-dependently inhibited MAO-B, and 
had easily crossed the blood-brain barrier within 15 minutes. 
They then concluded that C14 showed a notable inhibition 
of the MAO-B enzyme in the brain of rats. As a result, C14 
demonstrated potential efficacy in ameliorating dopamine 
deficits in the MPTP-induced rat model by significantly 
increasing dopamine levels in the striatum. Furthermore, 
compared with safinamide, C14 exhibited more robust 
anti-Parkinson effects in mouse models of PD. Thus, C14 is 
seen as a promising candidate for drug development in the 
treatment of Parkinson’s disease.

ZINC000002121309 emerged as a top candidate with the 
most favorable mean binding energy of -9.40 kcal/mol across 
the entire panel of PD targets, underscoring its significant 
multi-target potential. This compound exhibited strong 
interactions with DRD1 (-10.1 kcal/mol), DRD2 (-11.9 kcal/
mol), DRD3 (-10.5 kcal/mol), and PINK1 (-11.6 kcal/mol). Its 
DRD1 affinity of -10.1 kcal/mol significantly surpasses the 
negative control threshold of -9.145 kcal/mol and is markedly 
more favorable than the positive control, Dopamine (-5.256 
kcal/mol). Similarly, for DRD2, its binding energy of -11.9 
kcal/mol approaches the negative control threshold of -12.18 
kcal/mol and is far superior to Dopamine (-4.72 kcal/mol). 
For DRD3, its affinity of -10.5 kcal/mol closely aligns with 
the negative control threshold of -10.69 kcal/mol, again 
outperforming Dopamine (-4.766 kcal/mol). Moreover, its 
binding to PINK1 (-11.6 kcal/mol) surpassed the negative 
control threshold of -11.39 kcal/mol and was more favorable 
than the positive control PRT062607 (-8.364 kcal/mol).

Parkinson’s disease multi-target drug discovery

The multifactorial nature of PD, which involves a complex 
interplay of genetic and environmental factors leading to 
dopaminergic neuron loss, α-synuclein aggregation, oxidative 
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stress, and neuroinflammation, has made it clear that single-
target drugs are often insufficient for achieving a profound 
therapeutic effect. The development of multi-target-directed 
ligands has emerged as a promising strategy to address this 
complexity (Katsoulaki et al., 2025).

In recent years, several key molecular target combinations 
have been explored in the quest for effective multi-target 
drugs for PD. A prevalent strategy involves the dual inhibition 
of monoamine oxidase B (MAO-B) and the antagonism of 
the adenosine A2A receptor (Boulaamane et al., 2024). This 
combination is particularly attractive as MAO-B inhibitors can 
increase dopamine levels and may possess neuroprotective 
properties, while A2A antagonists have been shown to 
alleviate motor symptoms. Other successful approaches have 
focused on dual inhibitors of MAO-B and acetylcholinesterase 
(AChE), aiming to address both motor and cognitive deficits 
associated with PD (Carradori et al., 2018). Computational 
methods, including virtual screening and molecular docking, 
have been instrumental in identifying novel compounds, 
and as well used on the prospection of natural compounds 
(Boulaamane et al., 2024).

Our manuscript’s findings align with and expand upon 
the current state-of-the-art in multi-target drug discovery 
for PD. The use of an in silico pipeline, initiated with 
QSAR modeling followed by molecular docking, is a 
contemporary and efficient approach for screening large 
compound libraries. A key strength and novelty of our work 
is the focus on natural products, a rich source of bioactive 
compounds that are increasingly being investigated for 
their therapeutic potential in neurodegenerative diseases. 
Various studies have demonstrated the neuroprotective 
effects of natural compounds like curcumin and resveratrol 
(Viegas et al., 2022), which are known to act on multiple 
pathways including oxidative stress and inflammation. The 
identification of promising candidates from natural sources 
like diarylheptanoids and phenanthrenes contributes to 
the growing body of evidence supporting the use of these 
compounds in PD treatment.

The results presented here compare favorably with 
the existing literature and, in some aspects, offer a more 
comprehensive approach. While many published studies focus 
on dual-target ligands, our identified lead candidates exhibit 
predicted binding affinities across a broader spectrum of key 
PD-related targets, including not only dopaminergic receptors 
(DRD2) but also proteins involved in mitochondrial function 
(PINK1) and oxidative stress (Nrf2). Targeting PINK1 is a 
particularly innovative strategy, as restoring mitochondrial 
quality control is a promising avenue for neuroprotection. This 
broader multi-target profile suggests the potential for a more 
profound disease-modifying effect. For instance, the high 
predicted binding affinities of our top compounds to DRD2 are 
comparable to or exceed those of known inhibitors, while 
their simultaneous predicted interactions with PINK1 and 
α-synuclein represent a more holistic therapeutic strategy 
than many dual-target agents currently under investigation. 
The novelty of the identified chemical scaffolds, combined 
with their promising multi-target profiles, positions our 
findings as a significant contribution to the ongoing search 
for more effective treatments for Parkinson’s disease.

Conclusion

This study employed a computational approach to identify 
natural compounds with multi-target therapeutic potential 
for the treatment of PD. The application of an in silico 
pipeline, integrating QSAR models and molecular docking, 
enabled the screening of a vast library of molecules and 
the identification of 10 lead candidates with promising 
profiles. Among the most promising compounds, notably 
ZINC000002117475 demonstrated an exceptional binding 
affinity for the dopamine D2 receptor (-12.8 kcal/mol), a 
critical target in PD therapy. Furthermore, ZINC000002121309 
exhibited the most favorable mean binding energy across a 
panel of multiple disease targets, suggesting strong multi-
target potential.

The study’s contribution to drug discovery lies in 
demonstrating an effective computational workflow that 
can accelerate the identification of viable candidates from 
natural sources. More importantly, this work points to novel 
chemical classes, such as diarylheptanoids and phenanthrenes, 
as rich sources of bioactive compounds that can serve as 
starting points for the development of disease-modifying 
therapies—an urgent need in the field.

However, despite the encouraging computational results, 
we emphasize the need for experimental validation. The 
identified compounds are promising leads that now require 
rigorous investigation. Subsequent in vitro and in vivo studies 
are an indispensable step to confirm binding affinity, assess 
neuroprotective effects, and determine the pharmacokinetic 
and safety profiles of these candidates, thereby paving 
the way for the development of novel and more effective 
treatments for Parkinson’s disease.
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