Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.20226202
Biotechnology Research and Innovation Journal
Research paper

Effect of light/dark cycles on the growth of Haematococcus pluvialis in mixotrophic cultivation with alternative culture media

Lúcia Helena Sipaúba-Tavares; Mayara Galatti Tedesque; Débora Cristina Fenerick; Rodrigo Ney Millan; Bruno Scardoeli-Truzzi

Downloads: 1
Views: 166

Abstract

Current assay investigates the influence of light/dark cycles on the growth and chemical composition of Haematoccocus pluvialis in mixotrophic cultivation and different culture media: WC, NPK and ME (macrophyte extract). Four light cycles were used: 24/0 h; 20/4 h; 16/8 h and 12/12 h light/dark cycles. Highest cell density was reported at 24/0 h and 20/4 h light/dark cycle in NPK and WC culture media, reaching 3.8 x 105 cell mL-1. Doubling time was faster in NPK culture medium with four days at 20/4 h light/dark cycle. Protein, lipid, carbon and nitrogen in the H. pluvialis biomass was higher in the absence of light in all culture media, mainly in WC culture medium at 12/12 h and 16/8 h light/dark cycles. Light/dark cycles may increase cell density and compounds synthesis, with economic benefits by saving electric power. Depending on the light cycle used the cost of the kw year-1 ranged between US$ 760 (12/12 h) and US$ 1,519 (24/0 h). NPK culture media using sugar cane molasses as carbon source with dark period is a tool to be used in H. pluvialis cultivation with cheaper cost and high nutritional values. Although WC culture medium had good results for H. pluvialis growth, however it results in an expensive cultivation.

Keywords

NPK (10:10:10); Macrophyte (Eichhornia crassipes); Biological parameters; Sugarcane molasses; Economic aspects

References

Abiusi, F., Wijffels, R. H., & Jasen, M. (2020). Oxygen balance mixotrophy under day-night cycles. ACS Sustainable Chemistry & Engineering, 8(31), 11682-11691. http://dx.doi.org/10.1021/ acssuschemeng.0c03216.

Association of Official Analytical Chemists – AOAC. (2012). Official Method. Fatty acids in oils and fats. Preparation of methyl esters. Boron trifluoride method. In: Association of Official Analytical Chemists (Org.), Official Methods of Analysis of AOAC International (19th ed.). AOAC International.

Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., Delledonne, M., & Ballottari, M. (2018). Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Scientific Reports, 8(1), 6465. http://dx.doi.org/10.1038/s41598- 018-24979-8. PMid:29691462.

Colusse, G. A., Duarte, M. E. R., Carvalho, J. C., & Noseda, M. D. (2019). Media effects on laboratory scale production costs of Haematococcus pluvialis biomass. Bioresource Technology Reports, 7, 100236. http://dx.doi.org/10.1016/j.biteb.2019.100236.

Fang, L., Zhang, J., Fei, Z., & Wan, M. (2019). Chlorophyll is key indicator to evaluate astaxanthin accumulation ability of Haematococcus pluvialis. Bioresearch and Bioprocessing, 6(1), 52. http://dx.doi.org/10.1186/s40643-019-0287-z.

Gaurav, K., Srivastava, R., Sharma, J. G., Singh, R., & Singh, V. (2016). Molasses-based growth and lipid production by Chlorella pyrenoidosa: A potential feedstock for biodiesel. International Journal of Green Energy, 13(3), 320-327. http://dx.doi.org/10. 1080/15435075.2014.966268.

Golterman, H. L., Clymo, R. S., & Ohmstad, M. A. M. (1978). Methods for physical and chemical analysis of fresh water (2nd ed.). Blackwell Scientific Publications.

Grujić, V. J., Todorović, B., Kranvogl, R., Ciringer, T., & AmbrožičDolinšek, J. (2022). Diversity and content of carotenoids and other pigments in the transition from the green to the red stage of Haematococcus pluvialis microalgae identified by HPLC-DAD and LC-QTOF-MS. Plants, 11(8), 1026. http://dx.doi.org/10.3390/ plants11081026. PMid:35448754.

Guillard, R. R. L. (1973). Division rates. In J. R. Stein (Ed.), Handbook of phycological methods: Culture methods and growth measurements (pp. 289-311). Cambridge University Press.

Guillard, R. R. L., & Lorenzen, C. J. (1972). Yellow-green algae with chlorophyllide. Journal of Phycology, 8, 10-14.

Han, S.-I., Chang, S. H., Lee, C., Jeon, M. S., Heo, Y. M., Kim, S., & Choi, Y.-E. (2020). Astaxanthin biosynthesis promotion with pH shock in the green microalga, Haematococcus lacustris. Bioresource Technology, 314, 123725. http://dx.doi. org/10.1016/j.biortech.2020.123725. PMid:32615445.

Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photo-bioreactors. Chemical Engineering and Processing: Process Intensification, 48(1), 306-310. http://dx.doi.org/10.1016/j.cep.2008.04.007.

Kato, Y., Fujihara, Y., Vavricka, C. J., Chang, J. S., Hasunuma, T., & Kondo, A. (2019). Light/dark cycling causes delayed lipid accumulation and increased photoperiod-based biomass yield by altering metabolic flux in oleaginous Chlamydomonas sp. Biotechnology for Biofuels, 12(1), 39. http://dx.doi.org/10.1186/ s13068-019-1380-4. PMid:30828384.

Koroleff, F. (1976). Determination of nutrients. In E. Grashof & E. Kremling (Eds.), Methods of seawater analysis (pp. 126-133). Verlag Chemie Wenhein.

Krzemińska, I., Pawlik-Skowrónska, B., Trzcińska, M., & Tys, J. (2014). Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess and Biosystems Engineering, 37(4), 735-741. http://dx.doi.org/10.1007/s00449- 013-1044-x. PMid:24037038.

León-Saiki, G. M., Martí, T. C., van der Veen, D., Wijffels, R. H., & Martens, D. E. (2018). The impact of day length on cell division and efficiency of light use in a starch less mutant of Tretadesmus obliquus. Algal Research, 31, 387-394. http:// dx.doi.org/10.1016/j.algal.2018.02.027.

Ma, C., Zhang, Y. B., Ho, S. H., Xing, D. F., Ren, N. Q., & Liu, B. F. (2017). Cell growth and lipid accumulation of a microalgal mutant Scenedesmus sp. Z-4 by combining light/dark cycle with temperature variation. Biotechnology for Biofuels, 10(1), 260. http://dx.doi.org/10.1186/s13068-017-0948-0. PMid:29151889.

Matsunaga, M., Bemelmans, P. F., Toledo, P. E. N., Dulley, R. D., Okawa, H., & Pedroso, I. A. (1976). Metodologia de custo de produção utilizada pelo IEA. Agricultura em São Paulo, 23(1), 123-139.

Mondal, M., Ghosh, A., Tiwari, O. N., Gayen, K., Das, P., Mandal, M. K., & Halder, G. (2017). Influence of carbon source and light intensity on biomass and lipid production of Chlorella sorokiana BTA 9031 isolated from coalfield under various nutritional modes. Energy Conversion and Management, 145, 247-254. http://dx.doi. org/10.1016/j.enconman.2017.05.001.

Monica-Devi, R. R., Rubavathi, S., Ayyappadaran, G., & Ruthra, N. (2020). Optimization of physical parameters of astaxanthin production from Haematococcus pluvialis. International Journal of Research and Review, 7(6), 9-16.

Nusch, E. A. (1980). Comparison of different methods for chlorophyll and phaeopigments determination. Archive of Hydrobiology, 14, 4-36. http://dx.doi.10.1127/0003-9136.

Patel, A. K., Suseela, M. R., Singh, M., & Nayaka, S. (2017). Change in physic-chemical character of nutrient media and carpet effluent in presence of six algae monocultures and their consortia. Tropical Plant Research, 4(2), 192-202. http://dx.doi.10.22271/ tpr.2017.v4.i2.028.

Qin, C., Lei, Y., & Wu, J. (2018). Light/dark cycle enhancement and energy consumption of tubular microalgae photobioreactors with discrete double inclined ribs. Bioresources and Bioprocessing, 5(1), 28. http://dx.doi.org/10.1186/s40643-018-0214-8.

Scardoeli-Truzzi, B., & Sipaúba-Tavares, L. H. (2017). Sources of inorganic fertilizer in the growth of Haematococcus pluvialis Flotow (Chlorophyceae). Journal of Algal Biomass Utilization, 8(2), 1-10.

Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A., & Morosinotto, T. (2012). Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in proto bioreactors. PLoS One, 7(6), e38975. http://dx.doi.org/10.1371/journal. pone.0038975. PMid:22745696.

Sipaúba-Tavares, L. H., Florêncio, T., & Scardoeli-Truzzi, B. (2018). Aquaculture biological waste as culture medium to cultivation of Ankistrodesmus gracilis (Reinsch) Korshikov. Brazilian Journal of Biology, 78(3), 579-587. http://dx.doi.org/10.1590/1519- 6984.175432. PMid:29166430.

Sipaúba-Tavares, L. H., Ibarra, L. C., & Fioresi, T. B. (2009). Cultivation of Ankistrodesmus gracilis (Reisch) Korsikov (Chlorophyceae) in laboratory using CHU12 medium and macrophyte with NPK. Boletim do Instituto de Pesca, 35(1), 111-118. In Portuguese.

Sipaúba-Tavares, L. H., Pelicioni, L. C., & Olivera, A. (1999). Use of inorganic (NPK) and the CHU12 medium for cultivation of Ankistrodesmus gracilis (Reinsch) Korshikov (Chlorophyta) in laboratory. Brazilian Journal of Ecology, 1, 10-15.

Subramanian, G., Yadav, G., & Sen, R. (2016). Rationally leveraging mixotrophic growth of microalgae in different photo-bioreactor configurations for reducing the carbon footprint of an algal biorefinery: A techno-economic perspective. RSC Advances, 6(77), 72897-72904. http://dx.doi.org/10.1039/C6RA14611B.

Takache, H., Pruvost, J., & Marec, H. (2015). Investigation of light/dark cycles effects on the photosynthetic growth of Chlamydomonas reinhardtii in conditions representative of photobioreactor cultivation. Algal Research, 8, 192-204. http:// dx.doi.org/10.1016/j.algal.2015.02.009.

Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 bio-fixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071-3076. http://dx.doi.org/10.1016/j. biortech.2010.10.047. PMid:21041075.

Tran, H. D., Do, T. T., Le, T. L., Tran-Nguyen, M. L., Pham, C. H., & Melkonian, M. (2019). Cultivation of Haematococcus pluvialis for astaxanthin production on angled bench-scale and large-scale biofilm-based photobioreactors. Vietnam Journal of Science, Technology and Engineering, 61(3), 61-70. http://dx.doi. org/10.31276/VJSTE.61(3).61-70.

Vejrazka, C., Janssen, M., Benvenuti, G., Streefland, M., & Wijffels, R. H. (2013). Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Applied Microbiology and Biotechnology, 97(4), 1523-1532. http://dx.doi.org/10.1007/s00253-012-4390-8. PMid:23001055.

Wong, Y. K., Ho, Y. H., Ho, K. C., Lai, Y. T., Tsang, P. M., Chow, K. P., Yau, Y. H., Choi, M. C., & Ho, R. S. C. (2016). Effect of light intensity, illumination cycles on microalgae Haematococcus pluvialis for production of astaxanthin. Journal of Marine Biology and Aquaculture, 2(2), 1-6. http://dx.doi.org/10.15436/2381- 0750.16.1083.

Yan, D., Lu, Y., Chen, Y. F., & Wu, Q. (2011). Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresource Technology, 102(11), 6487-6493. http://dx.doi.org/10.1016/j. biortech.2011.03.036. PMid:21474303.

Zhao, B., Zhang, Y., Xiong, K., Zhang, Z., Hao, X., & Liu, T. (2011). Effect of cultivation mode on microalgal growth and CO2 fixation. Chemical Engineering Research & Design, 89(9), 1758-1762. http://dx.doi.org/10.1016/j.cherd.2011.02.018.


Submitted date:
06/06/2022

Reviewed date:
09/30/2022

Accepted date:
10/15/2022

649ede5fa9539501f54d7d92 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections