The 4.(n) wheat breeding era: genomic-based predictions becoming part of the daily routine and beyond
Eduardo Venske, Cezar Augusto Verdi, Cesar Daniel Petroli, Camila Pegoraro, Luciano Carlos da Maia, Antonio Costa de Oliveira
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, also as a role model in plant breeding and genomics. Along with gene edition, genomic selection
(GS) is the most advancing area in plant breeding, and several developments are in curse in this field, which soon will result in the recently termed “breeding 4.0” stage. The aim of this review is to present and discuss the most recent and impacting advances in GS applied to wheat breeding. Wheat shows particular features, e.g. a crop with narrow genetic variability and a large and complex genome, which motivates especial discussions on the present theme.
The advances in enviromics and phenomics are presented and also the way they literally enter the genomic prediction models. The most breeder-advantageous wheat genotyping platforms currently available are also presented. Regarding data analysis within the genomic selection scheme, machine learning and deep learning methods are the most advancing approaches for predicting phenotypes, and improvements on these algorithms are nowadays in the center of the debate. Several advances in course will move plant breeding from the current 3.0 to the 4.0 stage, so achieving the status of “rocket science” and requiring highly skilled breeders and multidisciplinary teams.
Keywords
References
Ayalew, H., Tsang, P. W., Chu, C., Wang, J., Liu, S., Chen, C., & Ma, X. F. (2019). Comparison of TaqMan, KASP and rhAmp SNP genotyping platforms in hexaploid wheat. PLoS One, 14(5), e0217222. http://dx.doi.org/10.1371/journal.pone.0217222. PMid:31116793.
Basnet, B. R., Crossa, J., Dreisigacker, S., Pérez-Rodríguez, P., Manes, Y., Singh, R. P., Rosyara, U. R., Camarillo-Castillo, F., & Murua, M. (2019). Hybrid wheat prediction using genomic, pedigree, and environmental covariables interaction models. The Plant Genome, 12(1), 180051. http://dx.doi.org/10.3835/plantgenome2018.07.0051. PMid:30951082.
Bassi, F. M., Bentley, A. R., Charmet, G., Ortiz, R., & Crossa, J. (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Science, 242, 23-36. http://dx.doi.org/10.1016/j.plantsci.2015.08.021. PMid:26566822.
Bernardo, R. (1994). Prediction of maize single-cross performance using RFLPs and information from related hybrids. Crop Science, 34(1), 20-25. http://dx.doi.org/10.2135/
cropsci1994.0011183X003400010003x.
Bernardo, R. (2016). Bandwagons I, too, have known. Theoretical and Applied Genetics, 129(12), 2323-2332. http://dx.doi.org/10.1007/s00122-016-2772-5. PMid:27681088.
Borrill, P., Harrington, S. A., & Uauy, C. (2019). Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. The Plant Journal, 97(1), 56-72. http://dx.doi.org/10.1111/tpj.14150. PMid:30407665.
Costa-Neto, G., Fritsche-Neto, R., & Crossa, J. (2021a). Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials. Heredity, 126(1), 92-106. http://dx.doi.org/10.1038/s41437-020-00353-1. PMid:32855544.
Costa-Neto, G., Galli, G., Carvalho, H. F., Crossa, J., & FritscheNeto, R. (2021b). EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3 (Bethesda, Md.), 11(4), jkab040. https://doi.org/10.1093/g3journal/jkab040.
Crain, J., Mondal, S., Rutkoski, J., Singh, R. P., & Poland, J. (2018). Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. The Plant Genome, 11(1), 170043. http://dx.doi.org/10.3835/ plantgenome2017.05.0043. PMid:29505641.
Crossa, J., Fritsche-Neto, R., Montesinos-Lopez, O. A., Costa-Neto, G., Dreisigacker, S., Montesinos-Lopez, A., & Bentley, A. R. (2021). The modern plant breeding triangle: Optimizing the use of genomics, phenomics, and enviromics data. Frontiers in Plant Science, 12, 651480. http://dx.doi.org/10.3389/fpls.2021.651480. PMid:33936136.
González-Camacho, J. M., Ornella, L., Pérez-Rodríguez, P., Gianola, D., Dreisigacker, S., & Crossa, J. (2018). Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. The Plant Genome, 11(2), 170104. http://dx.doi. org/10.3835/plantgenome2017.11.0104. PMid:30025028.
Haile, T. A., Walkowiak, S., N’Diaye, A., Clarke, J. M., Hucl, P. J., Cuthbert, R. D., Knox, R. E., & Pozniak, C. J. (2021). Genomic prediction of agronomic traits in wheat using different models and cross-validation designs. Theoretical and Applied Genetics, 134(1), 381-398. http://dx.doi.org/10.1007/s00122-020-03703-z. PMid:33135095.
Juliana, P., Montesinos-López, O. A., Crossa, J., Mondal, S., González Pérez, L., Poland, J., Huerta-Espino, J., Crespo-Herrera, L.,Govindan, V., Dreisigacker, S., Shrestha, S., Pérez-Rodríguez, P., Pinto Espinosa, F., & Singh, R. P. (2019). Integrating genomicenabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. Theoretical and Applied Genetics, 132(1), 177-194. http://dx.doi.org/10.1007/s00122-018-3206-3. PMid:30341493.
Li, X., Guo, T., Wang, J., Bekele, W., Sukumaran, S., Vanous, A. E., McNellie, J. P., Tibbs-Cortes, L. E., Lopes, M. S., Lamkey, K. R., Westgate, M. E., McKay, J. K., Archontoulis, S. V., Reynolds, M. P., Tinker, N. A., Schnable, P. S., & Yu, J. (2021). An integrated framework reinstating the environmental dimension for GWAS and genomic selection in crops. Molecular Plant, 14(6), 874-887. http://dx.doi.org/10.1016/j.molp.2021.03.010. PMid:33713844.
Liu, C., Sukumaran, S., Jarquin, D., Crossa, J., Dreisigacker, S., Sansaloni, C., & Reynolds, M. (2020). Comparison of array-and sequencing-based markers for genome-wide association mapping and genomic prediction in spring wheat. Crop Science, 60(1), 211-225. http://dx.doi.org/10.1002/csc2.20098.
Meuwissen, T. H., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819-1829. http://dx.doi.org/10.1093/ genetics/157.4.1819. PMid:11290733.
Montesinos-López, O. A., Montesinos-López, A., Pérez-Rodríguez, P., Barrón-López, J. A., Martini, J. W., Fajardo-Flores, S. B., Gaytan-Lugo, L. S., Santana-Mancilla, P. C., & Crossa, J. (2021). A review of deep learning applications for genomic selection. BMC Genomics, 22(19), 1-23. http://dx.doi.org/10.1186/s12864-020-07319-x. PMid:33407114.
Norman, A., Taylor, J., Edwards, J., & Kuchel, H. (2018). Optimising genomic selection in wheat: effect of marker density, population v25677size and population structure on prediction accuracy. G3 (Bethesda, Md.), 8(9), 2889-2899. http://dx.doi.org/10.1534/g3.118.200311. PMid:29970398.
Rasheed, A., Hao, Y., Xia, X., Khan, A., Xu, Y., Varshney, R. K., & He, Z. (2017). Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Molecular Plant, 10(8), 1047-1064. http://dx.doi.org/10.1016/j.molp.2017.06.008. PMid:28669791.
Resende, R. T., Piepho, H. P., Rosa, G. J. M., Silva-Junior, O. B., E Silva, F. F., de Resende, M. D. V., & Grattapaglia, D. (2021). Enviromics in breeding: Applications and perspectives on envirotypic-assisted selection. Theoretical and Applied Genetics, 134(1), 95-112. http://dx.doi.org/10.1007/s00122-020-03684-z. PMid:32964262.
Sandhu, K. S., Lozada, D. N., Zhang, Z., Pumphrey, M. O., & Carter, A. H. (2021a). Deep learning for predicting complex traits in spring wheat breeding program. Frontiers in Plant Science, 11, 613325. http://dx.doi.org/10.3389/fpls.2020.613325. PMid:33469463.
Sandhu, K. S., Mihalyov, P. D., Lewien, M. J., Pumphrey, M. O., & Carter, A. H. (2021b). Combining genomic and phenomic information for predicting grain protein content and grain yield in spring wheat. Frontiers in Plant Science, 12, 613300. http://dx.doi.org/10.3389/fpls.2021.613300. PMid:33643347.
Shabannejad, M., Bihamta, M. R., Majidi-Hervan, E., Alipour, H., & Ebrahimi, A. (2020). A simple, cost-effective high-throughput image analysis pipeline improves genomic prediction accuracy for days to maturity in wheat. Plant Methods, 16(1), 146. http://dx.doi.org/10.1186/s13007-020-00686-2. PMid:33292394.
Singh, D., Wang, X., Kumar, U., Gao, L., Noor, M., Imtiaz, M., Singh, R. P., & Poland, J. (2019). High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Frontiers in Plant Science, 10, 394. http://dx.doi.org/10.3389/fpls.2019.00394. PMid:31019521.
Sun, J., Poland, J. A., Mondal, S., Crossa, J., Juliana, P., Singh, R. P., Rutkoski, J. E., Jannink, J. L., Crespo-Herrera, L., Velu, G., Huerta-Espino, J., & Sorrells, M. E. (2019). High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. Theoretical and Applied Genetics, 132(6), 1705-1720. http://dx.doi.org/10.1007/s00122-019-03309-0. PMid:30778634.
Wallace, J. G., Rodgers-Melnick, E., & Buckler, E. S. (2018). On the road to breeding 4.0: Unraveling the good, the bad, and the boring of crop quantitative genomics. Annual Review of Genetics, 52(1), 421-444. http://dx.doi.org/10.1146/annurevgenet-120116-024846. PMid:30285496.
Xu, Y. (2016). Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, 129(4), 653-673. http://dx.doi.org/10.1007/s00122-016-2691-5. PMid:26932121.
Zhao, C., Zhang, Y., Du, J., Guo, X., Wen, W., Gu, S., Wang, J., & Fan, J. (2019). Crop phenomics: Current status and perspectives. Frontiers in Plant Science, 10, 714. http://dx.doi.org/10.3389/fpls.2019.00714. PMid:31214228.
Submitted date:
08/20/2021
Reviewed date:
10/04/2021
Accepted date:
12/03/2021