Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.20226204
Biotechnology Research and Innovation Journal
Research paper

RNAi and Bt approaches to insect-pest control: analyses and perspectives on trends in global patent publications

Paolo Lucas Rodrigues-Silva; Stéfanie Menezes de Moura; Luciano de Medeiros Dantas; Gisele Pereira Domiciano; Maria Cristina Mattar da Silva; Magnólia de Araújo Campos; Maria Fatima Grossi-de-Sa

Downloads: 4
Views: 296

Abstract

Abstract: Insect-pests are a limiting factor in increasing agricultural production worldwide. Although major crops, including soybean (Glycine max), maize (Zea mays), and cotton (Gossypium hirsutum), face high pesticide costs in an attempt to mitigate or control pests, losses of up to 40% of production are recorded every year. In this scenario, transgenic crops remain one of the most promising biotechnological tools for reducing chemical pesticide costs. For instance, transgenic and non-transgenic technologies have been applied based on powerful approaches using double-stranded RNA (dsRNA) to silence essential genes of target insect-pests to silence them through RNA interference (RNAi) as well as Bacillus thuringiensis (Bt) toxins. Thus, patents using both dsRNA- and Bt-based technologies for insect-pest control in soybean, maize, and cotton crops were selected and evaluated in this study. We also compiled an updated list of countries and biotech companies that have filed patents using dsRNA or Bt-based technologies. We have used the World Intellectual Property Organization (WIPO) PatentScope international patent database to perform eight search strategies, using combinations of keywords and logical operators for patent search and retrieval. As a result, 93.9% of all selected patents were related to transgenic crops, whereas 6.1% were related to non-transgenic delivery approaches. Moreover, 51.2% of the patents described protection of Bt in transgenic crops, followed by 42.7% for RNAi in transgenic crops and 5.2% and 0.9% for non-transgenic Bt and RNAi technologies, respectively. Therefore, the current study attempts to promote innovative approaches based on existing and patented technologies to improve insect-pest control in crop plants.

Keywords

Bt toxins; Crop plants; dsRNA molecules; Insect-pest management; Filed patents; Technological prospection

References

Ai, X. Y., Ren, S., Liu, N., Huang, L., & Liu, X. (2019). Transgenic tobacco expressing dsRNA of the arginine kinase gene exhibits enhanced resistance against Helicoverpa armigera. Bulletin of Insectology, 72(1), 115-124.

Aklilu, E. (2021). Review on forward and reverse genetics in plant breeding. All Life, 14(1), 127-135. http://dx.doi.org/10.1080/ 26895293.2021.1888810.

Berman, K. H., Harrigan, G. G., Nemeth, M. A., Oliveira, W. S., Berger, G. U., Tagliaferro, F. S., Norte, T., & Novo, B. (2011). Compositional equivalence of insect-protected glyphosate-tolerant soybean MON 87701 x MON 89788 to conventional soybean extends across different world regions and multiple growing seasons. Journal of Agricultural and Food Chemistry, 59(21), 11643-11651. http:// dx.doi.org/10.1021/jf202782z. PMid:21985102.

Berman, K. H., Harrigan, G. G., Riordan, S. G., Nemeth, M. A., Hanson, C., Smith, M., Sorbet, R., Zhu, E., & Ridley, W. P. (2009). Compositions of seed, forage and processed fractions from insect-protected soybean MON 87701 are equivalent to those of conventional soybean. Journal of Agricultural and Food Chemistry, 57(23), 11360-11369. http://dx.doi.org/10.1021/ jf902955r. PMid:19891479.

Berman, K. H., Harrigan, G. G., Riordan, S. G., Nemeth, M. A., Hanson, C., Smith, M., Sorbet, R., Zhu, E., & Ridley, W. P. (2010). Compositions of forage and seed from second-generation glyphosate-tolerant soybean MON 89788 and insect-protected soybean MON 87701 from Brazil are equivalent to those of conventional soybean (Glycine max). Journal of Agricultural and Food Chemistry, 58(10), 6270-6276. http://dx.doi.org/10.1021/ jf1003978. PMid:20420455.

Betz, F. S., Hammond, B. G., & Fuchs, R. L. (2000). Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regulatory Toxicology and Pharmacology, 32(2), 156- 173. http://dx.doi.org/10.1006/rtph.2000.1426. PMid:11067772.

Brasil. (2004). Lei nº 10.973, de 2 de dezembro de 2004. Incentivos à inovação e à pesquisa científica e tecnológica no ambiente produtivo. http://www.planalto.gov.br/ccivil_03/_ato2004- 2006/2004/lei/l10.973.htm

Brasil. (2005). Lei nº 11.196, de 21 de novembro de 2005. Consolida os incentivos fiscais que as pessoas jurídicas podem usufruir de forma automática desde que realizem pesquisa tecnológica e desenvolvimento de inovação tecnológica. http://www.planalto. gov.br/ccivil_03/_ato2004-2006/2005/lei/l11196.htm

Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423-435. http://dx.doi.org/10.1016/j. toxicon.2006.11.022. PMid:17198720. Cagliari, D., Dias, N. P., Galdeano, D. M., dos Santos, E. Á., Smagghe,

G., & Zotti, M. J. (2019). Management of pest insects and plant diseases by non-transformative RNAi. Frontiers in Plant Science, 10, 1319. http://dx.doi.org/10.3389/fpls.2019.01319. PMid:31708946.

Carroll, M. J. (2016). The importance of regulatory data protection, exclusive use, and other forms of intellectual property rights in the crop protection industry. Pest Management Science, 72(9), 1631-1637. http://dx.doi.org/10.1002/ps.4316. PMid:27174559.

Castellanos, N. L., Smagghe, G., Sharma, R., Oliveira, E. E., & Christiaens, O. (2019). Liposome encapsulation and EDTA formulation of dsRNA targeting essential genes increase oral RNAi-caused mortality in the Neotropical stink bug Euschistus heros. Pest Management Science, 75(2), 537-548. http://dx.doi. org/10.1002/ps.5167. PMid:30094917.

Cebr. (2022). World economic league table 2022. http:// iraqieconomists.net/en/wp-content/uploads/sites/3/2021/12/ World-Economic-League-Table-2022.pdf

Chen, J., Lu, H.-R., Zhang, L., Liao, C.-H., & Han, Q. (2019). RNA interference-mediated knockdown of 3, 4-dihydroxyphenylacetaldehyde synthase affects larval development and adult survival in the mosquito Aedes aegypti. Parasites & Vectors, 12(1), 311-11. http://dx.doi. org/10.1186/s13071-019-3568-7. PMid:31234914.

Colli, W. (2011). Organismos transgênicos no Brasil: Regular ou desregular? Revista USP, 89(89), 148-173. http://dx.doi. org/10.11606/issn.2316-9036.v0i89p148-173.

Comissão Técnica Nacional de Biossegurança – CTNBIO. (2021). Resumo geral de plantas geneticamente modificadas aprovadas para comercialização. Ministério Da Ciência, Tecnologia, Inovações e Comunicação. http:// ctnbio.mctic.gov.br/documents/566529/1684467/ Tabela+de+Plantas+Aprovadas+para+ComercializaCom/e3087f9cc719-476e-a9bd-bfe75def842f?version=1.10

Cooper, A. M. W., Silver, K., Zhang, J., Park, Y., & Zhu, K. Y. (2019). Molecular mechanisms influencing the efficiency of RNA interference in insects. Pest Management Science, 75(1), 18-28. http://dx.doi.org/10.1002/ps.5126. PMid:29931761.

Cooper, A. M. W., Song, H., Yu, Z., Biondi, M., Bai, J., Shi, X., Ren, Z., Weerasekara, S. M., Hua, D. H., Silver, K., Zhang, J., & Zhu, K. Y. (2021). Comparison of strategies for enhancing RNA interference efficiency in Ostrinia nubilalis. Pest Management Science, 77(2), 635-645. http://dx.doi.org/10.1002/ps.6114. PMid:33002336.

Dias, N. P., Cagliari, D., Santos, E. A., Smagghe, G., Jurat-Fuentes, J. L., Mishra, S., Nava, D. E., & Zotti, M. J. (2020). Insecticidal gene silencing by RNAi in the neotropical region. Neotropical Entomology, 49(1), 1-11. http://dx.doi.org/10.1007/s13744- 019-00722-4. PMid:31749122.

Du, D., Geng, C., Zhang, X., Zhang, Z., Zheng, Y., Zhang, F., Lin, Y., & Qiu, F. (2014). Transgenic maize lines expressing a cry1C* gene are resistant to insect pests. Plant Molecular Biology Reporter, 32(2), 549-557. http://dx.doi.org/10.1007/s11105-013-0663-3.

Dunwell, J. M. (2005). Review: Intellectual property aspects of plant transformation. Plant Biotechnology Journal, 3(4), 371- 384. http://dx.doi.org/10.1111/j.1467-7652.2005.00142.x. PMid:17173626.

Dutta, S., Lanvin, B., & Wunsch-Vincent, S. (2020). Global innovation index 2020: Who will finance innovation? 13th ed. Fontainebleau and Geneva. https://www.wipo.int/edocs/pubdocs/en/wipo_ pub_gii_2020.pdf

Eski, A., Demirbağ, Z., & Demir, İ. (2019). Microencapsulation of an indigenous isolate of Bacillus thuringiensis by spray drying. Journal of Microencapsulation, 36(1), 1-9. http://dx.doi.org/1 0.1080/02652048.2019.1572238. PMid:30836029.

Firmino, A. A. P., Pinheiro, D. H., Moreira-Pinto, C. E., Antonino, J. D., Macedo, L. L. P., Martins-de-Sa, D., Arraes, F. B. M., Coelho, R. R., Fonseca, F. C. A., Silva, M. C. M., Engler, J. A., Silva, M. S., Lourenço-Tessutti, I. T., Terra, W. R., & Grossi-de-Sa, M. F. (2020). RNAi-mediated suppression of Laccase2 impairs cuticle tanning and molting in the cotton boll weevil (Anthonomus grandis). Frontiers in Physiology, 11, 591569. http://dx.doi. org/10.3389/fphys.2020.591569. PMid:33329040.

Food and Agriculture Organization – FAO. (2022). Crop prospects and food situation: Quarterly Global Report. https://doi. org/10.4060/cb8893en.

Garcia, R. A., Pepino Macedo, L. L., Nascimento, D. C., Gillet, F. X., Moreira-Pinto, C. E., Faheem, M., Basso, A. M. M., Mattar Silva, M. C., & Grossi-de-Sa, M. F. (2017). Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLoS One, 12(12), e0189600. http://dx.doi.org/10.1371/journal. pone.0189600. PMid:29261729.

Gebremichael, D. E., Haile, Z. M., Negrini, F., Sabbadini, S., Capriotti, L., Mezzetti, B., & Baraldi, E. (2021). RNA Interference strategies for future management of plant pathogenic fungi: Prospects and challenges. Plants, 10(4), 1-21. http://dx.doi.org/10.3390/ plants10040650. PMid:33805521.

Ghosh, S. K. B., & Gundersen-Rindal, D. E. (2017). Double strand RNA-mediated RNA interference through feeding in larval gypsy moth, Lymantria dispar (Lepidoptera: Erebidae). European Journal of Entomology, 114, 170-178. http://dx.doi.org/10.14411/ eje.2017.022.

Gogoi, A., Sarmah, N., Kaldis, A., Perdikis, D., & Voloudakis, A. (2017). Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Planta, 246(6), 1233-1241. http://dx.doi.org/10.1007/s00425-017-2776-7. PMid:28924923.

Gurusamy, D., Mogilicherla, K., & Palli, S. R. (2020). Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology, 104(4), e21677. http://dx.doi.org/10.1002/arch.21677. PMid:32291818.

Han, Q., Wang, Z., He, Y., Xiong, Y., Lv, S., Li, S., Zhang, Z., Qiu, D., & Zeng, H. (2017). Transgenic cotton plants expressing the HaHR3 gene conferred enhanced resistance to Helicoverpa armigera and improved cotton yield. International Journal of Molecular Sciences, 18(9), 1-12. http://dx.doi.org/10.3390/ ijms18091874. PMid:28867769.

He, K., Wang, Z., Zhou, D., Wen, L., Song, Y., & Yao, Z. (2003). Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology, 96(3), 935-940. http://dx.doi.org/10.1093/jee/96.3.935. PMid:12852639.

Hurley, T. M., & Mitchell, P. D. (2020). The value of insect management to US maize, soybean and cotton farmers. Pest Management Science, 76(12), 4159-4172. http://dx.doi.org/10.1002/ps.5974. PMid:32597004.

Instituto Nacional da Propriedade Industrial – INPI. (2020). Patentes. https://www.gov.br/inpi/pt-br/servicos/perguntas-frequentes/ patentes

International Service for the Acquisition of Agri-biotech – ISAAA. (2019). Global status of commercialized biotech/GM crops in 2019: Biotech crops drive socio-economic development and sustainable environment in the new frontier (ISAAA Brief). https://www. isaaa.org/resources/publications/briefs/55/executivesummary/ pdf/B55-ExecSum-English.pdf

International Service for the Acquisition of Agri-biotech – ISAAA. (2021). Event Name: MON87701. https://www.isaaa.org/ gmapprovaldatabase/event/default.asp?EventID=175

Jacques, S., Reidy-Crofts, J., Sperschneider, J., Kamphuis, L. G., Gao, L., Edwards, O. R., & Singh, K. B. (2020). An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes. Scientific Reports, 10(1), 1604. http://dx.doi. org/10.1038/s41598-020-58442-4. PMid:32005880.

Jain, R. G., Robinson, K. E., Asgari, S., & Mitter, N. (2021). Current scenario of RNAi-based hemipteran control. Pest Management Science, 77(5), 2188-2196. http://dx.doi.org/10.1002/ps.6153. PMid:33099867.

Jalaluddin, N. S. M., Othman, R. Y., & Harikrishna, J. A. (2019). Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Critical Reviews in Biotechnology, 39(1), 67-78. http://dx.doi.org/10.1080/073 88551.2018.1496064. PMid:30198341.

Japan Patent Office. (2018). IPC Definitions. https://www.jpo.go.jp/ support/general/searchportalhttps://www.jpo.go.jp/support/ general/searchportal/

Katoch, R., & Thakur, N. (2012). Insect gut nucleases: A challenge for RNA interference-mediated insect control strategies. International Journal of Biochemistry and Biotechnology, 1(8), 198-203.

Khan, S., Uddin, M. N., Rizwan, W., Khan, W., Farooq, M., Shah, A. S., Subhan, F., Aziz, F., Ur Rahman, K., Khan, A., Ali, S., & Muhammad, M. (2020). Mechanism of insecticide resistance in insects/pests. Polish Journal of Environmental Studies, 29(3), 2023-2030. http://dx.doi.org/10.15244/pjoes/108513.

Kim, E., Park, Y., & Kim, Y. (2015). A transformed bacterium expressing double-stranded RNA specific to integrin β1 enhances Bt Toxin efficacy against a polyphagous insect pest, Spodoptera exigua. PLoS One, 10(7), e0132631. http://dx.doi.org/10.1371/journal. pone.0132631. PMid:26171783.

Kim, J. S., & Je, Y. H. (2012). Milling effect on the control efficacy of spray-dried Bacillus thuringiensis technical powder against diamondback moths. Pest Management Science, 68(3), 321-323. http://dx.doi.org/10.1002/ps.2330. PMid:22413132.

Klümper, W., & Qaim, M. (2014). A meta-analysis of the impacts of genetically modified crops. PLoS One, 9(11), e111629. http:// dx.doi.org/10.1371/journal.pone.0111629. PMid:25365303. Knorr, E., Fishilevich, E., Tenbusch, L., Frey, M. L. F., Rangasamy,

M., Billion, A., Worden, S. E., Gandra, P., Arora, K., Lo, W., Schulenberg, G., Valverde-Garcia, P., Vilcinskas, A., & Narva, K. E. (2018). Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Scientific Reports, 8(1), 2061. http://dx.doi.org/10.1038/ s41598-018-20416-y. PMid:29391456.

Lamberth, C., Jeanmart, S., Luksch, T., & Plant, A. (2013). Current challenges and trends in the discovery of agrochemicals. Science, 341(6147), 742-746. http://dx.doi.org/10.1126/science.1237227. PMid:23950530.

Lin, Y. H., Huang, J. H., Liu, Y., Belles, X., & Lee, H. J. (2017). Oral delivery of dsRNA lipoplexes to German cockroaches protects dsRNA from degradation and induces RNAi response. Pest Management Science, 73(5), 960-966. http://dx.doi.org/10.1002/ps.4407. PMid:27470169.

Mao, Y. B., Tao, X., Xue, X., Wang, L., & Chen, X. (2011). Cotton plants expressing CYP6AE14 double-stranded RNA show enhanced resistance to bollworms. Transgenic Research, 20(3), 665-673. http://dx.doi.org/10.1007/s11248-010-9450-1. PMid:20953975.

McDougall, P. (2011). The cost and time involved in the discovery, development, and authorization of new plant biotechnologyderived trait. https://croplife.org/wp-content/uploads/pdf_files/ Getting-a-Biotech-Crop-to-Market-Phillips-McDougall-Study.pdf.

Mishra, S., Dee, J., Moar, W., Dufner-Beattie, J., Baum, J., Dias, N. P., Alyokhin, A., Buzza, A., Rondon, S. I., Clough, M., Menasha, S., Groves, R., Clements, J., Ostlie, K., Felton, G., Waters, T., Snyder, W. E., & Jurat-Fuentes, J. L. (2021). Selection for high levels of resistance to double-stranded RNA (dsRNA) in Colorado potato beetle (Leptinotarsa decemlineata Say) using non-transgenic foliar delivery. Scientific Reports, 11(1), 6523. http://dx.doi. org/10.1038/s41598-021-85876-1. PMid:33753776.

Palli, S. R. (2014). RNA interference in Colorado potato beetle: Steps toward development of dsRNA as a commercial insecticide. Current Opinion in Insect Science, 6, 1-8. http://dx.doi.org/10.1016/j. cois.2014.09.011. PMid:26705514.

Paradise, M. S., Perlak, F. J., & Toedebusch, A. S. (2009). Soybean plant and seed corresponding to transgenic event MON87701 and methods for detection thereof (Patent No. WO2009064652 (A1)). World Intellectual Property Organization.

Pardo-López, L., Soberón, M., & Bravo, A. (2013). Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection. FEMS Microbiology Reviews, 37(1), 3-22. http://dx.doi.org/10.1111/ j.1574-6976.2012.00341.x. PMid:22540421.

Pereira, S. A., & Quoniam, L. (2017). Intellectual property and patent prospecting as a basis for knowledge and innovation: A study on mobile information technologies and virtual processes of communication and management. Innovation & Management Review, 14, 301-310.

Rao, W., Zhan, Y., Chen, S., Xu, Z., Huang, T., Hong, X., Zheng, Y., Pan, X., & Guan, X. (2018). Flowerlike Mg(OH)2 cross-nanosheets for controlling Cry1Ac protein loss: Evaluation of insecticidal activity and biosecurity. Journal of Agricultural and Food Chemistry, 66(14), 3651-3657. http://dx.doi.org/10.1021/acs. jafc.8b00575. PMid:29584428.

Ravaschio, J. P., Faria, L. I. L., & Quoniam, L. (2010). O uso de patentes como fonte de informação em dissertações e teses de engenharia química: O caso da UNICAMP. Revista Digital de Biblioteconomia e Ciência Da Informação, 7(2), 219-232. http:// dx.doi.org/10.20396/rdbci.v7i2.1965.

Reyt, J. N., & Wiesenfeld, B. M. (2015). Seeing the forest for the trees: Exploratory learning, mobile technology, and knowledge workers’ role integration behaviors. Academy of Management Journal, 58(3), 739-762. http://dx.doi.org/10.5465/amj.2013.0991.

Ribeiro, T. P., Arraes, F. B. M., Lourenço-Tessutti, I. T., Silva, M. S., Lisei-de-Sa, M. E., Lucena, W. A., Macedo, L. L. P., Lima, J. N., Santos Amorim, R. M., Artico, S., Alves-Ferreira, M., Mattar Silva, M. C., & Grossi-de-Sa, M. F. (2017). Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Plant Biotechnology Journal, 15(8), 997-1009. http://dx.doi. org/10.1111/pbi.12694. PMid:28081289.

Ribeiro, T. P., Basso, M. F., Carvalho, M. H., Macedo, L. L. P., Silva, D. M. L., Lourenço-Tessutti, I. T., Oliveira-Neto, O. B., Campos-Pinto, E. R., Lucena, W. A., Silva, M. C. M., Tripode, B. M. D., Abreu-Jardim, T. P. F., Miranda, J. E., Alves-Ferreira, M., Morgante, C. V., & Grossi-de-Sa, M. (2020). Stability and tissuespecific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil. Biotechnology Research & Innovation, 3, 27-41. http://dx.doi.org/10.1016/j.biori.2019.12.003.

Ribeiro, T. P., Vasquez, D. D. N., Macedo, L. L. P., Lourenço-Tessutti, I. T., Valença, D. C., Oliveira-Neto, O. B., Paes-de-Melo, B., Rodrigues-Silva, P. L., Firmino, A. A. P., Basso, M. F., Lins, C. B. J., Neves, M. R., Moura, S. M., Tripode, B. M. D., Miranda, J. E., Silva, M. C. M., & Grossi-de-Sa, M. F. (2022). Stabilized Double-Stranded RNA Strategy Improves Cotton Resistance to CBW (Anthonomus grandis). International Journal of Molecular Sciences, 23(22), 13713. http://dx.doi.org/10.3390/ ijms232213713. PMid:36430188.

Rodrigues-Silva, P. L., Amorim, G. C., Andrade, I. E. P. C., Cunha, V. A., Figueiredo, L. H. M., & Grossi-de-Sa, M. F. (2021a). Monitoramento tecnológico da planta cagaita (Eugenia dysenterica) e aplicações biotecnológicas potenciais. Cadernos de Prospecção, 14(4), 1248- 1264. http://dx.doi.org/10.9771/cp.v14i4.38459.

Rodrigues-Silva, P. L., Fernandes, P. B. B., Rodrigues, M. T., Mendonça, M. L., Figueiredo, L. H. M., & Grossi-de-Sa, M. F. (2021b). Tendências quanto ao conhecimento e às aplicações biotecnológicas do Psidium guineense evidenciadas pelo monitoramento tecnológico. Cadernos de Ciência & Tecnologia, 38(1), 1-13. http://dx.doi. org/10.35977/0104-1096.cct2021.v38.26704.

Rodríguez, A. P. G., Martínez, M. G., Barrera-Cortés, J., Ibarra, J. E., & Bustos, F. M. (2015). Bio-insecticide Bacillus thuringiensis spores encapsulated with amaranth derivatized starches: Studies on the propagation “in vitro”. Bioprocess and Biosystems Engineering, 38(2), 329-339. http://dx.doi.org/10.1007/s00449-014-1273-7. PMid:25168123.

Rüdelsheim, P., Dumont, P., Freyssinet, G., Pertry, I., & Heijde, M. (2018). Off-patent transgenic events: Challenges and opportunities for new actors and markets in agriculture. Frontiers in Bioengineering and Biotechnology, 6, 71. http://dx.doi. org/10.3389/fbioe.2018.00071. PMid:29915785.

Sanchis, V., & Bourguet, D. (2009). Bacillus thuringiensis: Applications in agriculture and insect resistance management - A review. Sustainable Agriculture, 28, 243-255. http://dx.doi. org/10.1007/978-90-481-2666-8_16.

Santos, C. A. M., Nascimento, J., Gonçalves, K. C., Smaniotto, G., Freitas Zechin, L., Costa Ferreira, M., & Polanczyk, R. A. (2021). Compatibility of Bt biopesticides and adjuvants for Spodoptera frugiperda control. Scientific Reports, 11(1), 5271. http://dx.doi. org/10.1038/s41598-021-84871-w. PMid:33674750.

Sarkar, S., Gil, J. D. B., Keeley, J., & Jansen, K. (2021). The use of pesticides in developing countries and their impact on health and the right to food. Policy Department for External Relations, Directorate General for External Policies of the Union PE. https://www.europarl.europa.eu/cmsdata/219887/Pesticides%20 health%20and%20food.pdf

SigmaPlot (2017). SigmaPlot 14.0 (14.0). Systat Software, Inc. http:// www.sigmaplot.co.uk/

Silva, R. G. C., Ferreira, T. F., & Borges, É. R. (2020). Identification of potential technologies for 1,4-Butanediol production using the prospecting methodology. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 95(12), 3057-3070. http:// dx.doi.org/10.1002/jctb.6518.

Sørensen, C. (2011). Challenges – managing mobile performances. In C. Sørensen (Ed.), Enterprise mobility: Tiny technology with global impact on work (pp. 158–167). Palgrave Macmillan. http:// dx.doi.org/10.1057/9780230306202_8.

Sparks, T. C., & Lorsbach, B. A. (2017). Perspectives on the agrochemical industry and agrochemical discovery. Pest Management Science, 73(4), 672. http://dx.doi.org/10.1002/ ps.4457. PMid:27753242.

Tanda, A. S. (2022). Biogenetically Engineered Insect-Resistant Crops in Integrated Pest Management Programs. In A.S. Tanda (Ed.), Molecular advances in insect resistance of field crops. Springer. http://dx.doi.org/10.1007/978-3-030-92152-1_10

Viktorov, A. G. (2019). Genetic engineering-based modern approaches to enhance crop resistance to pests. Russian Journal of Plant Physiology: a Comprehensive Russian Journal on Modern Phytophysiology, 66(1), 1-9. http://dx.doi.org/10.1134/ S1021443719010187.

Wang, Z., Li, T., Ni, H., Wang, G., Liu, X., Cao, Y., Li, W., & Meng, F. (2018). Transgenic soybean plants expressing Spb18S dsRNA exhibit enhanced resistance to the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Olethreutidae). Archives of Insect Biochemistry and Physiology, 98(2), e21461. http://dx.doi. org/10.1002/arch.21461. PMid:29600519.

World Intellectual Property Organization – WIPO. (2021a). Patentscope. https://patentscope.wipo.int/search/en/advancedSearch.jsf.

World Intellectual Property Organization – WIPO. (2021b). PATENTSCOPE: The user’s guide. https://www.wipo.int/export/ sites/www/patentscope/en/docs/patentscope_user_guide.pdf

World Intellectual Property Organization – WIPO. (2021c). IPC Publication. https://www.wipo.int/classifications/ipc/ ipcpub/?menulang=en

Xiong, Y., Zeng, H., Zhang, Y., Xu, D., & Qiu, D. (2013). Silencing the HaHR3 gene by transgenic plant-mediated RNAi to disrupt Helicoverpa armigera development. International Journal of Biological Sciences, 9(4), 370-381. http://dx.doi.org/10.7150/ ijbs.5929. PMid:23630449.

Yan, S., Ren, B., & Shen, J. (2021). Nanoparticle-mediated doublestranded RNA delivery system: A promising approach for sustainable pest management. Insect Science, 28(1), 21-34. http://dx.doi. org/10.1111/1744-7917.12822. PMid:32478473.

Zhang, Q., Hua, G., & Adang, M. J. (2015). Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. Insect Biochemistry and Molecular Biology, 60, 33-38. http://dx.doi.org/10.1016/j. ibmb.2015.03.001. PMid:25758367.

Zheng, Y., Hu, Y., Yan, S., Zhou, H., Song, D., Yin, M., & Shen, J. (2019). A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Management Science, 75(7), 1993-1999. http://dx.doi.org/10.1002/ps.5313. PMid:30610748.

Zhu, K. Y., & Palli, S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annual Review of Entomology, 65(1), 293-311. http://dx.doi.org/10.1146/annurevento-011019-025224. PMid:31610134.

Zucoloto, G. F. O., & Freitas, R. E. O. (2013). Propriedade intelectual e aspectos regulatórios em biotecnologia. Ipea. https://www. ipea.gov.br/portal/images/stories/PDFs/livros/livro_propriedade_ intelectual.pdf.


Submitted date:
09/30/2022

Accepted date:
12/13/2022

64b843f3a95395630207ad84 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections