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Abstract: Overcoming the planet’s food crisis is one of the greatest challenges today. The problem 
is even more acute when we think about the main foods consumed as a source of protein, 
such as meat, which is widely questioned because of the impacts its production generates. 
The world requires food that is nutritious, cheap, and has a low environmental footprint. 
One protein alternative that has been explored and is constantly increasing in production is 
mushroom biomass (approximately 44 million tons), which has a protein content up to three 
times higher than meat (up to 82%). It also contains all the essential amino acids and presents 
antimicrobial, antioxidant, and anti-cancer properties. Among the main species being produced 
are Lentinula, Pleurotus, Auricularia, Agaricus and Flammulina, which are produced via solid 
and submerged fermentation. Although mushrooms were first consumed fresh, they have now 
been developed as counterparts to meat and meat derivatives, such as sausages, pastes, and 
protein complexes. The aim of this review is to present the technological advances in mushroom 
production, the different derivatives, and the new trends in mushroom-derived products that 
are being consumed as alternative proteins.
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Introduction

Macromycetes, also known as mushrooms, are fungal 
organisms that play essential roles in various ecosystems, 
one of their main functions being to degrade dead matter 
and return nutrients to the soil. It is estimated that there are 
around 3 million species of fungi, but only about 2,000 have 
been identified as edible, of which only about 25 species 
are produced on an industrial scale (Furlani & Godoy, 2007; 
Kalač, 2016). Mushrooms are sources of different compounds 
such as proteins, polysaccharides, minerals, glycopeptide-
protein complexes, triterpenes, ergosterol, cordycepin and 
non-cellulosic β-glucans with β (1-3) and β (1-6) bonds in the 
main chain. These compounds give mushrooms nutritional, 
antioxidant, anti-inflammatory, antimicrobial, anticancer and 
immunostimulant properties, which is why their consumption 
is increasing (Berovic et al., 2022). In fact, mushroom 
consumption is constantly on the rise, with 31.78, 38.66 and 
44.2 tons produced in 2012, 2016 and 2021, respectively 
(Statista, 2023). One of the most important applications 
of mushrooms today is their use as an alternative source 
of protein, as they can have a protein content of up to 80% 
(Barros et al., 2008; Dilfy et al., 2020; Krishnamoorthi et al., 
2022). In addition, fungal proteins have an amino acid profile 

similar to that of meat and the proteins are more digestible, 
healthier and have a lower environmental impact, since 
producing one kg of animal protein uses around 10 times more 
water than mushroom production (González et al., 2020).

Mushroom biomass is produced via solid or submerged 
fermentation. In the former, biomass with a higher protein 
content is obtained, while in the latter, fermentation time 
is reduced by at least 50% compared to solid fermentation. 
Mushroom biomass is processed to produce meat homologues, 
protein concentrates, pastes, protein drinks, among others. 
Considering the importance that the mushroom production 
and derivatives industry has gained, the aim of this review 
was to present an overview of edible mushrooms diversity, 
recent technologies, and innovations to produce mushrooms 
and mushroom derivatives, and the trends of new products 
currently used as alternative proteins.

Biodiversity and protein nutritional value

Macromycetes or macrofungi are a group of heterotrophic 
eukaryotic organisms belonging to the phylum Basidiomycetes 
and Ascomycetes of the kingdom Fungi, characterized by a 
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visible fruiting body containing spores for their reproductive 
function (Zhou, 2020). It is estimated that there are between 
2.2 and 3.4 million species belonging to this group, of which, 
many of them are still undiscovered or little studied, mainly 
for their edible potential (Hawksworth & Lücking, 2017). 
In this sense, more than 2000 species of this group of fungi 
have been identified as edible, of which 350 are cultivated 
for commercial distribution and only 25 are cultivated on 
an industrial scale (Furlani & Godoy, 2007; Kalač, 2016).

Among the most cultivated and industrially produced 
edible macromycetes are the genera Lentinula, Pleurotus, 
Auricularia, Agaricus and Flammulina. These genera also 
include many species that are distributed worldwide, such 
as Agaricus bisporus and Agaricus campestris, commonly 
known as “champignon”; Lentinula edodes or “shiitake”; 
Pleurotus ostreatus, also known as “hiratake” or in specific 
countries “shimeji”; Auricularia auricula or “wood ear”; 
and Flammulina velutipes or “enoki” (Das et al., 2021; 
Royse et al., 2017). Similarly, the extensive diversity of edible 
macrofungi positions these organisms as a promising and 
complementary alternative to conventional foods, particularly 
meat derivatives, since the amino acid composition of both 
sources can be almost equivalent in some species (Longvah 
& Deosthale, 1998). Moreover, the integration of macrofungi 
into dietary practices could potentially alleviate the ongoing 
negative impact resulting from the overexploitation of 
animal resources, as reported by Godfray et al. (2018). 
Figure 1 shows a graph of the diversity of edible species of 
high-protein macromycetes, obtained based on the number 
of occurrences in their wild form at the continental level, 
using data collected by the Global Biodiversity Information 
Facility (GBIF).

According to Boukid (2021), meat analogs should have 
a fat composition of 1 to 5%, polysaccharides of 2 to 30% 
and mainly proteins of 20 to 50%, which is one of the most 
difficult challenges to achieve from a non-animal protein 
source. In this context, the genus Agaricus contains about 

300 known species, of which the species A. bisporus is the 
most representative. The presence of this genus is mainly 
distributed in the regions of Europe and North America, but it 
is extensively cultivated worldwide, generating a significant 
impact on the economy of the food sector. Productions can 
reach up to almost 4 million tons per year, with China being 
the main global producer (Mleczek et al., 2018; Royse et al., 
2017).

At the nutritional level, it has been reported in several 
studies that macromycetes present a high protein value with 
concentrations ranging from 29.6 to 39.8% in dry weight 
and up to 80% when it is a wild and non-commercial crop 
(Barros et al., 2008; Dilfy et al., 2020; Krishnamoorthi et al., 
2022). Likewise, the essential amino acids lysine and 
leucine usually have the highest proportion with values 
of 6.1 and 6.0%, respectively (Vetter, 1993b). Marasmius 
oreades is a species of edible macromycete that, according 
to studies reported by Mos Vetter (1993), presents one of 
the highest percentages of crude protein reported, with 
concentrations ranging from 36 to 58%. This fungus has a 
worldwide distribution, with a higher incidence in tropical 
regions of Europe, North America, and Oceania, showcasing 
a good adaptation to different ecosystems, which is why 
it can be exploited for cultivation at a potential industrial 
level. Likewise, it contains all the essential amino acids, 
with leucine being the most abundant, comprising 6.76% of 
the total protein content (Stoyanova et al., 2020). It should 
also be noted that the presence of essential amino acids 
distinguishes macromycetes from other types of alternative 
proteins, such as those based on plants. Another important 
group of macromycetes to be mentioned are the fungi of the 
genus Tricholoma, most of which are mycorrhizal species with 
a worldwide distribution, especially in Europe, North America, 
Asia and Oceania. Several species are of great economic 
importance, as is the case of Tricholoma matsutake, whose 
production generates profits of up to 50 million dollars a 
year in the Japanese market; it is also considered one of the 

Figure 1. Distribution of species in the wild form of edible Macromycetes with a high percentage of crude protein across various 
continental regions (data are presented as the number of occurrences according to the GBIF database, expressed in Log10).



W. J. Martínez-Burgos et al. 4-13

most important edible ectomycorrhizal fungi in the world 
(Aoki et al., 2022). The fruiting body of this species develops 
on the periphery of a structure called ‘shiros,’ which forms 
an association between the roots of coniferous trees and 
the soil, thereby optimizing the uptake of nutrients by plant 
cells. For this reason, it is currently a difficult species to 
cultivate in vitro, especially for commercial purposes, and the 
current demand is met by direct harvesting (Yamanaka et al., 
2020). At the nutritional level, values between 20 and 36.8% 
crude protein in dry weight have been reported, making it 
even more valuable for the consumer (Díez & Alvarez, 2001; 
Yu et al., 2020). As well as those already mentioned, there 
are reports of other species that have significant crude 
protein concentration and essential amino acids proportion, 
in addition to other beneficial properties, which further 
strengthens the interest in promoting their cultivation on an 
industrial scale as alternative sources to traditional foods. 
In Table 1, reports on various species of edible macromycetes 
and meat products are presented, detailing the approximate 
crude protein content in grams per 100 g of dry weight, as 
well as the amino acid percentages relative to the total 
protein content.

Fermentative processes with macromycetes

The production of macromycetes on an industrial scale 
can be done using mainly two types of processes: solid 
fermentation and submerged fermentation (Letti et al., 
2018). According to Rothmann et al. (2023), solid fermentation 
is the most efficient method for applying macromycetes 
in delignification, conversion, and addition of nutritional 
value. In submerged fermentation mycelial biomass is mainly 
cultivated to produce bioactive compounds, while in solid 
fermentation the fruiting bodies are used mainly for food 
or medicinal products.

Solid fermentation for macromycetes production

Solid fermentation (SF) is characterized by being a process 
that occurs on the surface of materials or substrates in solid 
and semi-solid states, which have the ability to contain or 
absorb water and nutrients. Solid supports or materials 
may be biodegradable or non-biodegradable in nature, 
however, to produce macromycetes it is more common to 
use biodegradable substrates (Couto & Sanromán, 2006). 
On some occasions, nutrients are solubilized in water 
to become available for use by organisms. According to 
Viniegra-Gonzàlez (1997), for microbial growth to occur 
in solid fermentation, nutrients must be diffusible under 
or over the liquid-solid interphase. Among the advantages 
of solid fermentation, the following stand out: the costs of 
the media used are generally cheap (the substrates used are 
agroforestry residues), and substrate treatments are easy, 
with short cooking being the most applied method to humidify 
or dilate the biomass, and fractionations being applied to 
facilitate the accessibility of microorganisms to the nutrients 
(Chang & Wasser, 2017). Furthermore, SF in the production of 
macromycetes is a selective process in which the available 
humidity is low, meaning that these systems can hardly be 
contaminated with bacteria (Vandenberghe et al., 2021). 
According to Rothmann et al. (2023), solid fermentation 
takes place in the absence or almost absence of free water.

Although various types of bioreactors are used in SF for 
the production of macromycetes, static bioreactors are 
generally preferred. These mainly consist of a chamber with 
temperature and relative humidity control, along with shelves 
where trays or polyethylene bags containing the substrate 
and macromycetes are placed (Figure 2A) (Sánchez, 2010). 
Advances in this regard are mainly focused on the automation 
of processes to control the conditions of temperature, relative 
humidity, and CO2 concentration in the fermentation chamber, 
thus optimizing the growth of the macromycetes’ fruiting 

Figure 2. Different cultivation systems applied for edible macromycetes production. (A) Solid fermentation chamber; (B) Modular 
chain bioreactor; (C) Stirred tank bioreactor; (D) Airlift bioreactor for mycelium production.
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bodies (Higgins et al., 2017). The main challenges in the 
production of fruiting bodies are controlling oxygen levels, the 
substrate’s internal temperature, and pH. The temperature 
should be maintained between 25 to 30 °C, and the pH should 
be kept between 5.0 and 7.0. To address these challenges, 
innovations are being developed. For example, Kırdök et al. 
(2022) established a solid fermentation system with plastic 
bags integrated into a chain that circulates air and moisture 
through filtered connections, called modular chain bioreactor 
(MCB) (Figure 2B). The system contains sensors to control the 
internal temperature and humidity of the substrate in each 
bag and optimizes air circulation, improving macromycete 
growth.

Submerged fermentation for macromycetes pro-
duction

Submerged fermentation of the mycelial form of 
mushroom-producing fungi has garnered special attention due 
to its advantages over solid fermentation (Dudekula et al., 
2020). It stands out for its process homogeneity and significant 
improvement in oxygen transfer, even with increased 
viscosity of the fermentation broth, which facilitates scaling 
up the processes. According to Dudekula et al. (2020) 
high homogeneity improves the development of mycelium 
pellets. Furthermore, in submerged processes metabolites 
are produced in a more controlled way (Perveen et al., 
2023). In these processes, primarily stirred tank bioreactors 
and airlift bubble columns have been used. Stirred tank 
bioreactors are mainly composed of a tank, a mechanical 
agitation system, an aeration system and temperature 
and pH controllers (Figure 2C). In these, the agitation and 
heat transfer processes are facilitated by the impeller and 
aeration. These are the main systems used in the production 
of mycelia via submerged fermentation because they are 
more efficient than airlifts.

Airlift bioreactors are the second most used in the 
production of mycelia. In these bioreactors, agitation and 
homogenization are carried out by injection of gas (air/
oxygen) (Dudekula et al., 2020). The system mainly consists of 
a column with an internal tube that directs the fermentation 
broth to rise and fall, and the gas sprinkler (Figure 2D). 
The fermentative broth is moved from bottom to top, driven 
by gas bubbles fed at the bottom of the column, returning 
from top to bottom through a region different from the rising 
region. The difference between gaseous retention produces 
variability in dispersion densities, causing the circulation of 
the fermentation broth and the mycelia (Chisti & Moo-Young, 
1987; Dudekula et al., 2020).

In the submerged mycelium biomass production process, 
aeration and agitation must be controlled to prevent the 
deterioration of the mycelium. According to Papaspyridi et al. 
(2013), in these processes dissolved oxygen must have at 
least 20 to 30% saturation (Tang et al., 2007). In the case of 
airlifts the flow must be higher, which can vary between 1 and 
2 vvm (Dudekula et al., 2020; Feng et al., 2010). Agitation 
should be maximum between 150-200 rpm (Dudekula et al., 
2020; Papaspyridi et al., 2013). Furthermore, in submerged 
fermentation, the kLa parameter must be controlled, 
which affects the growth of mycelia and the production 
of metabolites (Tang et al., 2007). This parameter is also 

related to the oxygen dissolved in the fermentation broth 
(Mello et al., 2024).

A drawback of submerged fermentation in protein 
production is that the levels of this compound are typically 
lower compared to those achieved in the fruiting bodies 
during solid fermentation. For example, Manu-Tawiah & 
Martin (1987) reported a maximum crude protein content for 
P. ostreatus biomass of 36 and 25.7% in the fruiting bodies 
and mycelium, respectively. Papaspyridi et al. (2013) also 
reported a higher protein content for fruiting bodies (36.4%), 
while for mycelia the protein content reached 32%. However, 
the process time for submerged fermentation is significantly 
shorter when compared to solid state fermentation, by at 
least 50%. While solid fermentation takes place in between 
15-25 days (De Carvalho et al., 2010), submerged fermentation 
occurs in 6 to 10 days (Dudekula et al., 2020). Finally, the 
inoculation process in solid fermentation is more expensive 
than in submerged fermentation, in which an inoculum volume 
of 5 to 10% (v/v) is used (Dudekula et al., 2020).

Substrates and circular economy

Alternative protein sources need to be low-cost to 
meet the needs of the population. Therefore, from the 
perspectives of economic viability and global feasibility, 
the production of mushrooms as an alternative protein 
source depends, especially, on the substrates used for their 
growth (González et al., 2020). These substrates, besides 
being accessible, should facilitate high mushroom growth 
with a rich biochemical composition, and possibly enhance 
the flavor and aroma of mushrooms, making them more 
appealing to human taste. Flammulina velutipes, one of 
the most appealing edible mushrooms, presented enhanced 
umami taste and nutrient contents (higher crude fiber, 
crude fat, soluble protein, total aminoacids and soluble 
sugar) by cultivating it in mushroom root fermentation broth 
(MRFB) – a medium composed of byproducts from the edible 
mushrooms industry itself (mushroom root and fixing water 
from mushroom blanching procedure) (Wang et al., 2023).

Synthetic media for mushroom cultivation are often costly 
and time-consuming to prepare, making them preferable for 
small-scale productions, particularly in laboratory settings 
(Chang, 2008). On a large scale, agricultural or agro-industrial 
by-products with low or no economic value are exploited 
as substrates in mushroom production. Some examples are 
sugarcane bagasse, coffee husks, rice bran, wheat straw 
and bran, sawdust, corncobs, corn stems, cotton waste 
from textile industry, animal manure, bean straw, cocoa 
shell waste, banana leaves, oil palm pericarp waste, cassava 
bagasse, olive mill and winery wastes (Pandey et al., 2008). 
The utilization of such substrates can contribute to enhancing 
cultivation performance and elevating the nutritional value 
of mushrooms. Depending on the combination, higher protein 
contents can be achieved (Martín et al., 2023; Salami et al., 
2016). Furthermore, cheap lignocellulosic residues positively 
impact substrate costs, providing an eco-friendly solution for 
their efficient handling and utilization in a circular economy 
(Martín et al., 2023).

In solid-state mushroom cultivation, such agro-industrial 
byproducts can serve as substrate after simple particle size 
reduction and moisture adjustment. Finding a balanced 
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particle size is essential for optimal results in mushroom 
growth. Smaller substrate particles offer a larger surface 
area for fungi vegetative mycelium to access nutrients and 
water. However, excessively small particles may lead to 
substrate agglomeration, potentially hindering fungal aeration 
in solid-state (Pandey et al., 2008). The water content 
in the substrate is fundamental for achieving an optimal 
water activity (aw). Water activity value fluctuates due to 
evaporation and metabolic processes (Pandey et al., 2008).

In submerged mushroom cultivation, it is common to use 
biomass hydrolysates to provide nutrients more efficiently. 
For example, P. ostreatus mycoprotein was obtained by 
submerged fermentation on 4-liters stirred-tank bioreactors 
using aspen wood hydrolysate as culture media. This 
hydrolysate provided glucose and xylose sugars, and the ratio 
between them was shown to be closely linked to the amino 
acid composition of the resulting protein. A value of 54.5 ± 
0.5% (g protein/100 g sugars) was reached (Bakratsas et al., 
2023a). In patent CN111771621A, P. ostreatus was successfully 
cultivated in bioreactors in a medium composed of 200 mL 
L-1 of Sophora flavescens alcohol precipitate hydrolysate, 
4 g L-1 of rice bran, 4 g L-1 of yeast extract and 4 g L-1 of 
malt extract (Jin, 2020). In Chinese traditional medicine, 
Sophora flavescens is used in the production of extracts or 
medicinal compounds, and during the alcohol precipitation 
process, a precipitate is formed, which is normally discarded 
as waste. As described in the patent, it contains nutrients 
and bioactive compounds that are useful for the culture of 
oyster mushroom mycelium.

Experimental design strategies can be applied to enhance 
protein content and mushroom growth, helping to identify the 
ideal cultivation conditions. In the study by Bakratsas et al. 
(2023b), the production of single-cell protein (SCP) from P. 
ostreatus by submerged cultivation was optimized. An initial 
screening of different parameters affecting protein production 
has been conducted, considering carbon sources, organic and 
inorganic nitrogen sources, initial pH and cultivation time. 
Concentrations of carbon and nitrogen sources in the culture 
medium were found to be the two most significant factors, 
and after response surface methodology optimization a value 
of 44.8 ± 0.8% of proteins (dry weight) was attained, with 
10.0 ± 0.9 g L−1 of proteins in 3.5-liters stirred tank reactors 
(Bakratsas et al., 2023b).

Nitrogen plays a crucial role in synthesizing numerous 
organic compounds such as proteins, nucleic acids, and cell 
wall components in fungi. Mushroom substrates normally 
contain organic nitrogen sources and are low in free 
ammonium since the excess can inhibit growth or fruiting of 
mushrooms. For fruiting body induction, the balance between 
C and N sources is essential, being a parameter that can be 
studied and optimized to improve a specific fungal species 
growth yield (Pandey et al., 2008). Furthermore, inorganic 
salts have been shown to increase the biochemical potential 
of mushrooms. In the study by Madaan et al. (2024), Pleurotus 
spp. was cultivated on substrate organically enriched with 
Se and Zn, which could increase total soluble proteins and 
flavonoids/phenolic content on the mushrooms, with suitable 
characteristics for the development of dietary supplements 
(Madaan et al., 2024). On upscaled mushroom cultivations, 
large quantities of by-products consisting of spent substrate 
are generated, known as spent mushroom substrate (SMS) 

or spent mushroom compost (SMC). It is estimated that 
after several cycles of mushroom harvesting approximately 
5 kg of wet by-products are generated for every kg of fresh 
mushroom produced (Gao et al., 2021; Leong et al., 2022). 
Those spent substrates may be used in various applications 
following the concept of circular economy, which include 
their use as biofertilizers, soil amendment, bio-control agent, 
alternative feed for poultry, ruminant and pig, feedstock for 
production of second-generation biofuel and bioremediation 
agent for heavy metals, polycyclic aromatic hydrocarbon 
(PAHs), pesticides, etc. (Leong et al., 2022).

Safety of mushroom production as alternative 
protein source

The use of agricultural materials to cultivate edible 
mushrooms must be performed with care due to food safety 
concerns. Mushrooms are known to accumulate substances, 
such as the heavy metal arsenic (As) depending on the 
metalloid residue level in the substrate (Mleczek et al., 2016). 
This holds true for pesticides as well, making it imperative, 
particularly at an industrial scale, to characterize and monitor 
potential contaminants in the substrate. Nevertheless, the 
ability of fungi to absorb and bioaccumulate molecules 
can also be used to favor their nutritional composition 
(Madaan et al., 2024; Oliveira & Naozuka, 2019). In the study 
by Oliveira & Naozuka (2019), selenium (Se) in culture media 
was shown to favor the formation of Se-proteins, which 
are more bioaccessible species, in white and pink oyster 
mushrooms (P. ostreatus and P. djamor). Especially with 
the focus on edible mushrooms production, sterilization or 
disinfection of the substrate is an important step required for 
eliminating microbial forms such as fungi, bacteria, viruses 
and spores, ensuring food quality and safety. Normally, 
treatments using high temperatures and/or pressures are 
performed, such as pasteurization, autoclaving, or immersion 
in hot water (Atila, 2023; Macias González et al., 2022). 
Although highly efficient at large scale, those methods 
often demand specific equipment, with substantial initial 
investment cost, and require high energy for operating 
(Macias González et al., 2022).

New disinfection methods are being explored, however. 
In the article by Atila (2023), chlorine dioxide was used to 
disinfect Hypsizygus ulmarius as an alternative to autoclaving. 
This treatment prevented substrate contamination by 
harmful microorganisms, permitting a shorter cultivation 
cycle from inoculation to the first flush and enhancing the 
mushroom yield and biological efficiency (Atila, 2023). 
Besides sterilization or disinfection, training personnel for 
microbiological and chemical assessments is also critical 
to ensure food safety and quality on mushroom production 
(Devi Tentu et al., 2021).

Macromycetes and their products

Macromycetes find application across various industries, 
with one of the most promising sectors being food, where 
they have been utilized in diverse product formulations. 
These can be grouped into four categories: dairy, beverages, 
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pasta, and meat analogs (Figure 3). One category gaining 
increasing relevance is that of meat substitutes, given the 
high percentage of crude protein found in the biomass of 
macromycetes, as demonstrated in Table 1. Moreover, they 
exhibit an essential amino acid profile comparable to that 
of proteins from animal sources, positioning mycoproteins as 
promising substitutes for conventionally consumed proteins 
(Ayimbila & Keawsompong, 2023; González et al., 2020). Some 
of the most significant advantages of this alternative source 
of proteins over traditional meat are: (i) macromycete-based 
proteins are produced more quickly and with a significantly 
lower environmental impact compared to beef production.; 
(ii) mushroom proteins have functional properties, are highly 
digestible, healthy and are widely accepted by the population 
(Singh et al., 2023).

Many companies such as Kinoko Tech, Prime Roots, 
NaturesFynd, Better Meat, Enough Foods, Planetary Group, 
Mycotechnology, among others are engaged in producing 
macromycete-based foods. These products include: beef 
patties, pork sausages, frankfurter, beef patty, beef nuggets, 
meat emulsion, pork patty, chicken patty, beef burger, beef 
patty, fishless seafood, etc. (Singh et al., 2023; Wang & Zhao, 
2023). Some relevant patents have been developed with 
products based on macromycetes. For example, Kim & Kim 
(2006) in patent KR10076284848B1 presented a process for 
producing mycoproteins and meat analogs as substitutes for 
conventional protein and meat. Meat analogs can be defined 
as products obtained from mushroom proteins or textured 
vegetable proteins (Wang & Zhao, 2023). In the case of the 
protein concentrate, mycelium, corn husk and egg white were 
mixed, the first component in a maximum proportion of 40% 
and the other two in a maximum proportion of 30% each. 
Subsequently, the mixture was extruded under conditions of 
100-1000 psi and in a temperature range between 100 and 
170 °C. To manufacture the meat analog, the protein 

concentrate was mixed with emulsifiers, water and starch, 
and the traditional method of artificial meat production was 
used to obtain a fibrous structure. At the end of the process, 
macromycete proteins were found to have excellent texture 
and even better taste than soy protein.

Patents have also been developed focusing on fermentation 
methods for producing macromycete fungi. This is as the 
case of patent US11432574B2, filed by Patillo (2022), which 
presents several types of improved aerobic fermentation 
procedures to produce a mushroom-based protein food 
ingredient for meat hybrids or meat analogues. In this 
work, 150 mL of a 2-day culture of Cordyceps militaris were 
inoculated in a pulse-fed aerobic fermentation. An optimized 
culture medium was used (17 L deionized water, 30 g L-1 light 
malt extract prepared from the hydrolysis of spent malted 
barley, 10 g L-1 glucose, 5 g L-1 yeast extract, 0.5 g L-1 NH4H2NO3, 
0.2 g L-1 MgSO4, 3 g L-1 safflower oil, and 0.0025 g L-1 biotin). 
Pulses were injected after 48 and 96 hours of incubation (20 g 
L-1 light malt, 10 g L-1 glucose, and 20 g L-1 yeast extract - all 
previously autoclaved). The biomass was then recovered 
by pressing and decanting the supernatant to give a final 
yield of 41 g L-1 dry biomass. The product obtained can be 
used as a mushroom-based protein food ingredient that can 
supplement or complement a conventional meat product.

In general, meat-like products produced from edible 
macromycete cultures, as described above, are usually 
mycelial or fruiting body fungal biomass. Although various 
fungi can mimic the texture, flavor, and odor of animal meat, 
they typically need to be blended with other ingredients 
like flavorings or pigments in different proportions to 
increase their appeal and achieve a closer resemblance to 
conventional meat products. For instance, Yuan et al. (2021) 
developed a meat analogue based on macromycetes mixed in 
equal proportions (L. edodes, P. ostreatus, C. comatus) and 
soybeans, using mainly an extrusion process. The product 

Figure 3. Categories of edible macromycetes products applied in the food industry.
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obtained exhibited textural profiles close to those of beef, 
moreover, there was no significant difference in properties 
such as viscosity and elasticity between the meat and the 
analogue. Similarly, in the patent JP4628482B2 filed in Japan 
(Deok-Kim & Kim, 2006), a methodology was developed for 
the production of fungal mycelium from Agaricus bisporus, 
Pleurotus ostreatus, Flammulina velutipes, Ganoderma 
lingzhi and Cordyceps sp., and for the elaboration of meat 
analogues by mixing 40% of this mycelium with 30% of corn 
husk and 30% of egg white. Finally, the mixture is subjected 
to an extrusion process at 100-1000 psi and then cooled 
in a matrix. In addition, 50% of the meat analog product 
obtained was used to create substitute meat by adding a 
small amount of seasonings, spices, and pigments. Finally, 
a meat flavoring was also developed from meat analogs, 
which was made by mixing 65% of the pulverized meat analog 
product (previously obtained) with 10% anchovy powder, 10% 
kelp algae powder, and 5% seaweed powder. This resulted 

in several varieties and presentations of products based on 
edible fungal macromycetes that are more complete and 
similar to meat derivatives.

The “Alt protein” market is expected to grow from the 
current US$ 16.52 billion in 2024 to US$ 26.52 billion by 
2030, which means an average growth rate of 8.82% per year 
(Grand-View-Research, 2023). In this scenario, mycoprotein 
represents a fraction of US$ 298 million in 2022 up to US$ 
976 million in 2032, according to a report from Future-Market-
Insights (2022). The budget has been substantial, and large 
companies are investing in meat substitutes. For example, 
Cargill’s budget for Enough Foods exceeds $100 million, 
doubling production in one year to 20,000 tons (Star-Tribune, 
2024). The moment is heated by many start-ups flourishing 
around the world.

Table 2 shows some trends in products based on edible 
macromycetes as protein replacements and the industries 
responsible for their development.

Table 2. Trends in mushroom protein products.

Product Proposal Company Reference

Eat Meati Whole-food cutlets and steaks — made from mushrooms 
using a sustainable and clean process

Chipotle Mexican Grill Jennings (2022)

Fish-Free Seafood Out-flavors, out-textures, and out-nutritious anything else 
on the market. So, while the oceans rest, you can enjoy the 
freshest seafood of your life every night of the week

Aquaculture Foods Aqua-Cultured-Food (2023)

Quorn® “Mycoprotein” as various meat-cut products Marlow Foods AstraZeneca (2023)
Fermotein® Food ingredient containing proteins, fibers and all those 

essential amino acids, vitamins, and minerals which a 
healthy, balanced diet needs

The Protein Brewery Brewery (2023)

Koji-Meats Various modalities of meat analogues, such as turkey, ham, 
salami and pate and bacon

Prime Roots Prime-Roots (2023)

Fungi-powered Fy 
Protein

Meatless patties and including the first fungi yogurt NaturesFynd Natures-Fynd (2024)

Shroomacon A simple product made from five ingredients: king oyster 
mushrooms, olive oil, natural smoke flavor, salt, and black 
pepper. Unlike many meat alternatives, Shroomacon is made 
from long strips of mushroom rather than processed and 
molded ingredients

Meat the Mushroom Meat-Mushroom (2024)

FermentIQTM FermentIQ™ plant protein is a superior protein source 
made by fermenting plant protein with shiitake mushroom 
mycelia. The process improves flavor, aroma, nutrition, and 
functionality

MycoTechnology Myco-Technology (2021)

FermentIQ™ PEA Pea protein fermented by shiitake mycelia, creamy 
mouthfeel and smooth texture with high solubility, heat 
stability and emulsion capacity, clean, neutral taste with 
a significant reduction in off-note attributes compared to 
other pea proteins

MycoTechnology

Mycolein™ Is a fungi-stabilised fat ingredient developed with 
Mycorena’s proprietary emulsion technology. The fat solution 
displays properties more similar to animal fat than any 
other fat product on the market, produced entirely without 
animals. Mycolein™ is a Clean Label, low-fat product to 
be utilized in any type of product, whether plant-based, 
alternative protein or even meat

Mycorena Mycorena (2020)

MICO MICO is a third-generation mycelial protein, which stands 
out for its efficiency in production, complete nutritional 
profile, and commitment to sustainability

Done Properly Done-Properly (2022)
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Conclusions

Edible mushroom biomass holds significant potential to 
emerge as an important alternative protein source and a 
substitute for animal-based proteins, thereby fostering 
various environmental, economic, and dietary shifts. This 
potential is evident in the rapid growth of global production 
of macromycete biomass, which correlates with the increasing 
consumer preference for healthier and biologically rich foods. 
Mushroom biomass presents a high protein content and an 
amino acid profile comparable to traditional meats, further 
enhancing its appeal. Production of mushroom biomass occurs 
through both solid and submerged fermentation processes, 
which are constantly being improved and optimized to enable 
higher production with satisfactory protein content. The first 
process yields biomass with a higher protein content, reaching 
levels of up to 82%. Conversely, submerged fermentation 
offers shorter production cycles, taking less than half the time 
compared to solid fermentation. Advances in culture media 
and circular economy approaches are progressing, and the 
development of meat-like protein products or concentrates 
is an emerging application trend for mushroom biomass.
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