Edible macromycetes as an alternative protein source: advances and trends
Walter José Martínez-Burgosa; Diego Ocána; Maria Clara Manzokia; Rafael Novaes Barrosa; Ricardo Vieiraa; Carlos Ricardo Soccola
Abstract
Overcoming the planet’s food crisis is one of the greatest challenges today. The problem is even more acute when we think about the main foods consumed as a source of protein, such as meat, which is widely questioned because of the impacts its production generates. The world requires food that is nutritious, cheap, and has a low environmental footprint. One protein alternative that has been explored and is constantly increasing in production is mushroom biomass (approximately 44 million tons), which has a protein content up to three times higher than meat (up to 82%). It also contains all the essential amino acids and presents antimicrobial, antioxidant, and anti-cancer properties. Among the main species being produced are Lentinula, Pleurotus, Auricularia, Agaricus and Flammulina, which are produced via solid and submerged fermentation. Although mushrooms were first consumed fresh, they have now been developed as counterparts to meat and meat derivatives, such as sausages, pastes, and protein complexes. The aim of this review is to present the technological advances in mushroom production, the different derivatives, and the new trends in mushroom-derived products that are being consumed as alternative proteins.
Keywords
References
Aoki, W., Bergius, N., Kozlan, S., Fukuzawa, F., Okuda, H., Murata, H., Ishida, T. A., Vaario, L. M., Kobayashi, H., Kalmiş, E., Fukiharu, T., Gisusi, S., Matsushima, K. I., Terashima, Y., Narimatsu, M., Matsushita, N., Ka, K. H., Yu, F., Yamanaka, T., Fukuda, M., & Yamada, A. (2022). New findings on the fungal species Tricholoma matsutake from Ukraine, and revision of its taxonomy and biogeography based on multilocus phylogenetic analyses. Mycoscience, 63(5), 197-214. PMid:37090201. http:// doi.org/10.47371/mycosci.2022.07.004.
Aqua-Cultured-Food. (2023). Dive into a delicious obsession with fish-free seafood. https://www.aquaculturedfoods.com/food
AstraZeneca. (2023). Mycoprotein as various meat-cut products. https://www.quorn.com/
Atila, F. (2023). Possibility of safe, easy and lower cost substrate disinfection with chlorine dioxide in Hypsizygus ulmarius cultivation. Scientia Horticulturae, 318, 112139. http://doi. org/10.1016/j.scienta.2023.112139. Ayimbila, F., & Keawsompong, S. (2023). Nutritional quality and biological application of mushroom protein as a novel protein alternative. Current Nutrition Reports, 12(2), 290-307. PMid:37032416. http://doi.org/10.1007/s13668-023-00468-x.
Ayimbila, F., Siriwong, S., Nakphaichit, M., & Keawsompong, S. (2022). In vitro gastrointestinal digestion of Lentinus squarrosulus powder and impact on human fecal microbiota. Scientific Reports, 12(1), 2655. PMid:35173256. http://doi.org/10.1038/ s41598-022-06648-z.
Azeez, S., Pandey, M., Jasmin, M. R., Rachitha, R., Satisha, G. C., Roy, T. K., Chandrashekara, C., & Shivashankara, K. S. (2020). Amino acid profile of eighteen isolates of different edible macrofungal species. Journal of Horticultural Sciences, 15(2), 207-220. http:// doi.org/10.24154/jhs.v15i2.951.
Bakratsas, G., Polydera, A., Nilson, O., Chatzikonstantinou, A. V., Xiros, C., Katapodis, P., & Stamatis, H. (2023a). Mycoprotein production by submerged fermentation of the edible mushroom Pleurotus ostreatus in a batch stirred tank bioreactor using agro-industrial hydrolysate. Foods, 12(12), 2295. PMid:37372506. http://doi.org/10.3390/foods12122295.
Bakratsas, G., Polydera, A., Nilson, O., Kossatz, L., Xiros, C., Katapodis, P., & Stamatis, H. (2023b). Single-cell protein production by Pleurotus ostreatus in submerged fermentation. Sustainable Food Technology, 1(3), 377-389. http://doi. org/10.1039/D2FB00058J.
Barros, L., Cruz, T., Baptista, P., Estevinho, L. M., & Ferreira, I. C. F. R. (2008). Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 46(8), 2742- 2747. PMid:18538460. http://doi.org/10.1016/j.fct.2008.04.030.
Berovic, M., Podgornik, B. B., & Gregori, A. (2022). Cultivation technologies for production of medicinal mushroom biomass. International Journal of Medicinal Mushrooms, 24(2), 1-22. PMid:35446518. http://doi.org/10.1615/ IntJMedMushrooms.2021042445.
Boukid, F. (2021). Plant-based meat analogues: From niche to mainstream. European Food Research and Technology, 247(2), 297-308. http://doi.org/10.1007/s00217-020-03630-9.
Brewery. (2023). Meet the protein brewery, fermentation experts. https://www.theproteinbrewery.nl/
Chan, J. S. L., Barseghyan, G. S., Asatiani, M. D., & Wasser, S. P. (2015). Chemical composition and medicinal value of fruiting bodies and submerged cultured mycelia of caterpillar medicinal fungus Cordyceps militaris CBS-132098 (Ascomycetes). International Journal of Medicinal Mushrooms, 17(7), 649-659. PMid:26559699. http://doi.org/10.1615/IntJMedMushrooms. v17.i7.50.
Chang, S. T. (2008). Overview of mushroom cultivation and utilization as functional foods. In P. C. K. Cheung (Ed.), Mushrooms as functional foods (pp. 1-28). New York: Wiley. http://doi. org/10.1002/9780470367285.ch1.
Chang, S. T., & Wasser, S. P. (2017). The cultivation and environmental impact of mushrooms. Enviromental Science, 1(1), 1-8. http:// doi.org/10.1093/acrefore/9780199389414.013.231.
Chisti, M. Y., & Moo-Young, M. (1987). Airlift reactors: Characteristics, applications and design considerations. Chemical Engineering Communications, 60(1-6), 195-242. http://doi. org/10.1080/00986448708912017.
Colak, A., Faiz, Ö., Sesli, E., & Adresi, Y. (2009). Nutritional composition of some wild edible mushrooms. Turkish Journal of Biochemistry, 34(1), 25-31. http://www.TurkJBiochem.com
Couto, S. R., & Sanromán, M. Á. (2006). Application of solidstate fermentation to food industry - A review. Journal of Food Engineering, 76(3), 291-302. http://doi.org/10.1016/j. jfoodeng.2005.05.022.
Das, A. K., Nanda, P. K., Dandapat, P., Bandyopadhyay, S., Gullón, P., Sivaraman, G. K., McClements, D. J., Gullón, B., & Lorenzo, J. M. (2021). Edible mushrooms as functional ingredients for development of healthier and more sustainable muscle foods: A flexitarian approach. Molecules, 26(9), 2463. PMid:33922630. http://doi.org/10.3390/molecules26092463.
Carvalho, C. S. M., Sales-Campos, C., & Andrade, M. C. N. (2010). Mushrooms of the pleurotus genus: A review of cultivation techniques. Interciencia, 35(3), 177-182.
Deok-Kim, Y., & Kim, Y.-H. (2006). Patent JP 2009538128 A. Meat analog production method using mushroom mycelium, meat analog produced thereby, low calorie substitute meat containing meat analog, meat flavoring agent, and meat flavor enhancer. Tokyo.
Devi Tentu, R., Rocque, N., Radhika, R., & Mahajan, S. (2021). Technological review of fungi for alternative protein applications: An overview of technology development across various fungal platforms and value chain, and scope of fungal industry for alternative protein applications in India. New Delhi: Good Food Institute.
Díez, V. A., & Alvarez, A. (2001). Compositional and nutritional studies on two wild edible mushrooms from northwest Spain. Food Chemistry, 75(4), 417-422. http://doi.org/10.1016/S0308- 8146(01)00229-1.
Dilfy, S. H., Hanawi, M. J., Al-Bideri, A. W., & Jalil, A. T. (2020). Determination of chemical composition of cultivated mushrooms in Iraq with spectrophotometrically and high-performance liquid chromatographic. Journal of Green Engineering, 10(9), 6200-6216.
Done-Properly. (2022). Mico protein for a new era. https://www. doneproperly.co/en/news/what-is-mycoprotein/
Dudekula, U. T., Doriya, K., & Devarai, S. K. (2020). A critical review on submerged production of mushroom and their bioactive metabolites. 3 Biotech, 10(8), 1-12. http://doi.org/10.1007/ s13205-020-02333-y.
Erbiai, E. H., Silva, L. P., Saidi, R., Lamrani, Z., Esteves da Silva, J. C. G., & Maouni, A. (2021). Chemical composition, bioactive compounds and antioxidant activity of two wild edible mushrooms armillaria mellea and macrolepiota procera from two countries (Morocco and Portugal). Biomolecules, 11(4), 575. PMid:33920034. http://doi.org/10.3390/biom11040575.
Feng, Y. L., Li, W. Q., Wu, X. Q., Cheng, J. W., & Ma, S. Y. (2010). Statistical optimization of media for mycelial growth and exo-polysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49(1), 104-112. http://doi.org/10.1016/j. bej.2009.12.002.
Furlani, R. P. Z., & Godoy, H. T. (2007). Nutritional value of edible mushrooms. Food Science and Technology, 27(1), 154-157. http:// doi.org/10.1590/S0101-20612007000100027.
Future-Market-Insights. (2022). Mycoprotein Market Outlook (2022-2032). https://www.futuremarketinsights.com/reports/ mycoprotein-market
Gao, X., Tang, X., Zhao, K., Balan, V., & Zhu, Q. (2021). Biogas production from anaerobic co-digestion of spent mushroom substrate with different livestock manure. Energies, 14(3), 570. http://doi.org/10.3390/en14030570.
Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399), eaam5324. PMid:30026199. http://doi.org/10.1126/science.aam5324.
González, A., Cruz, M., Losoya, C., Nobre, C., Loredo, A., Rodríguez, R., Contreras, J., & Belmares, R. (2020). Edible mushrooms as a novel protein source for functional foods. Food & Function, 11(9), 7400-7414. PMid:32896845. http://doi.org/10.1039/D0FO01746A.
Grand-View-Research. (2023). Alternative protein market size, share & trends analysis report, by product (plant protein, microbebased protein, insect protein), by application (food & beverages, infant formulations, clinical nutrients, animal feed), by region, and segment forecasts 2023-2024. San Francisco. https://www. grandviewresearch.com/industry-analysis/alternative-proteinmarket-report
Gunasekara, N. W., Nanayakkara, C. M., Karunarathna, S. C., & Wijesundera, R. L. C. (2021). Nutritional aspects of three termitomyces and four other wild edible mushroom species from Sri Lanka. Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 48(5). http://epg.science.cmu.ac.th/ejournal/
Hamza, A., Mylarapu, A., Krishna, K. V., & Kumar, D. S. (2024). An insight into the nutritional and medicinal value of edible mushrooms: A natural treasury for human health. Journal of Biotechnology, 381, 86-99. PMid:38181980. http://doi. org/10.1016/j.jbiotec.2023.12.014.
Hawksworth, D. L., & Lücking, R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5(4), 5.4.10. PMid:28752818. http://doi.org/10.1128/microbiolspec.FUNK0052-2016.
Henriques, G. S., Simeone, M. L. F., & Amazonas, M. A. L. A. (2008). In vivo protein quality evaluation of champignon do Brasil. Revista de Nutrição, 21(5), 535-543. http://doi.org/10.1590/ S1415-52732008000500006.
Higgins, C., Margot, H., Warnquist, S., Obeysekare, E., & Mehta, K. (2017). Mushroom cultivation in the developing world: A comparison of cultivation technologies. In Proceedings of the GHTC 2017 - IEEE Global Humanitarian Technology Conference (pp. 1-7). New York: IEEE. http://doi.org/10.1109/GHTC.2017.8239314.
Hur, H. (2008). Chemical Ingredients of Cordyceps militaris. Mycobiology, 36(4), 233-235. PMid:23997632. http://doi. org/10.4489/MYCO.2008.36.4.233.
Jennings, L. (2022). Chipotle Mexican Grill makes first two investments through $ 50 million venture fund. Nation’s Restaurant News. https://www.nrn.com/fast-casual/chipotle- mexican-grillmakes-first-two-investments-through-50-million-venture-fund
Jin, Z. (2020). Patent CN 111771621 A. Method for producing oyster mushroom liquid strain by using compound Sophora flavescens alcohol sediment. China.
Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry, 113(1), 9-16. http://doi.org/10.1016/j. foodchem.2008.07.077.
Kalač, P. (2016). Introduction. In P. Kalač (Ed.), Edible mushrooms (pp. 1-6). Cham: Elsevier. http://doi.org/10.1016/B978-0-12- 804455-1.00001-1.
Kim, Y., & Kim, Y. (2006). Patent KR100762848B1. A method of producing a mycoprotein, a mycoprotein produced thereby, a low-calorie meat substitute, a meat flavor and a meat flavor enhancer made of the same mycoprotein. South Korea.
Kırdök, O., Çetintaş, B., Atay, A., Kale, İ., Akyol Altun, T. D., & Hameş, E. E. (2022). A modular chain bioreactor design for fungal productions. Biomimetics, 7(4), 179. PMid:36412707. http://doi. org/10.3390/biomimetics7040179.
Krishnamoorthi, R., Srinivash, M., Mahalingam, P. U., & Malaikozhundan, B. (2022). Dietary nutrients in edible mushroom, Agaricus bisporus and their radical scavenging, antibacterial, and antifungal effects. Process Biochemistry, 121, 10-17. http://doi. org/10.1016/j.procbio.2022.06.021.
Leong, Y. K., Ma, T. W., Chang, J. S., & Yang, F. C. (2022). Recent advances and future directions on the valorization of Spent Mushroom Substrate (SMS): A review. Bioresource Technology, 344(Pt A), 126157. PMid:34678450. http://doi.org/10.1016/j. biortech.2021.126157.
Letti, L., Vitola, F., Pereira, G., Karp, S., Medeiros, A., Costa, E., Bissoqui, L., & Soccol, C. R. (2018). Solid-state fermentation for the production of mushrooms. In A. Pandey, C. Larroche & C. R. Soccol (Eds.), Current developments in biotechnology and bioengineering (pp. 479-505). Boca Raton: CRC Press. http:// doi.org/10.1201/b15271.
Li, S., Wang, A., Liu, L., Tian, G., Wei, S., & Xu, F. (2018). Evaluation of nutritional values of shiitake mushroom (Lentinus edodes) stipes. Journal of Food Measurement and Characterization, 12(3), 2012-2019. http://doi.org/10.1007/s11694-018-9816-2.
Li, Q., Liu, J., Shang, X., Li, Y., Zhang, L., Li, Z., Jiang, N., Tan, Q., Yu, H., & Song, C. (2021). Characterizing diversity based on the chemical and nutritional composition of shiitake culinarymedicinal mushroom Lentinula edodes (Agaricomycetes) commonly cultivated in China. International Journal of Medicinal Mushrooms, 23(8), 51-64. PMid:34587425. http://doi.org/10.1615/ IntJMedMushrooms.2021039240.
Li, I. C., Chiang, L. H., Wu, S. Y., Shih, Y. C., & Chen, C. C. (2022). Nutrition profile and animal-tested safety of Morchella esculenta mycelia produced by fermentation in bioreactors. Foods, 11(10), 1385. PMid:35626955. http://doi.org/10.3390/foods11101385.
Li, Z., Zhou, Y., Zhao, G., Xu, C., Pan, J., Li, H., & Zou, Y. (2024). Impacts of yield, nutritional value, and amino acid contents during short-term composting for the substrate for Agrocybe aegerita. Horticulturae, 10(3), 234. http://doi.org/10.3390/ horticulturae10030234.
Longvah, T., & Deosthale, Y. G. (1998). Compositional and nutritional studies on edible wild mushroom from northeast India. Food Chemistry, 63(3), 331-334. http://doi.org/10.1016/S0308- 8146(98)00026-0.
Macias González, A. A. M., Crespo Zafra, L. M., Bordons, A., & Rodríguez-Porrata, B. (2022). Pasteurization of agricultural substrates for edible mushroom production. Journal of Microbiology, Biotechnology and Food Sciences, 12(1), e5729. http://doi.org/10.55251/jmbfs.5729.
Madaan, K., Sharma, S., & Kalia, A. (2024). Effect of selenium and zinc biofortification on the biochemical parameters of Pleurotus spp. under submerged and solid-state fermentation. Journal of Trace Elements in Medicine and Biology, 82, 127365. PMid:38171269. http://doi.org/10.1016/j.jtemb.2023.127365.
Manu-Tawiah, W., & Martin, A. M. (1987). Chemical composition of Pleurotus ostreatus mycelial biomass. Food Microbiology, 4(4), 303-310. http://doi.org/10.1016/S0740-0020(87)80004-7.
Manzi, P., Gambelli, L., Marconi, S., Vivanti, V., & Pizzoferrato, L. (1999). Nutrients in edible mushrooms: An inter-species comparative study. Food Chemistry, 65(4), 477-482. http://doi. org/10.1016/S0308-8146(98)00212-X.
Martín, C., Zervakis, G. I., Xiong, S., Koutrotsios, G., & Strætkvern, K. O. (2023). Spent substrate from mushroom cultivation: Exploitation potential toward various applications and value-added products. Bioengineered, 14(1), 2252138. PMid:37670430. http://doi.org/ 10.1080/21655979.2023.2252138.
Meat-Mushroom. (2024). Meat the mushroom secures $150,000 investment from shark tank for mushroom-based vegan bacon. https://vegconomist.com/investments-finance/investmentsacquisitions/meat-the-mushroom-secures-150000-investmentshark-tank-mushroom-based-vegan
Mello, A. F. M., Vandenberghe, L. P. de S., Herrmann, L. W., Letti, L. A. J., Burgos, W. J. M., Scapini, T., Manzoki, M. C., Oliveira, P. Z., & Soccol, C. R. (2024). Strategies and engineering aspects on the scale-up of bioreactors for different bioprocesses. Systems Microbiology and Biomanufacturing, 4(2), 365-385. http://doi. org/10.1007/s43393-023-00205-z.
Mleczek, M., Niedzielski, P., Siwulski, M., Rzymski, P., Gąsecka, M., Goliński, P., Kozak, L., & Kozubik, T. (2016). Importance of low substrate arsenic content in mushroom cultivation and safety of final food product. European Food Research and Technology, 242(3), 355-362. http://doi.org/10.1007/s00217-015-2545-4.
Mleczek, M., Rzymski, P., Budka, A., Siwulski, M., Jasińska, A., Kalač, P., Poniedziałek, B., Gąsecka, M., & Niedzielski, P. (2018). Elemental characteristics of mushroom species cultivated in China and Poland. Journal of Food Composition and Analysis, 66, 168- 178. http://doi.org/10.1016/j.jfca.2017.12.018.
Vetter, J. (1993). Chemische Zusammensetzung von acht eßbaren Pilzarten. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 196(3), 224-227. PMid:8465607. http://doi. org/10.1007/BF01202736.
Mycorena. (2020). Mycolein as a food ingrediente. https://mycorena. com/mycolein
Myco-Technology. (2021). Unleash a culinary force for good good. https://www.mycoiq.com/
Natures-Fynd. (2024). World’s first fungi-based yogurt. https:// www.naturesfynd.com/
Nowakowski, P., Naliwajko, S. K., Markiewicz-Żukowska, R., Borawska, M. H., & Socha, K. (2020). The two faces of Coprinus comatus: Functional properties and potential hazards. Phytotherapy Research, 34(11), 2932-2944. PMid:32462723. http://doi. org/10.1002/ptr.6741.
Oliveira, A. P., & Naozuka, J. (2019). Preliminary results on the feasibility of producing selenium-enriched pink (Pleurotus djamor) and white (Pleurotus ostreatus) oyster mushrooms: Bioaccumulation, bioaccessibility, and Se-proteins distribution. Microchemical Journal, 145, 1143-1150. http://doi.org/10.1016/j. microc.2018.12.046.
Pandey, A., Soccol, C. R., & Larroche, C. (2008). Current developments in solid-state fermentation (1st ed.). Cham: Springer. http:// doi.org/10.1007/978-0-387-75213-6.
Papaspyridi, L., Sinanoglou, V., Strati, I., Katapodis, P., & Christakopoulos, P. (2013). Fatty acid profile of Pleurotus ostreatus and Ganoderma australe grown naturally and in a batch bioreactor. Acta Alimentaria, 42(3), 328-337. http://doi. org/10.1556/AAlim.2012.0006.
Patillo, A. H. (2022). U.S. Patent No. 11,432,574 B2. Enhanced aerobic fermentation methods for producing edible fungal mycelium blended meats and meat analogue compositions. Washington, DC: U.S. Patent and Trademark Office.
Perveen, I., Bukhari, B., Sarwar, A., Aziz, T., Koser, N., Younis, H., Ahmad, Q., Sabahat, S., Tzora, A., & Skoufos, I. (2023). Applications and efficacy of traditional to emerging trends in lacto-fermentation and submerged cultivation of edible mushrooms. Biomass Conversion and Biorefinery. In press. http:// doi.org/10.1007/s13399-023-04694-9.
Petrovska, B. B. (2001). An evaluation of the protein quality of some macedonian edible Boletaceae mushrooms. Macedonian Pharmaceutical Bulletin, 47, 21-26. http://doi.org/10.33320/ maced.pharm.bull.2001.47.004.
Petrovska, B. B., & Bauer Petrovska, B. (2001). Protein fraction in edible macedonian mushrooms. European Food Research and Technology, 212(4), 469-472. http://doi.org/10.1007/ s002170000285.
Prime-Roots. (2023). A fresh slice of something nice. https://www. primeroots.com/
Radović, J., Leković, A., Tačić, A., Dodevska, M., Stanojković, T., Marinković, T., Jelić, Č., & Kundaković-Vasović, T. (2022). Black trumpet, Craterellus cornucopioides (L.) Pers.: Culinary mushroom with angiotensin converting enzyme inhibitory and cytotoxic activity. Polish Journal of Food and Nutrition Sciences, 72(2), 171-181. http://doi.org/10.31883/pjfns/149914.
Rai, M., Mandal, S. C., & Acharya, K. (2007). Quantitative nutritional parameters of Armillaria mellea Quel. Environment and Ecology, 25(1), 178-180. PMid:17489466.
Rasalanavho, M., Moodley, R., & Jonnalagadda, S. B. (2020). Elemental bioaccumulation and nutritional value of five species of wild growing mushrooms from South Africa. Food Chemistry, 319, 126596. PMid:32199145. http://doi.org/10.1016/j. foodchem.2020.126596.
Reyes, R. G., Lopez, L. L. M. A., Kumakura, K., Kalaw, S. P., Kikukawa, T., & Eguchi, F. (2009). Coprinus comatus, a newly domesticated wild nutriceutical mushroom in the Philippines. Agricultural Technology, 5(2), 299-316. http://www.ijat-rmutto.com
Rothmann, C., Rothmann, L., Viljoen, B., & Cason, E. D. (2023). Application of solid-state fermentation using mushrooms for the production of animal feed. Journal of Basic Microbiology, 63(10), 1153-1164. PMid:37452386. http://doi.org/10.1002/ jobm.202300218.
Royse, D. J., Baars, J., & Tan, Q. (2017). Current overview of mushroom production in the world. In C. Z. Diego & A. PardoGiménez (Eds.), Edible and medicinal mushrooms: Technology and applications (pp. 5-13). New York: Wiley. http://doi. org/10.1002/9781119149446.ch2.
Saidi, S., Deratani, A., Belleville, M. P., & Ben Amar, R. (2014). Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Research International, 65, 329-336. http://doi.org/10.1016/j.foodres.2014.09.023.
Salami, A. O., Bankole, F. A., & Olawole, O. I. (2016). Effect of different substrates on the growth and protein content of oyster mushroom (Pleurotus florida). International Journal of Biological and Chemical Sciences, 10(2), 475. http://doi.org/10.4314/ ijbcs.v10i2.2.
Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85(5), 1321-1337. PMid:19956947. http://doi.org/10.1007/ s00253-009-2343-7.
Singh, U., Tiwari, P., Kelkar, S., Kaul, D., Tiwari, A., Kapri, M., & Sharma, S. (2023). Edible mushrooms: A sustainable novel ingredient for meat analogs. EFood, 4(6), e122. http://doi. org/10.1002/efd2.122.
Star-Tribune. (2024). Cargill invests in fungi-based mycoprotein company that makes meat alternatives. https://www.startribune. com/cargill-investment-mycoprotein-fungi-fermentation- enoughalternative-protein/600344069/
Statista. (2023). Total production of mushrooms and truffles worldwide from 2012 to 2021 (in million metric tons). https:// www.statista.com/statistics/1018488/global- mushrooms-andtruffles-production/#:~:text=In%202021%2C%20production%20 volume%20of,44.21%
Stilinović, N., Čapo, I., Vukmirović, S., Rašković, A., Tomas, A., Popović, M., & Sabo, A. (2020). Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom Coprinus comatus. Royal Society Open Science, 7(9), 200900. PMid:33047050. http://doi.org/10.1098/rsos.200900. Stoyanova, M., Lacheva, M., Valchev, N., & Radoukova, D. A. T.
(2020). Amino acids and carotenoids profile of edible mushrooms (Marasmius oreades and Cantharellus aurora). Oxidation Communications, 43(4), 688-698.
Tan, Y., Zeng, N. K., & Xu, B. (2022). Chemical profiles and healthpromoting effects of porcini mushroom (Boletus edulis): A narrative review. Food Chemistry, 390, 133199. PMid:35597089. http:// doi.org/10.1016/j.foodchem.2022.133199.
Tang, Y. J., Zhu, L. W., Li, H. M., & Li, D. S. (2007). Submerged culture of mushrooms in bioreactors: Challenges, current state-of-theart, and future prospects. Food Technology and Biotechnology, 45(3), 221-229.
Teke, A. N., Bi, E., Ndam, L. M., & Kinge, T. R. (2020). Nutrient and mineral contents of wild edible mushrooms from the Kilum-Ijim forest, Cameroon. Nutrition And Food Science Journal, 3(2), 128. http://doi.org/10.5897/AJFS2021.2089.
Torres-Lopez, R. I., & Hepperly, P. R. (1988). Nutritional influences on Volvariella volvacea (Bull. ex. Fr.) Sing, growth in Puerto Rico. I. Carbon and nitrogen 1-2. The Journal of Agriculture of the University of Puerto Rico, 72(1), 19-29. http://doi.org/10.46429/ jaupr.v72i1.6830.
Uzun, Y., Fakultesi, E., & Demirel, K. (2017). Determination of protein and nitrogen fractions of wild edible mushrooms. Asian Journal of Chemistry, 21(4), 2769-2776. https://www.researchgate.net/ publication/289187231
Vandenberghe, L., Pandey, A., Carvalho, J., Letti, L., Woiciechowski, A., Karp, S., Thomaz-Soccol, V., Martínez-Burgos, W., Penha, R., Herrmann, L., Rodrigues, A., & Soccol, C. (2021). Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Systems Microbiology and Biomanufacturing, 1(2), 142-165. http://doi.org/10.1007/ s43393-020-00015-7.
Vetter, J. (1993a). Chemical composition of eight edible mushrooms. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 196(3), 224-227. PMid:8465607. http://doi.org/10.1007/BF01202736.
Vetter, J. (1993b). Data on amino acid concentrations of edible Russula and Agaricus mushroom species. Zeitschrift für LebensmittelUntersuchung und -Forschung, 197(4), 381-384. PMid:8249481. http://doi.org/10.1007/BF01242065.
Viniegra-Gonzàlez, G. (1997). Solid state fermentation: Definition, characteristics, limitations and monitoring. In S. Roussos, B. K. Lonsane, M. Raimbault & G. Vinegra-Gonzalez (Eds.), Advances in solid state fermentation (pp. 5-21). New York: Kluwer Academic Publishers. http://doi.org/10.1007/978-94- 017-0661-2_2.
Wang, M., & Zhao, R. (2023). A review on nutritional advantages of edible mushrooms and its industrialization development situation in protein meat analogues. Journal of Future Foods, 3(1), 1-7. http://doi.org/10.1016/j.jfutfo.2022.09.001.
Wang, Z., Bao, X., Xia, R., Hou, Z., Li, Y., Feng, Y., Pan, S., Wang, Y., Xu, H., Huang, Z., & Xin, G. (2023). Effect of mushroom root fermentation broth on the umami taste and nutrients of Flammulina velutipes. Journal of Future Foods, 3(1), 67-74. http://doi.org/10.1016/j.jfutfo.2022.09.010.
Yamanaka, T., Yamada, A., & Furukawa, H. (2020). Advances in the cultivation of the highly-prized ectomycorrhizal mushroom Tricholoma matsutake. Mycoscience, 61(2), 49-57. http://doi. org/10.1016/j.myc.2020.01.001.
Yang, Y., Zheng, Y., Ma, W., Zhang, Y., Sun, C., & Fang, Y. (2023). Meat and plant-based meat analogs: Nutritional profile and in vitro digestion comparison. Food Hydrocolloids, 143, 108886. http://doi.org/10.1016/j.foodhyd.2023.108886.
Yu, Q., Guo, M., Zhang, B., Wu, H., Zhang, Y., & Zhang, L. (2020). Analysis of nutritional composition in 23 kinds of edible fungi. Journal of Food Quality, 2020, 8821315. http://doi. org/10.1155/2020/8821315.
Yuan, X., Jiang, W., Zhang, D., Liu, H., & Sun, B. (2021). Textural, sensory and volatile compounds analyses in formulations of sausages analogue elaborated with edible mushrooms and soy protein isolate as meat substitute. Foods, 11(1), 52. PMid:35010178. http://doi.org/10.3390/foods11010052.
Zakhary, J. W., El-Mahdy, A. R., Abo-Bakr, T. M., & Tabey-Shehata, A. M. E. (1984). Cultivation and chemical composition of the paddy-straw mushroom (Volvariella volvaceae). Food Chemistry, 13(4), 265-276. http://doi.org/10.1016/0308-8146(84)90090-6.
Zhang, Q., Wu, C., Fan, G., Li, T., & Wen, X. (2017). Characteristics and enhanced antioxidant activity of glycated Morchella esculenta protein isolate. Food Science and Technology, 38(1), 126-133. http://doi.org/10.1590/1678-457x.01917.
Zhou, L. W. (2020). Systematics is crucial for the traditional Chinese medicinal studies and industry of macrofungi. Fungal Biology Reviews, 34(1), 10-12. http://doi.org/10.1016/j.fbr.2019.10.002.
Zhou, S., Tang, Q.-J., Zhang, Z., Li, C.-H., Cao, H., Yang, Y., & Zhang, J.-S. (2015). Nutritional composition of three domesticated culinary-medicinal mushrooms: Oudemansiella sudmusida, Lentinus squarrosulus, and Tremella aurantialba. International Journal of Medicinal Mushrooms, 17(1), 43-49. PMid:25746405. http://doi.org/10.1615/IntJMedMushrooms.v17.i1.50.
Zied, D. C., Pardo, J. E., Tomaz, R. S., Miasaki, C. T., & PardoGiménez, A. (2017). Mycochemical characterization of agaricus subrufescens considering their morphological and physiological stage of maturity on the traceability process. BioMed Research International, 2017, 2713742. PMid:29082241. http://doi. org/10.1155/2017/2713742.
Submitted date:
02/20/2024
Accepted date:
04/09/2024