Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.21050201
Biotechnology Research and Innovation Journal
Review Article

Nanotechnology on agent identification, diseases diagnosis and therapeutic approaches

Guilherme Fonseca Reis, Juliana Thaler, Bruno Paulo Rodrigues Lustosa, Marlon Roger Geraldo, Edilson Sérgio Silveira, Jacques Franciscus Meis, Luciano Aparecido Panagio, Arandi Ginane Bezerra Junior, Vânia Aparecida Vicente

Downloads: 6
Views: 755

Abstract

Nanotechnology is the most promising technology field in the 21st century, providing benefits and scientific advances to global development. New nanotechnological devices, platforms, and production systems have shown a wide range of applicability, especially for nanoparticle applied to microorganism detection/diagnosis, treatment, and drug delivery. This review aims to point the main advances in the area through several publications involving the production and use of nanoparticles applied to the clinical sector. Nanoparticles are produced by using different physical, chemical, or biological methods. Several platforms for diagnosis have been developed, including vaccines, drug-delivery systems, and novel treatments, thus innovating the pharmacological and diagnostic areas. Immunoassay, DNA hybridization, and Raman/SERS are the most common methods used in the identification of microorganisms and diagnosis. Moreover, metallic and oxide-metallic nanoparticles have been used to inhibit the growth of filamentous fungi, yeasts, oomycetes, bacteria, viruses, and protozoans. The present review shows an increase in nanotechnology application, especially regarding nanoparticles in the biotechnology and medical fields, contributing to a revolution in this area.

References

Acay, H. (2021). Utilization of Morchella esculenta-mediated green synthesis golden nanoparticles in biomedicine applications. Preparative Biochemistry & Biotechnology, 51(2), 127-136. http://dx.doi.org/10.1080/10826068.2020.1799390. PMid:32734826. 
Allen, T. M. (1997). Liposomes: opportunities in drug delivery. Drugs, 54(Suppl. 4), 8-14. http://dx.doi.org/10.2165/00003495-199700544-00004. PMid:9361956.
Allend, S. O., Garcia, M. O., Cunha, K. F., Albernaz, D. T. F., Silva, M. E., Ishikame, R. Y., Panagio, L. A., Nakazaro, G., Reis, G. F., Pereira, D. B., & Hartwig, D. D. (2021). Biogenic silver nanoparticle (Bio-AgNP) has an antibacterial effect against carbapenemresistant Acinetobacter baumannii with synergism and additivity when combined with polymyxin B. Journal of Applied Microbiology. In press. http://dx.doi.org/10.1111/jam.15297. PMid:34496109.
Al-Shawafi, W. M., Salah, N., Alshahrie, A., Ahmed, Y. M., Moselhy, S. S., Hammad, A. H., Hussain, M. A., & Memic, A. (2017). Size controlled ultrafine CeO2 nanoparticles produced by the microwave assisted route and their antimicrobial activity. Journal of Materials Science. Materials in Medicine, 28(11), 177. http://dx.doi.org/10.1007/s10856-017-5990-8. PMid:28956214.
Ammar, H. A., Rabie, G. H., & Mohamed, E. (2019). Novel fabrication of gelatin-encapsulated copper nanoparticles using Aspergillus versicolor and their application in controlling of rotting plant pathogens. Bioprocess and Biosystems Engineering, 42(12), 1947-1961. http://dx.doi.org/10.1007/s00449-019-02188-5.PMid:31435736.
Andrade, L. M., Martins, E. M. N., Versiani, A. F., Reis, D. S., Fonseca, F. G., Souza, I. P., Paniago, R. M., Pereira-Maia, E., & Ladeira, L.O. (2020). The physicochemical and biological characterization of a 24-month-stored nanocomplex based on gold nanoparticles conjugated with cetuximab demonstrated long-term stability, EGFR affinity and cancer cell death due to apoptosis. Materials Science and Engineering C, 107, 110203. http://dx.doi.org/10.1016/j.msec.2019.110203. PMid:31761220.
Aoki, P. H., Furini, L. N., Alessio, P., Aliaga, A. E., & Constantino, C. J. (2013). Surface-enhanced Raman scattering (SERS) applied to cancer diagnosis and detection of pesticides, explosives, and drugs. Reviews in Analytical Chemistry, 32(1), 55-76. https://doi.org/10.1515/revac-2012-0019.
Arias, L. S., Pessan, J. P., Souza Neto, F. N., Lima, B. H. R., Camargo, E. R., Ramage, G., Delbem, A. C. B., & Monteiro, D. R. (2020). Novel nanocarrier of miconazole based on chitosan-coated iron oxide nanoparticles as a nanotherapy to fight Candida biofilms. Colloids and Surfaces. B, Biointerfaces, 192, 111080. http://dx.doi.org/10.1016/j.colsurfb.2020.111080. PMid:32361504.
Asghari-Paskiabi, F., Imani, M., Rafii-Tabar, H., & Razzaghi-Abyaneh, M. (2019). Physicochemical properties, antifungal activity and cytotoxicity of selenium sulfide nanoparticles green synthesized by Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 516(4), 1078-1084. http://dx.doi.org/10.1016/j.bbrc.2019.07.007. PMid:31280861.
Bagirova, M., Dinparvar, S., Allahverdiyev, A. M., Unal, K., Abamor, E. S., & Novruzova, M. (2020). Investigation of antileshmanial activities of Cuminum cyminum based green silver nanoparticles on L. tropica promastigotes and amastigotes in vitro. Acta Tropica, 208, 105498. http://dx.doi.org/10.1016/j.actatropica.2020.105498. PMid:32428676.
Bahari, D., Babamiri, B., Salimi, A., & Salimizand, H. (2021). Ratiometric fluorescence resonance energy transfer aptasensor for highly sensitive and selective detection of Acinetobacter baumannii bacteria in urine sample using carbon dots as optical nanoprobes. Talanta, 221, 121619. http://dx.doi.org/10.1016/j.talanta.2020.121619. PMid:33076147.
Baker, A., Syed, A., Alyousef, A. A., Arshad, M., Alqasim, A., Khalid, M., & Khan, M. S. (2020). Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria. Microbial Pathogenesis, 148, 104467. http://dx.doi.org/10.1016/j.micpath.2020.104467. PMid:32877723.
Barroso, T. G., Martins, R. C., Fernandes, E., Cardoso, S.,Rivas, J., & Freitas, P. P. (2018). Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. Biosensors and Bioelectronics, 100, 259-265. https://dx.doi.org/10.1016/j.bios.2017.09.004.
Basso, C. R., Tozato, C. C., Crulhas, B. P., Castro, G. R., Junior, J. P.A., & Pedrosa, V. A. (2018). An easy way to detect dengue virus using nanoparticle-antibody conjugates. Virology, 513, 85-90. http://dx.doi.org/10.1016/j.virol.2017.10.001. PMid:29035789.
Basu, M., Seggerson, S., Henshaw, J., Jiang, J., del A Cordona, R.,Lefave, C., Boyle, P. J., Miller, A., Pugia, M., & Basu, S. (2004).Nano-biosensor development for bacterial detection during human kidney infection: use of glycoconjugate-specific antibodybound gold NanoWire arrays (GNWA). Glycoconjugate Journal, 21(8-9), 487-496. http://dx.doi.org/10.1007/s10719-004-5539-1. PMid:15750790.
Begum, I., Ameen, F., Soomro, Z., Shamim, S., AlNadhari, S., Almansob, A., Al-Sabri, A., & Arif, A. (2021). Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. Journal of King Saud University-Science, 33(1), 101231. http://dx.doi.org/10.1016/j.jksus.2020.101231.
Bhattarakosol, P., Plaignam, K., & Sereemaspun, A. (2018). Immunogold-agglutination assay for direct detection of HPV16 E6 and L1 proteins from clinical specimens. Journal of
Virological Methods, 255, 60-65. http://dx.doi.org/10.1016/j.jviromet.2018.02.009. PMid:29447912.
Bhushan, B., Luo, D., Schricker, S. R., Sigmund, W., & Zauscher, S.(Eds.). (2014). Handbook of nanomaterials properties. Springer. http://dx.doi.org/10.1007/978-3-642-31107-9.
Bocate, K. P., Reis, G. F., Souza, P. C., Oliveira Junior, A. G.,Durán, N., & Nakazato, G. (2019). Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International Journal of Food Microbiology, 291, 79-86. http://dx.doi.org/10.1016/j.ijfoodmicro.2018.11.012.PMid:30476736.
Buosi, F. S., Alaimo, A., Di Santo, M. C., Elías, F., García Liñares, G., & Acebedo, S. L. (2020). Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments: impact on human ARPE-19 culture cells. International Journal of Biological Macromolecules, 165(Pt A),804-821. http://dx.doi.org/10.1016/j.ijbiomac.2020.09.234. PMid:33011262.
Buzea, C., Pacheco, I. I., & Robbie, K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2(4), MR17-MR71. http://dx.doi.org/10.1116/1.2815690. PMid:20419892.
Cavali, M., Soccol, C. R., Tavares, D., Torres, L. A. Z., Tanobe, V. O. A.,Zandoná Filho, A., & Woiciechowski, A. L. (2021). Valorization of lignin from pine (Pinus spp.) residual sawdust: antioxidant activity and application in the green synthesis of silver nanoparticles for antibacterial purpose. Biomass Conversion and Biorefinery. In press. http://dx.doi.org/10.1007/s13399-021-01940-w.
Chen, P., Gates-Hollingsworth, M., Pandit, S., Park, A., Montgomery, D., & AuCoin, C. D. (2019). Paper-based Vertical Flow Immunoassay (VFI) for detection of bio-threat pathogens. Talanta, 191, 81-88. http://dx.doi.org/10.1016/j.talanta.2018.08.043. PMid:30262102.
Chen, S., Frank, Y. C., & Voordouw, G. (2018). Three-dimensional graphene nanosheet doped with gold nanoparticles as electrochemical DNA biosensor for bacterial detection. Sensors and Actuators. B, Chemical, 262, 860-868. http://dx.doi.org/10.1016/j.snb.2018.02.093.
Cherian, A. K., Rana, A. C., & Jain, S. K. (2000). Selfassembled carbohydrate-stabilized ceramic nanoparticles for the parentral delivery of insulin. Drug Development and Industrial Pharmacy, 26(4), 459-463. http://dx.doi.org/10.1081/DDC-100101255. PMid:10769790.
Chung, I. M., Rajakumar, G., Gomathi, T., Park, S.-K., Kim, S.-H., & Thiruvengadam, M. (2017). Nanotechnology for human food: advances and perspective. Frontiers in Life Science, 10(1), 63-72. http://dx.doi.org/10.1080/21553769.2017.1365775.
Cinti, S., Basso, M., Moscone, D., & Arduini, F. (2017). A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Analytica Chimica Acta, 960, 123-130. http://dx.doi.org/10.1016/j.aca.2017.01.010. PMid:28193355.
Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharmaceutical Research, 13(12), 1838-1845. http://dx.doi.org/10.1023/A:1016085108889. PMid:8987081.
Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering C, 58, 36-43. http://dx.doi.org/10.1016/j.msec.2015.08.018. PMid:26478284.
Dobson, J. (2006). Magnetic nanoparticles for drug delivery. Drug Development Research, 67(1), 55-60. http://dx.doi.org/10.1002/ddr.20067.
Ealia, A. M. S., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series. Materials Science and Engineering, 263, 032019. http://dx.doi.org/10.1088/1757-899X/263/3/032019.
Elahi, N., Kamali, M., Baghersad, M. H., & Amini, B. (2019). A fluorescence nano-biosensors immobilization on iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp.
Materials Science and Engineering C, 105, 110113. http://dx.doi.org/10.1016/j.msec.2019.110113. PMid:31546438.
Emam, H. E., El-Hawary, N. S., & Ahmed, H. B. (2017). Green technology for durable finishing of viscose fibers via self-formation of AuNPs. International Journal of Biological Macromolecules, 96, 697-705. http://dx.doi.org/10.1016/j.ijbiomac.2016.12.080. PMid:28049013.
Etchegoin, P. G., & Le Ru, E. C. (2008). A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 10(40), 6079-6089. http://dx.doi.org/10.1039/b809196j. PMid:18846295.
Faraday, M. (1857). The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light Philos. The Royal Society, 147, 145-181. https://doi.org/10.1098/rstl.1857.0011.
Farrag, H. M. M., Mostafa, F. A. A. M., Mohamed, M. E., & Huseein, E. A. M. (2020). Green biosynthesis of silver nanoparticles by Aspergillusniger and its antiamoebic effect against Allovahlkampfia spelaea trophozoite and cyst. Experimental Parasitology, 219, 108031. http://dx.doi.org/10.1016/j.exppara.2020.108031. PMid:33091422.
Favaro, M. T. P., Rodrigues-Jesus, M. J., Venceslau-Carvalho, A. A., Alves, R. P. D. S., Pereira, L. R., Pereira, S. S., Andreata-Santos, R., & Souza, L. C. F. (2021). Nanovaccine based on self-assembling nonstructural protein 1 boosts antibody responses to Zika virus. Nanomedicine; Nanotechnology, Biology, and Medicine, 32, 102334. 
http://dx.doi.org/10.1016/j.nano.2020.102334. PMid:33188909.
Gahlawat, G., & Choudhury, A. R. (2019). A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Advances, 9(23), 12944-12967.  http://dx.doi.org/10.1039/C8RA10483B.
Ganganboina, A. B., Chowdhury, A. D., Khoris, I. M., Doong, R., Li, T., Hara, T., Abe, F., Suzuki, T., & Park, E. Y. (2020). Hollow magnetic-fluorescent nanoparticles for dual-modality virus detection. Biosensors & Bioelectronics, 170, 112680. http://dx.doi.org/10.1016/j.bios.2020.112680. PMid:33032196.
Gao, J., Li, H., Torab, P., Mach, K. E., Craft, D. W., Thomas, N. J., Puleo, C. M., Liao, J. C., Wang, T. H., & Wong, P. K. (2019). Nanotube assisted microwave electroporation for single cell pathogen identification and antimicrobial susceptibility testing. Nanomedicine; Nanotechnology, Biology, and Medicine, 17, 246-253. http://dx.doi.org/10.1016/j.nano.2019.01.015. PMid:30794964.
Ghayempour, S., & Montazer, M. (2017). Ultrasound irradiation based in-situ synthesis of star-like Tragacanth gum/zinc oxide nanoparticles on cotton fabric. Ultrasonics Sonochemistry, 34, 458-465. http://dx.doi.org/10.1016/j.ultsonch.2016.06.019. PMid:27773269.
Goel, N., Ahmad, R., Singh, R., Sood, S., & Khare, S. K. (2021). Biologically synthesized silver nanoparticles by Streptomyces sp. EMB24 extracts used against the drug-resistant bacteria. Bioresource Technology Reports, 15, 100753. http://dx.doi.org/10.1016/j.biteb.2021.100753.
Gordon-Falconí, C., Iannone, M. F., Zawoznik, M. S., Cumbal, L., Debut, A., & Groppa, M. D. (2020). Synthesis of silver nanoparticleswith remediative potential using discarded yerba mate: An ecofriendly approach. Journal of Environmental Chemical Engineering, 8(6), 104425. https://doi.org/10.1016/j.jece.2020.104425.
Guerra, F. D., Attia, M. F., Whitehead, D. C., & Alexis, F. (2018). Nanotechnology for environmental remediation: materials and applications. Molecules, 23(7), 1760. http://dx.doi.org/10.3390/molecules23071760. PMid:30021974.
Guisbiers, G., Lara, H. H., Mendoza-Cruz, R., Naranjo, G., Vincent, B. A., Peralta, X. G., & Nash, K. L. (2017). Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine; Nanotechnology, Biology, and Medicine, 13(3), 1095-1103. http://dx.doi.org/10.1016/j.nano.2016.10.011. PMid:27793789.
Halder, A., Das, S., Ojha, D., Chattopadhyay, D., & Mukherjee, A. (2018). Highly monodispersed gold nanoparticles synthesis and inhibition of herpes simplex virus infections. Materials Science and Engineering C, 89, 413-421. http://dx.doi.org/10.1016/j.msec.2018.04.005. PMid:29752114.
Hassanpour, S., Saadati, A., & Hasanzadeh, M. (2020). pDNA conjugated with citrate capped silver nanoparticles towards ultrasensitive bio-assay of Haemophilus influenza in human biofluids: a novel optical biosensor. Journal of Pharmaceutical and Biomedical Analysis, 180, 113050. http://dx.doi.org/10.1016/j.jpba.2019.113050. PMid:31881396.
Hirsch, L. R., Stafford, R. J., Bankson, J. A., Sershen, S. R., Rivera, B., Price, R. E., Hazle, J. D., Halas, N. J., & West, J. L. (2003). Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13549-13554. http://dx.doi.org/10.1073/pnas.2232479100. PMid:14597719
Horikoshi, S., & Serpone, N. (2013). Introduction to nanoparticles. In S. Horikoshi & N. Serpone (Eds.), Microwaves in nanoparticle synthesis: Fundamentals and applications (pp. 1-24). Wiley Online Library. http://dx.doi.org/10.1002/9783527648122.ch1
Jain, U., Gupta, S., Soni, S., Khurana, M. P., & Chauhan, N. (2020). Triple-nanostructuring-based noninvasive electro-immune sensing of CagA toxin for Helicobacter pylori detection. Helicobacter, 25(4), e12706. http://dx.doi.org/10.1111/hel.12706. PMid:32468682.
Jalab, J., Abdelwahed, W., Kitaz, A., & Al-Kayali, R. (2021). Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon, 7(9), e08033. http://dx.doi.org/10.1016/j.heliyon.2021.e08033. PMid:34611564.
Jangpatarapongsa, K., Saimuang, K., Polpanich, D., Thiramanas, R., Techakasikornpanich, M., Yudech, P., Paripurana, V., Leepiyasakulchai, C., & Tangboriboonrat, P. (2021). Increased sensitivity of enterotoxigenic Escherichia coli detection in stool samples using oligonucleotide immobilized-magnetic nanoparticles. Biotechnology Reports, 32, e00677. http://dx.doi.org/10.1016/j.btre.2021.e00677. PMid:34631437.
Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9, 1050-1074. http://dx.doi.org/10.3762/bjnano.9.98. PMid:29719757.
Jijie, R., Kahlouche, K., Barras, A., Yamakawa, N., Bouckaert, J., Gharbi, T., Szunerits, S., & Boukherroub, R. (2018). Reduced graphene oxide/polyethylenimine based immunosensor for the selective and sensitive electrochemical detection of uropathogenic Escherichia coli. Sensors and Actuators. B, Chemical, 260, 255- 263. http://dx.doi.org/10.1016/j.snb.2017.12.169.
Johnson-McDaniel, D., Barrett, C. A., Sharafi, A., & Salguero, T. T. (2013). Nanoscience of an ancient pigment. 
Journal of the American Chemical Society, 135(5), 1677-1679. http://dx.doi.org/10.1021/ja310587c. PMid:23215240.
Joshi, S. M., De Britto, S., Jogaiah, S., & Ito, S. (2019). Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules, 9(9), 419. http://dx.doi.org/10.3390/biom9090419. PMid:31466286.
Kalita, P., Chaturvedula, L. M., Sritharan, V., & Gupta, S. (2017). In vitro flow-through assay for rapid detection of endotoxin in human sera: a proof-of-concept. Nanomedicine; Nanotechnology, Biology, and Medicine, 13(4), 1483-1490. http://dx.doi.org/10.1016/j.nano.2017.01.012. PMid:28131882.
Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. http://dx.doi.org/10.1016/j.arabjc.2017.05.011.
Kobayashi, R. K. T., & Nakazato, G. (2020). Nanotechnology for antimicrobials. Frontiers in Microbiology, 11, 1421. http://dx.doi.org/10.3389/fmicb.2020.01421. PMid:32733399.
Kong, B., Seog, J. H., Graham, L. M., & Lee, S. B. (2011). Experimental considerations on the cytotoxicity of nanoparticles. Nanomedicine, 6(5), 929-941. http://dx.doi.org/10.2217/
nnm.11.77. PMid:21793681.
Landry, M. P., Ando, H., Chen, A. Y., Cao, J., Kottadiel, V. I., Chio, L., Yang, D., Dong, J., Lu, T. K., & Strano, M. S. (2017). Singlemolecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nature Nanotechnology, 12(4), 368-377. http://dx.doi.org/10.1038/nnano.2016.284. PMid:28114298.
Lee, N., Ko, W., & Hsueh, P. (2019). Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Frontiers in Pharmacology, 10, 1153. http://dx.doi.org/10.3389/fphar.2019.01153. PMid:31636564.
Leonhardt, U. (2007). Invisibility cup. Nature Photonics, 1(4), 207-208. http://dx.doi.org/10.1038/nphoton.2007.38.
Li, X., Xu, H., Chen, Z. S., & Chen, G. (2011). Biosynthesis of nanoparticles by microorganisms and their applications. Journal of Nanomaterials, 2011, 1-16. http://dx.doi.
org/10.1155/2011/270974.
Li, Y., Liu, Y., Kim, E., Song, Y., Tsao, C., Teng, Z., Gao, T., Mei, L., Bentley, W. E., Payne, G. F., & Wang, Q. (2018). Electrodeposition of a magnetic and redox-active chitosan film for capturing and sensing metabolic active bacteria. Carbohydrate Polymers, 195, 505-514. http://dx.doi.org/10.1016/j.carbpol.2018.04.096. PMid:29805005.
Ling, Y. P., Heng, L. Y., & Chee, H. Y. (2019). A quantification strategy for DNA hybridization via measurement of adsorbed anthraquinone monosulphonic acid on silica nanospheres. Measurement, 135, 640-650. http://dx.doi.org/10.1016/j.measurement.2018.12.026.
Liu, X., Zhang, P., Li, X., Chen, H., Dang, Y., Larson, C., Roco, M. C., & Wang, X. (2009). Trends for nanotechnology development in China, Russia, and India. Journal of Nanoparticle Research, 11(8), 1845-1866. http://dx.doi.org/10.1007/s11051-009-9698-7. PMid:21170128.
Lopreside, A., Calabretta, M. M., Montali, L., Ferri, M., Tassoni, A., Branchini, B. R., Southworth, T., D’Elia, M., Roda, A., & Michelini, E. (2019). Prêt-à-porter nanoYESα and nanoYESβ bioluminescent cell biosensors for ultrarapid and sensitive screening of endocrinedisrupting chemicals. Analytical and Bioanalytical Chemistry, 11(19), 4937-4949. http://dx.doi.org/10.1007/s00216-019-01805-2. PMid:30972468.
Luechinger, N. A., Grass, R. N., Athanassiou, E. K., & Stark, W. J. (2010). Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chemistry of Materials, 22(1), 155-160. http://dx.doi.org/10.1021/cm902527n.
Malekjahani, A., Sindhwani, S., Syed, A. M., & Chan, W. C. (2019). Engineering steps for mobile point-of-care diagnostic devices. Accounts of Chemical Research, 52(9), 2406-2414. http://dx.doi.org/10.1021/acs.accounts.9b00200. PMid:31430118.
Mba, I. E., & Nweze, E. I. (2021). Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World Journal of Microbiology & Biotechnology, 37(6), 108. http://dx.doi.org/10.1007/s11274-021-03070-x. PMid:34046779.
Mie, G. (1908). Beiträge zur optik trüber medien, speziell kolloidaler metallösungen. Annalen der Physik, 330(3), 377-445. http://dx.doi.org/10.1002/andp.19083300302.
Mikaelyan, M. V., Poghosyan, G. G., Hendrickson, O. D., Dzantiev, B. B., & Gasparyan, V. K. (2017). Wheat germ agglutinin and Lens culinaris agglutinin sensitized anisotropic silver nanoparticles in detection of bacteria: a simple photometric assay. Analytica Chimica Acta, 981, 80-85. http://dx.doi.org/10.1016/j.aca.2017.05.022. PMid:28693732.
Mobed, A., Hasanzadeh, M., Shadjou, N., Hassanpour, S., Saadati, A., & Agazadeh, M. (2020). Immobilization of ssDNA on the surface of silver nanoparticles-graphene quantum dots modified by gold nanoparticles towards biosensing of microorganism.  Microchemical Journal, 152, 104286. http://dx.doi.org/10.1016/j. microc.2019.104286.
Mohammadyari, M., Mozaffari, Z., & Zarif, B. R. (2020). Study of synergistic effect of copper and silver nanoparticles with 10% benzalkonium chloride on Pseudomonas aeruginosa. Gene Reports, 20, 100743. http://dx.doi.org/10.1016/j.genrep.2020.100743.
Mohanpuria, P., Rana, N. K., & Yadav, S. K. (2008). Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 10(3), 507-517. http://dx.doi.org/10.1007/s11051-007-9275-x.
Moisoiu, V., Socaciu, A., Stefancu, A., Iancu, S. D., Boros, I., Alecsa, C. D., ... & Eniu, D. T. (2019). Breast cancer diagnosis by surfaceenhanced Raman scattering (SERS) of urine. Applied Sciences, 9(4), 806. https://doi.org/10.3390/app9040806.
Mukadam, I. Z., Machhi, J., Herskovitz, J., Hasan, M., Oleynikov, M. D., Blomberg, W. R., Svechkarev, D., Mohs, A. M., Zhou, Y., Dash, P., McMillan, J., Gorantla, S., Garrison, J., Gendelman, H. E., & Kevadiya, B. D. (2020). Rilpivirine-associated aggregationinduced emission enables cell-based nanoparticle tracking.
Biomaterials, 231, 119669. http://dx.doi.org/10.1016/j.biomaterials.2019.119669. PMid:31865227.
Nagraik, R., Kaushal, A., Gupta, S., Sethi, S., Sharma, A., & Kumar, D. (2020). Nanofabricated versatile electrochemical sensor for Leptospira interrogans detection. Journal of Bioscience and Bioengineering, 129(4), 441-446. http://dx.doi.org/10.1016/j.jbiosc.2019.11.003. PMid:31786101.
Nakai, I., Numako, C., Hosono, H., & Yamasaki, K. (1999). Origin of the red color of Satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy. Journal of the American Ceramic Society, 82(3), 689-695. http://dx.doi.org/10.1111/j.1151-2916.1999.tb01818.x.
Namasivayam, S. K. R., Rabel, A. M., Prasana, R., Bharani, R. S. A., & Nachiyar, C. V. (2021). Gum acacia PEG iron oxide nanocomposite (GA-PEG-IONC) induced pharmacotherapeutic activity on the Las R gene expression of Pseudomonas aeruginosa and HOXB13 expression of prostate cancer (Pc 3) cell line. A green therapeutic approach of molecular mechanism inhibition. International Journal of Biological Macromolecules, 190, 940-959. http://dx.doi.org/10.1016/j.ijbiomac.2021.08.162. PMid:34478798.
Neethu, S., Midhun, S. J., Radhakrishnan, E. K., & Jyothis, M.(2020). Surface functionalization of central venous catheter with mycofabricated silver nanoparticles and its antibiofilm activity on multidrug resistant Acinetobacter baumannii. Microbial Pathogenesis, 138, 103832. http://dx.doi.org/10.1016/j.micpath.2019.103832. PMid:31689474.
Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science, 275(5303), 1102-1106. http://dx.doi.org/10.1126/science.275.5303.1102. PMid:9027306.
Nikolopoulou, S. G., Boukos, N., Sakellis, E., & Efthimiadou, E. K. (2020). Synthesis of biocompatible silver nanoparticles by a modified polyol method for theranostic applications: studies on red blood cells, internalization ability and antibacterial activity. Journal of Inorganic Biochemistry, 211, 111177. http://dx.doi.org/10.1016/j.jinorgbio.2020.111177. PMid:32795713.
Nogueira, S. S., Araujo-Nobre, A. R., Mafud, A. C., Guimarães, M. A., Alves, M. M. M., Plácido, A., Carvalho, F. A. A., Arcanjo, D. D. R., Mascarenhas, Y., Costa, F. G., Albuquerque, P., Eaton, P., Leite, J. R. S. A., Silva, D. A., & Cardoso, V. S. (2019). Silver nanoparticle stabilized by hydrolyzed collagen and natural polymers: synthesis, characterization and antibacterial-antifungal evaluation. International Journal of Biological Macromolecules, 135, 808-814. http://dx.doi.org/10.1016/j.ijbiomac.2019.05.214. PMid:31158421.
Noor, S., Shah, Z., Javed, A., Ali, A., Hussain, S. B., Zafar, S., Ali, H., & Muhammad, S. A. (2020). A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 174, 105966. http://dx.doi.org/10.1016/j.mimet.2020.105966. PMid:32474053.
Pinheiro, A. V., Han, D., Shih, W. M., & Yan, H. (2011). Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 6(12), 763-772. http://dx.doi.org/10.1038/nnano.2011.187. PMid:22056726.
Popli, D., Anil, V., Subramanyam, A. B., Namratha, M. N., Ranjitha, V. R., Rao, S. N., Rai, R. V., & Govindappa, M. (2018). Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 676-683. http://dx.doi.org/10.1080/21691401.2018.1434188. PMid:29400565.
Potbhare, A. K., Chaudhary, R. G., Chouke, P. B., Yerpude, S., Mondal, A., Sonkusare, V. N., Rai, A. R., & Juneja, H. D. (2019a). Phytosynthesis of nearly monodisperse CuO nanospheres using Phyllanthus reticulatus/Conyza bonariensis and its antioxidant/ antibacterial assays. Materials Science and Engineering C, 99, 783-793. http://dx.doi.org/10.1016/j.msec.2019.02.010. PMid:30889753.
Potbhare, A. K., Chauke, P. B., Zahra, S., Sonkusare, V., Bagade, R., & Ummekar, M. (2019b). Microwave-mediated Fabrication of mesoporous bi-doped CuAl2O4 nanocomposites for antioxidant and antibacterial performances. Materials Today: Proceedings, 15(3), 454-463.
Rajan, S. T., Thampi, V. V. A., Kesavan, K. S., & Subramanian, B. (2019). Surface functionalization and antibacterial activity of biomedical textiles with metal oxides-carbon nanocomposites. Ceramics International, 45(5), 5210-5217. http://dx.doi.org/10.1016/j.ceramint.2018.11.216.
Raji, M. A., Aloraij, Y., Alhamlan, F., Suaifan, G., Weber, K., Cialla-May, D., Popp, J. & Zourob, M. (2021). Development of rapid colorimetric assay for the detection of Influenza A and B viruses. Talanta, 221, 121468. http://dx.doi.org/10.1016/j.talanta.2020.121468. PMid:33076087.
Rashidiani, J., Kamali, M., Sedighian, H., Akbariqomi, M., Mansouri, M., & Kooshki, H. (2018). Ultrahigh sensitive enhancedelectrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: a comparative study. Biosensors & Bioelectronics, 102, 226-233. http://dx.doi.org/10.1016/j.bios.2017.11.011. PMid:29149688.
Regiart, M., Gimenez, A. M., Marques, R. F., Soares, I. S., & Bertotti, M. (2021). Microfluidic device based on electrodeposited Nanoporous Gold/Carbon Nanotubes for Plasmodium vivax detection. Sensors and Actuators. B, Chemical, 340, 129961. http://dx.doi.org/10.1016/j.snb.2021.129961.
Rizzo, M. G., Carnazza, S., Plano, L. M., Franco, D., Nicolò, M. S., Zammuto, V., Petralia, S., Calabrese, G., Gugliandolo, C., Conoci, S., & Guglielmino, S. P. P. (2021). Rapid detection of bacterial pathogens in blood through engineered phages-beads and integrated Real-Time PCR into MicroChip. Sensors and Actuators. B, Chemical, 329, 129227. http://dx.doi.org/10.1016/j.snb.2020.129227.
Roberts, C. M., Shahin, S. A., Wen, W., Finlay, J. B., Dong, J., Wang, R., Dellinger, T. H., Zink, J. I., Tamanoi, F., & Glackin, C. A. (2017). Nanoparticle delivery of siRNA against TWIST to reduce drug resistance and tumor growth in ovarian cancer models. Nanomedicine; Nanotechnology, Biology, and Medicine, 13(3), 965-976. http://dx.doi.org/10.1016/j.nano.2016.11.010. PMid:27890656.
Sadani, K., Muthuraj, L., Nag, P., Fernandes, M., Kondabagil, K., Mukhopadhyay, C., & Mukherji, S. (2020). A point of use sensor assay for detecting purely viral versus viral-bacterial samples. 
Sensors and Actuators. B, Chemical, 322, 128562. http://dx.doi.org/10.1016/j.snb.2020.128562.
Safarpour, H., Pourhassan-Moghaddam, M., Spotin, A., Majdi, H., Barac, A., Yousefi, M., & Ahmadpour, E. (2021). A novel enhanced dot blot immunoassay using colorimetric biosensor for detection of Toxoplasma gondii infection. Comparative Immunology, Microbiology and Infectious Diseases, 79, 101708. http://dx.doi.org/10.1016/j.cimid.2021.101708. PMid:34481108.
Schaming, D., & Remita, H. (2015). Nanotechnology: from the ancient time to nowadays. Foundations of Chemistry, 17(3), 187-205. http://dx.doi.org/10.1007/s10698-015-9235-y.
Sheffee, N. S., Rubio-Reyes, P., Mirabal, M., Calero, R., CarrilloCalvet, H., Chen, S., Chin, K. L., Shakimi, N. A. S., Anis, F. Z., Suraiya, S., Sarmiento, M. E., Norazmi, M. N., Acosta, A., & Rehm, B. H. A. (2021). Engineered Mycobacterium tuberculosis antigen assembly into core-shell nanobeads for diagnosis of tuberculosis. Nanomedicine; Nanotechnology, Biology, and Medicine, 34, 102374. http://dx.doi.org/10.1016/j.nano.2021.102374. PMid:33675981.
Shi, Z., Jin, L., He, C., Li, Y., Jiang, C., Wang, H., Zhang, J., Wang, J., Zhao, W., & Zhao, C. (2020). Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. Journal of Colloid and Interface Science, 576, 1-9. http://dx.doi.org/10.1016/j.jcis.2020.04.115. PMid:32408158.
Shinde, N. C., Keskar, N. J., & Argade, P. D. (2012). Nanoparticles: advances in drug delivery systems. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 3, 922-929.
Shruthi, T. S., Meghana, M. R., Medha, M. U., Sanjana, S., Navya, P. N., & Kumar, D. H. (2019). Streptomycin functionalization on silver nanoparticles for improved antibacterial activity. Materials Today: Proceedings, 10, 8-15.
Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M.-Y., Dekker, N. H., & Dekker, C. (2006). Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Letters, 6(1), 89-95. http://dx.doi.org/10.1021/nl052107w. PMid:16402793.
Souza, S. V. J., Braga, C. Q., Brasil, C. L., Baptista, C. T., Reis, G. F., & Panagio, L. A. (2019). In vitro anti-Pythium insidiosum activity of biogenic silver nanoparticles. Medical Mycology, 57(7), 858-863. PMid:30597067.
Tahir, M. A., Dina, N. E., Cheng, H., Valev, V. K., & Zhang, L. (2021). Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. Nanoscale, 13(27), 11593-11634. https://doi.
org/10.1039/D1NR00708. 
Taniguchi, N. (1974). On the basic concept of nanotechnology. Proceeding of the International Conference on Production Engineering, Tokyo, 18-23.
Thiruvengadam, M., Rajakumar, G., & Chung, I. (2018). Nanotechnology: current uses and future applications in the food industry. 3 Biotech, 8(1), 74. PMid:29354385.
Valente, J. S. S., Brasil, C. L., Braga, C. Q., Zamboni, R., Sallis, E. S. V., Albano, A. P. N., Zambrano, C. G., Franz, H. C., Pötter, L., Panagio, L. A., Reis, G. F., Botton, S. A., & Pereira, D. I. B. (2020). Biogenic silver nanoparticles in the treatment of experimental pythiosis Bio-AgNP in pythiosis therapy. Medical Mycology, 58(7), 913-918. http://dx.doi.org/10.1093/mmy/myz141. PMid:32030424.
Vallet-Regí, M., Balas, F., & Arcos, D. (2007). Mesoporous materials for drug delivery. Angewandte Chemie International Edition, 46(40), 7548-7558. https://doi.org/10.1002/anie.200604488.
Van Staden, A. B., Kovacs, D., Cardinali, G., Picardo, M., Lebeko, M., & Khumalo, N. C. (2021). Synthesis and characterization of gold nanoparticles biosynthesised from Aspalathus linearis (Burm.f.)R. Dahlgren for progressive macular hypomelanosis. Journal of Herbal Medicine, 29, 100481. http://dx.doi.org/10.1016/j.hermed.2021.100481.
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella Junior, M. F., Rejeski, D., & Hull, M. S. (2015). Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6, 1769-1780. http://dx.doi.org/10.3762/bjnano.6.181. PMid:26425429.
Vaquer, A., Alba-Patiño, A., Adrover-Jaume, C., Russell, S. M., Aranda, M., Borges, M., Mena, J., Del Castillo, A., Socias, A., Martín, L., Arellano, M. M., Agudo, M., Gonzalez-Freire, M., Besalduch, M., Clemente, A., Barón, E., & de la Rica, R. (2021). Nanoparticle transfer biosensors for the non-invasive detection of SARS-CoV-2 antigens trapped in surgical face masks. Sensors and Actuators. B, Chemical, 345, 130347. http://dx.doi.org/10.1016/j.snb.2021.130347. PMid:34188360.
Vedova-Costa, J. M., Ramos, E. L., Boschero, R. A., Ferreira, G. N., Soccol, V. T., Santiani, M. H., Pacce, V. D., Lustosa, B. P. R., Vicente, V. A., & Soccol, C. R. (2021). A review on
COVID-19 diagnosis tests approved for use in brazil and the impact on pandemic control. Brazilian Archives of Biology and Technology, 64, e21200147. http://dx.doi.org/10.1590/1678-4324-75years-2021200147.
Venkateswarlu, S., Viswanath, B., Reddy, A. S., & Yoon, M.(2018). Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sensors and Actuators. B, Chemical, 258, 172-183. http://dx.doi.org/10.1016/j.snb.2017.11.044.
Wang, M., Hu, B., Yang, C., Zhang, Z., He, L., Fang, S., Qu, X., & Zhang, Q. (2018). Electrochemical biosensing based on proteindirected carbon nanospheres embedded with SnOx and TiO2 nanocrystals for sensitive detection of tobramycin. Biosensors & Bioelectronics, 99, 176-185. http://dx.doi.org/10.1016/j.bios.2017.07.059. PMid:28756323.
Wilczewska, A. Z., Niemirowicz, K., Markiewicz, K. H., & Car, H. (2012). Nanoparticles as drug delivery systems. Pharmacological Reports, 64(5), 1020-1037. http://dx.doi.org/10.1016/S1734-1140(12)70901-5. PMid:23238461.
Wu, X., Xu, H., Luo, F., Wang, J., Zhao, L., Zhou, X., Yang, Y., Cai, H., Sun, P., & Zhou, H. (2021). Sizes and ligands tuned gold nanocluster acting as a new type of monoamine oxidase B inhibitor. Biosensors & Bioelectronics, 189, 113377. http://dx.doi.org/10.1016/j.bios.2021.113377. PMid:34090156.
Wysocka-Król, K., Olsztyńska-Janus, S., Plesch, G., Plecenik, A., Podbielska, H., & Bauer, J. (2018). Nano-silver modified silica particles in antibacterial photodynamic therapy. Applied Surface Science, 461, 260-268. http://dx.doi.org/10.1016/j.apsusc.2018.05.014.
You, H., Yang, S., Ding, B., & Yang, H. (2013). Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chemical Society Reviews, 42(7), 2880-2904. http://dx.doi.org/10.1039/C2CS35319A. PMid:23152097.
Zawisza, K., Sobierajska, P., Nowak, N., Kedziora, A., Korzekwa, K., Pozniak, B., Tikhomirov, M., Miller, J., Mrowczynska, L., & Wiglusz, R. J. (2020). Preparation and preliminary evaluation of bio-nanocomposites based on hydroxyapatites with antibacterial properties against anaerobic bacteria. Materials Science and Engineering C, 106, 110295. http://dx.doi.org/10.1016/j.msec.2019.110295. PMid:31753350.
Zhang, J., Wang, M., & Webster, T. J. (2018). Silver-coated gold nanorods as a promising antimicrobial agent in the treatment of cancer-related infections. International Journal of Nanomedicine, 13, 6575-6583. http://dx.doi.org/10.2147/IJN.S169489. PMid:30410338.
Zhang, Q., Liu, Y., Zhang, W., Huang, J., Li, H., Lu, Y., Zheng, M., & Zheng, D. L. (2021a). Synthesis, antifungal activity, and cytotoxicity of AgBr-NP@CTMAB Hybrid and its application in PMMA. International Journal of Nanomedicine, 16, 3091-3103. http://dx.doi.org/10.2147/IJN.S290673. PMid:33953557.
Zhang, Y., Ren, F., Wang, G., Liao, T., Hao, Y., & Zhang, H. (2021b). Rapid and sensitive pathogen detection platform based on a lanthanide-labeled immunochromatographic strip test combined with immunomagnetic separation. Sensors and Actuators. B, Chemical, 329, 129273. http://dx.doi.org/10.1016/j.snb.2020.129273.
Zhou, X., Shi, J., Zhang, J., Zhao, K., Deng, A., & Li, J. (2019). Multiple signal amplification chemiluminescence immunoassay for chloramphenicol using functionalized SiO2 nanoparticles as probes and resin beads as carriers. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 222, 117177. http://dx.doi.org/10.1016/j.saa.2019.117177. PMid:31176150.
Zopf, D., Pittner, A., Dathe, A., Grosse, N., Csáki, A., Arstila, K., Toppari, J. J., Schott, W., Dontsov, D., Uhlrich, G., Fritzsche, W., & Stranik, O. (2019). Plasmonic nanosensor array for multiplexed dna-based pathogen detection. ACS Sensors, 4(2), 335-343. http://dx.doi.org/10.1021/acssensors.8b01073. PMid:30657315.
Zrimsek, A. B., Wong, N. L., & Van Duyne, R. P. (2016). Single molecule surface-enhanced raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof. The Journal of Physical Chemistry C, 120(9), 5133-5142. http://dx.doi.org/10.1021/acs.jpcc.6b00606.
 


Submitted date:
11/12/2021

Accepted date:
12/07/2021

61f47f59a9539559ca6e9403 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections