Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.20226201
Biotechnology Research and Innovation Journal
Review article

Is the development of low-cost media one of the greatest challenges to produce cultivated meat on an industrial scale?

Carlos Ricardo Soccol; Susan Grace Karp; Luiz Alberto Junior Letti; Giuliana Biagini; Gabriel Balla; Ana Paula Boligon; João Pedro Manica Candelario; Thiago Feliciano Faria; Patricia Beatriz Gruening de Mattos; Igor Negreiros Piazenski; Lilian Cristina Klein Raymundo; Daniel Augusto Ribeiro Rolim Valeixo; Vanete Thomaz Soccol

Downloads: 7
Views: 388

Abstract

Cultivated meat (CM) has emerged as an “ethical” alternative for the consumption of meat, avoiding animal slaughter and safeguarding animal care. The idea behind animal cell cultivation, differentiation and proliferation is old, but the investments, technological developments and first efforts to produce CM on industrial scale are very recent. There are many challenges and bottlenecks within this new market, including social, environmental, technological, regulatory and logistic aspects; however, the emphasis of this article is the composition of the culture media for animal cells development, which is strongly attached to economy (component costs) and ethics (components of animal origin). Traditional basal media (such as Eagle´s Minimum Essential Medium and Ham´s F-12) comprise energy and carbon sources, vitamins, amino acids and trace elements; but the requirements for development and differentiation of skeletal muscle cells demand other components of animal origin, such as fetal bovine serum and/or other growth factors, hormones and inducers. Recent articles and patents have reported the substitution of these components, including the use of recombinant albumin, postbiotics, and microalgal extracts. Despite these efforts, the current market of CM is still in its “first childhood” with 107 enterprises around the world, and just a few of them are authorized to commercialize CM; the current price to the final consumer is, in the best case, 7.5 times higher when compared to traditional meat. Therefore, from our point of view, there is still a long way to go in developing this new product and establishing a new global market.

Keywords

Alternative proteins; Animal cell meat; Animal cell culture; Serum-free media

References

Agência Nacional de Vigilância Sanitária – ANVISA. (2019). Instrução normativa n°51, de dezembro de 2019. http://antigo.anvisa.gov. br/documents/10181/5545276/IN_51_2019_COMP.pdf/62c92657- 8945-4ac7-b1d3-01147ab90abb

Agência Nacional de Vigilância Sanitária. (2023). Limites máximos de resíduos (LMR) de medicamentos veterinários em alimentos de origem animal. https://www.gov.br/anvisa/ pt-br/centraisdeconteudo/publicacoes/alimentos/perguntas-erespostas-arquivos/lmr-medicamento-veterinario_2_edicao.pdf

Allan, S. J., de Bank, P. A., & Ellis, M. J. (2019). Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems, 3, 44. http://dx.doi.org/10.3389/fsufs.2019.00044.

Bain, P. A., Hutchinson, R. G., Marks, A. B., Crane, M. St. J., & Schuller, K. A. (2013). Establishment of a continuous cell line from southern bluefin tuna (Thunnus maccoyii). Aquaculture (Amsterdam, Netherlands), 2, 376-379. http://dx.doi. org/10.1016/j.aquaculture.2012.11.008.

Baker, L. E., & Carrel, A. (1926). Action on fibroblasts of the protein fraction of embryonic tissue extract. The Journal of Experimental Medicine, 44(3), 387-395. http://dx.doi.org/10.1084/ jem.44.3.387. PMid:19869191.

Baker, M. (2016). Reproducibility: Respect your cells! Nature, 537(7620), 433-435. http://dx.doi.org/10.1038/537433a. PMid:27629646.

Barnes, D., & Sato, G. (1979). Growth of a human mammary tumor cell line in a serum-free medium. Nature, 281(5730), 388-389. http://dx.doi.org/10.1038/281388a0. PMid:481604. Low-cost media for cultivated meat production 11-13

Blaxhall, P. C. (1985). The separation and cultivation of fish Lymphocytes. In M. J. Manning & M. F. Tatner (Eds.), Fish immunology (pp. 245–259). Academic Press. http://dx.doi. org/10.1016/B978-0-12-469230-5.50024-6

Brunner, D., Frank, J., Appl, H., Schöffl, H., Pfaller, W., & Gstraunthaler, G. (2010). Serum-free cell culture: The serum-free media interactive online database. ALTEX, 27(1), 53-62. http:// dx.doi.org/10.14573/altex.2010.1.53. PMid:20390239.

Burrows, M. T. (1910). The cultivation of tissues of the chickembryo outside the body. Journal of the American Medical Association, 55(24), 2057-2058. http://dx.doi.org/10.1001/ jama.1910.04330240035009.

Carrel, A. (1912). On the permanent life of tissues outside of the organism. The Journal of Experimental Medicine, 15(5), 516- 528. http://dx.doi.org/10.1084/jem.15.5.516. PMid:19867545.

Carrel, A. (1913). Artificial activation of the growth in vitro of connective tissue. The Journal of Experimental Medicine, 17(1), 14-19. http://dx.doi.org/10.1084/jem.17.1.14. PMid:19867620.

Carrel, A. (1923). A method for the physiological study of tissues in vitro. The Journal of Experimental Medicine, 38(4), 407-418. http://dx.doi.org/10.1084/jem.38.4.407. PMid:19868798.

Chang, Y., Goldberg, V. M., & Caplan, A. I. (2006). Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells. Clinical Orthopaedics and Related Research, 452, 242-249. http:// dx.doi.org/10.1097/01.blo.0000229324.75911.c7. PMid:16906089.

Chelladurai, K. S., Christyraj, J. D. S., Rajagopalan, K., Yesudhason, B. V., Venkatachalam, S., Mohan, M., Vasantha, N. C., & Christyraj, J. R. S. S. (2021). Alternative to FBS in animal cell culture - an overview and future perspective. Heliyon, 7(8), e07686. http:// dx.doi.org/10.1016/j.heliyon.2021.e07686. PMid:34401573.

Chou, M. L., Bailey, A., Avory, T., Tanimoto, J., & Burnouf, T. (2015). Removal of transmissible spongiform encephalopathy prion from large volumes of cell culture media supplemented with fetal bovine serum by using hollow fiber anion-exchange membrane chromatography. PLoS One, 10(4), e0122300. http://dx.doi. org/10.1371/journal.pone.0122300. PMid:25874629.

CISION. (2021). Future meat technologies launches world’s first industrial cultured meat production facility. https://www. prnewswire.com/news-releases/future-meat-technologieslaunches-worlds-first-industrial-cultured-meat-productionfacility-301317975.html

CNBC. (2020). This restaurant will be the first ever to serve lab-grown chicken (for $23). https://www.cnbc.com/2020/12/18/singaporerestaurant-first-ever-to-serve-eat-just-lab-grown-chicken.html

CNBC. (2022). FDA says lab-grown meat is safe for human consumption. https://www.cnbc.com/2022/11/17/fda-says-labgrown-meat-is-safe-for-human-consumption.html

Cui, H. X., Guo, L. P., Zhao, G. P., Liu, R. R., Li, Q. H., Zheng, M. Q., & Wen, J. (2018). Method using a co-culture system with high-purity intramuscular preadipocytes and satellite cells from chicken pectoralis major muscle. Poultry Science, 97(10), 3691- 3697. http://dx.doi.org/10.3382/ps/pey023. PMid:30007362.

Dulbecco, R., & Freeman, G. (1959). Plaque production by the polyoma virus. Virology, 8(3), 396-397. http://dx.doi. org/10.1016/0042-6822(59)90043-1. PMid:13669362.

Eagle, H. (1955). Nutrition needs of mammalian cells in tissue culture. Science, 122(3168), 501-514. http://dx.doi.org/10.1126/ science.122.3168.501. PMid:13255879.

Eagle, H. (1959). Amino acid metabolism in mammalian cell cultures. Science, 130(3373), 432-437. http://dx.doi.org/10.1126/ science.130.3373.432. PMid:13675766.

Fernandes, A. M., Teixeira, O. S., Fantinel, A. L., Revillion, J. P. P., & de Souza, Â. R. L. (2022). Technological prospecting: The case of cultured meat. Future Foods, 6, 100156. http://dx.doi. org/10.1016/j.fufo.2022.100156.

Gadgil, M. (2017). Cell culture processes for biopharmaceutical manufacturing. Current Science, 112(7), 1478-1488. http:// dx.doi.org/10.18520/cs/v112/i07/1478-1488.

Garrison, G. L., Biermacher, J. T., & Brorsen, B. W. (2022). How much will large-scale production of cell-cultured meat cost? Journal of Agriculture and Food Research, 10, 100358. http:// dx.doi.org/10.1016/j.jafr.2022.100358.

Genovese, N. J., Roberts, R. M., & Telugu, B. P. V. L. (2021). Method for scalable skeletal muscle lineage specification and cultivation (US 10,920,196 B2). https://patents.google.com/ patent/US10920196B2/en

Good Food Institute. (2021). Building an ecosystem for cultivated meat in India. https://gfi-india.org/wp-content/uploads/2022/01/ Building-an-ecosystem-for-cultivated-meat-in-India.pdf

Good Food Institute. (2022a). Cultivated Meat, prospects and opportunities for Brazil in 2022. https://gfi.org.br/wp-content/ uploads/2022/10/AF_White-Paper-Carne-Cultivada-no-BrasilVersao-Ingles-GFI-Brazil-07_2022.pdf

Good Food Institute. (2022b). Deep dive: cultivated meat cell culture media. https://gfi.org/science/the-science-of-cultivated-meat/ deep-dive-cultivated-meat-cell-culture-media/

Good Food Institute. (2022c). Deep dive: cultivated meat bioprocess design. https://gfi.org/science/the-science-of-cultivated-meat/ deep-dive-cultivated-meat-bioprocess-design/

Good Food Institute. (2022d). 2021 State of the industry report: Cultivated meat and seafood. https://gfieurope.org/wp-content/ uploads/2022/04/2021-Cultivated-Meat-State-of-the-IndustryReport.pdf

Gstraunthaler, G., Lindl, T., & van der Valk, J. (2013). A plea to reduce or replace fetal bovine serum in cell culture media. Cytotechnology, 65(5), 791-793. http://dx.doi.org/10.1007/ s10616-013-9633-8. PMid:23975256.

Guan, X., Zhou, J., Du, C., & Chen, J. (2022). Bioprocessing technology of muscle stem cells: Implications for cultured meat. Trends in Biotechnology, 40(6), 721-734. http://dx.doi. org/10.1016/j.tibtech.2021.11.004. PMid:34887105.

Guilbert, L. J., & Iscove, N. N. (1976). Partial replacement of serum by selenite, transferrin, albumin and lecithin in haemopoitec cell cultures. Nature, 263(5578), 594-595. http://dx.doi. org/10.1038/263594a0. PMid:1086432.

Guiotto, M., Raffoul, W., Hart, A. M., Riehle, M. O., & di Summa, P. G. (2020). Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: A systematic review. Journal of Translational Medicine, 18(1), 351. PMid:32933520. http://dx.doi.org/10.1186/s12967-020-02489-4.

Ham, R. G. (1963). Albumin replacement by fatty acids in clonal growth of mammalian cells. Science, 140(3568), 802-803. http:// dx.doi.org/10.1126/science.140.3568.802. PMid:13952251.

Ham, R. G. (1965). Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proceedings of the National Academy of Sciences of the United States of America, 53(2), 288-293. http://dx.doi.org/10.1073/pnas.53.2.288. PMid:14294058.

Hanga, M. P., Ali, J., Moutsatsou, P., Raga, F. A., Hewitt, C. J., Nienow, A., & Wall, I. (2020). Bioprocess development for scalable production of cultivated meat. Biotechnology and Bioengineering, 117(10), 3029-3039. PMid:32568406. http://dx.doi.org/10.1002/ bit.27469.

Harrison, R. G., Greenman, M. J., Mall, F. P., & Jackson, C. M. (1907). Observations of the living developing nerve fiber. The Anatomical Record, 1(5), 116-128. http://dx.doi.org/10.1002/ar.1090010503.

Hasegawa, K., Yasuda, S., Teo, J.-L., Nguyen, C., McMillan, M., Hsieh, C.-L., Suemori, H., Nakatsuji, N., Yamamoto, M., Miyabayashi,

T., Lutzko, C., Pera, M. F., & Kahn, M. (2012). Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Translational Medicine, 1(1), 18-28. http://dx.doi.org/10.5966/ sctm.2011-0033. PMid:23197636.

Hayashi, I., & Sato, G. H. (1976). Replacement of serum by hormones permits growth of cells in a defined medium. Nature, 259(5539), 132-134. http://dx.doi.org/10.1038/259132a0. PMid:813153.

Ho, S. Y., Goh, C. W. P., Gan, J. Y., Lee, Y. S., Lam, M. K. K., Hong, N., Chan, W. K., & Su-Chien, A. C. (2014). Derivation and longterm culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish, 11(5), 7-20. http://dx.doi.org/10.1089/zeb.2013.0879.

Ho, Y. Y., Lu, H. K., Lim, Z. F. S., Lim, H. W., Ho, Y. S., & Ng, S. K. (2021). Applications and analysis of hydrolysates in animal cell culture. Bioresources and Bioprocessing, 8(1), 93. http://dx.doi. org/10.1186/s40643-021-00443-w. PMid:34603939.

Hong, Y., Winkler, C., & Schartl, M. (1996). Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mechanisms of Development, 60(1), 33- 44. http://dx.doi.org/10.1016/S0925-4773(96)00596-5. PMid:9025059.

Hu, D., Zhao, L., Wang, J., Fan, L., Liu, X., Wang, H., & Tan, W. S. (2018). Physiological responses of Chinese hamster ovary cells to a productivity-enhancing yeast extract. Journal of Bioscience and Bioengineering, 126(5), 636-643. http://dx.doi.org/10.1016/j. jbiosc.2018.05.005. PMid:29853300.

IndexBox. (2022). Chicken Market Outlook: Price Rally to Continue in 2022. Yahoo News. https://sg.news.yahoo.com/chickenmarket-outlook-price-rally-121500832.html?guccounter=1&guce_ referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_si g=AQAAAElp0k9zrM3wtAgixsyhpU87kcmAniRvbMaGFSDspk voyF0lG720Ym8lMCEUdf6BL367Q5hk8uh8ks3urwjYVQlew dW-45LrbNyyc7jtX1pDX8b1go4dH0FMBZfU-I0xssGOxa9kWsMD7cb6z88El3VJ-0H7MybLon789XHvNSW

Joo, S. T., Choi, J. S., Hur, S. J., Kim, G. D., Kim, J. D., Lee, E. Y., Bakhsh, A., & Hwang, Y. H. (2022). A comparative study on the taste characteristics of satellite cell cultured meat derived from chicken and cattle muscles. Food Science of Animal Resources, 42(1), 175-185. http://dx.doi.org/10.5851/kosfa.2021.e72. PMid:35028582.

Kadim, I. T., Mahgoub, O., Baqir, S., Faye, B., & Purchas, R. (2015). Cultured meat from muscle stem cells: A review of challenges and prospects. Journal of Integrative Agriculture, 14(2), 222-233. http://dx.doi.org/10.1016/S2095-3119(14)60881-9.

Kahan, S., Camphuijsen, J., Cannistra, C., Potter, G., Consenza, Z., & Shmulevich, I. (2020). Cultivated meat modeling consortium: Inaugural meeting whitepaper. Authorea. https:// doi.org/10.22541/au.158057683.31004563

Keen, M. J., & Rapson, N. T. (1995). Development of a serum-free culture medium for the large-scale production of recombinant protein from a Chinese hamster ovary cell line. Cytotechnology, 17(3), 153-163. http://dx.doi.org/10.1007/BF00749653. PMid:22358555.

Kim, S. H., & Lee, G. M. (2009). Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments. Applied Microbiology and Biotechnology, 83(4), 639-648. http:// dx.doi.org/10.1007/s00253-009-1903-1. PMid:19266194.

Kolkmann, A. M., Post, M. J., Rutjens, M. A. M., van Essen, A. L. M., & Moutsatsou, P. (2020). Serum-free media for the growth of primary bovine myoblasts. Cytotechnology, 72(1), 111-120. http://dx.doi.org/10.1007/s10616-019-00361-y. PMid:31884572.

Kolkmann, A. M., Van Essen, A., Post, M. J., & Moutsatsou, P. (2022). Development of a chemically defined medium for in vitro expansion of primary bovine satellite cells. Frontiers in Bioengineering and Biotechnology, 10, 895289. http://dx.doi. org/10.3389/fbioe.2022.895289. PMid:35992337.

Kuhlmann, I. (1995). The prophylactic use of antibiotics in cell culture. Cytotechnology, 19(2), 95-105. http://dx.doi.org/10.1007/ BF00749764. PMid:22359010.

Letti, L. A. J., Karp, S. G., Molento, C. F. M., Colonia, B. S. O., Boschero, R. A., Soccol, V. T., Herrmann, L. W., Penha, R. O., Woiciechowski, A. L., & Soccol, C. R. (2021). Cultivated meat: Recent technological developments, current market and future challenges. Biotechnology Research and Innovation, 5(1), e2021001. http://dx.doi.org/10.4322/biori.202101.

Levi-Montalcini, R. (1952). Effects of mouse tumor transplantation on the nervous system. Annals of the New York Academy of Sciences, 55(2), 330-344. http://dx.doi.org/10.1111/j.1749-6632.1952. tb26548.x. PMid:12977049.

Lewis, M. R. (1922). The importance of dextrose in the medium of tissue cultures. The Journal of Experimental Medicine, 35(3), 317- 322. http://dx.doi.org/10.1084/jem.35.3.317. PMid:19868608.

Lewis, W. H., & Lewis, M. R. (1912). The cultivation of chick tissues in media of known chemical constitution. The Anatomical Record, 6(5), 207-211. http://dx.doi.org/10.1002/ar.1090060503.

Liu, M., Li, B., Peng, W., Ma, Y., Huang, Y., Lan, X., Lei, C., Qi, X., Liu, G. E., & Chen, H. (2019). LncRNA-MEG3 promotes bovine myoblast differentiation by sponging miR-135. Journal of Cellular Physiology, 234(10), 18361-18370. PMid:30887511. http://dx.doi. org/10.1002/jcp.28469.

Li, Y., Liu, W., Li, S., Zhang, M., Yang, F., & Wang, S. (2021). Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. Journal of Future Foods, 1(1), 88-97. http://dx.doi.org/10.1016/j. jfutfo.2021.09.005.

Lobo-Alfonso, J., Price, P., & Jayme, D. (2010). Benefits and limitations of protein hydrolysates as components of serum-free media for animal cell culture applications. In V. Pasupuleti & A. Demain (Eds.), Protein hydrolysates in biotechnology. Springer.

Manera, M. (2021). Exploratory factor analysis of rainbow trout serum chemistry variables. International Journal of Environmental Research and Public Health, 18(4), 1537. http://dx.doi. org/10.3390/ijerph18041537. PMid:33562845.

McKeehan, W. L., Hamilton, W. G., & Ham, R. G. (1976). Selenium is an essential trace nutrient for growth of WI-38 diploid human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 73(6), 2023-2027. http://dx.doi. org/10.1073/pnas.73.6.2023. PMid:1064872.

Meatable. (2022). Meatable reveals its groundbreaking pork sausages product for the first time. https://meatable.com/news-room/

Merck Group. (2022). Optimized media for cultured meat products. Cell Culture Media for Cultured Meat. https://www.merckgroup. com/en/research/research-and-development-highlights/culturedmeat/mediaforculturedmeat.html

Montserrat-de la Paz, S., Rodriguez-Martin, N. M., Villanueva, A., Pedroche, J., Cruz-Chamorro, I., Millan, F., & Millan-Linares, M. C. (2020). Evaluation of anti-inflammatory and atheroprotective properties of wheat gluten protein hydrolysates in primary human monocytes. Foods, 9(7), 854. http://dx.doi.org/10.3390/ foods9070854.

Nims, R. W., & Harbell, J. W. (2017). Best practices for the use and evaluation of animal serum as a component of cell culture medium. In Vitro Cellular & Developmental Biology. Animal, 53(8), 682-690. PMid:28733930. http://dx.doi.org/10.1007/ s11626-017-0184-8.

Ng, J. Y., Chua, M. L., Zhang, C., Hong, S., Kumar, Y., Gokhale, R., & Ee, P. L. R. (2020). Chlorella vulgaris extract as a serum replacement that enhances mammalian cell growth and protein expression. Frontiers in Bioengineering and Biotechnology, 8, 564667. http://dx.doi.org/10.3389/fbioe.2020.564667. PMid:33042965.

Okamoto, Y., Haraguchi, Y., Yoshida, A., Takahashi, H., Yamanaka, K., Sawamura, N., Asahi, T., & Shimizu, T. (2022). Proliferation and differentiation of primary bovine myoblasts using Chlorella vulgaris extract for sustainable production of cultured meat. Biotechnology Progress, 38(3), e3239. PMid:35073462. http:// dx.doi.org/10.1002/btpr.3239.

Olesen, N., & Jørgensen, P. (1985). Quantification of serum immunoglobulin in rainbow trout Salmo gairdneri under various environmental conditions. Diseases of Aquatic Organisms, 1, 183-189. http://dx.doi.org/10.3354/dao001183.

O’Neill, E. N., Ansel, J. C., Kwong, G. A., Plastino, M. E., Nelson, J., Baar, K., & Block, D. R. (2022). Spent media analysis suggests cultivated meat media will require species and cell type optimization. NPJ Science of Food, 6(1), 46. http://dx.doi. org/10.1038/s41538-022-00157-z. PMid:36175443.

O’Neill, E. N., Cosenza, Z. A., Baar, K., & Block, D. E. (2021). Considerations for the development of cost-effective cell culture media for cultivated meat production. Comprehensive Reviews in Food Science and Food Safety, 20(1), 686-709. http://dx.doi. org/10.1111/1541-4337.12678. PMid:33325139.

Pandurangan, M., & Kim, D. H. (2015). A novel approach for in vitro meat production. Applied Microbiology and Biotechnology, 99(13), 5391-5395. http://dx.doi.org/10.1007/s00253-015-6671- 5. PMid:25971200.

Park, J., Lee, J., Song, K. D., Kim, S. J., Kim, D. C., Lee, S. C., Son, Y. J., Choi, H. W., & Shim, K. (2021). Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Animal Bioscience, 34(8), 1392-1402. http://dx.doi.org/10.5713/ ab.20.0585. PMid:33561926.

Pazos, P., Boveri, M., Gennari, A., Casado, J., Fernandez, F., & Prieto, P. (2004). Culturing cells without serum: Lessons learnt using molecules of plant origin. ALTEX, 21(2), 67-72. PMid:15195227.

Pilgrim, C. R., McCahill, K. A., Rops, J. G., Dufour, J. M., Russell, K. A., & Koch, T. G. (2022). A review of fetal bovine serum in the culture of mesenchymal stromal cells and potential alternatives for veterinary medicine. Frontiers in Veterinary Science, 9, 859025. http://dx.doi.org/10.3389/fvets.2022.859025. PMid:35591873.

Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., Negowetti, N., Verzijden, K., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415. http://dx.doi.org/10.1038/ s43016-020-0112-z.

Poultry World. (2022). Largest investment means mass production of cultivated meat. https://www.poultryworld.net/poultry/ largest-investment-means-mass-production-of-cultivated-meat/

Price, P. J. (2017). Best practices for media selection for mammalian cells. In Vitro Cellular & Developmental Biology. Animal, 53(8), 673-681. PMid:28726187. http://dx.doi.org/10.1007/s11626- 017-0186-6.

Radošević, K., Dukić, B., Andlar, M., Slivac, I., & Gaurina Srček, V. (2016). Adaptation and cultivation of permanent fish cell line CCO in serum-free medium and influence of protein hydrolysates on growth performance. Cytotechnology, 68(1), 115-121. http:// dx.doi.org/10.1007/s10616-014-9760-x.

Reiss, J., Robertson, S., & Suzuki, M. (2021). Cell sources for cultivated meat: Applications and considerations throughout the production workflow. International Journal of Molecular Sciences, 22(14), 7513. http://dx.doi.org/10.3390/ijms22147513. PMid:34299132.

Relier, S., Yazdani, L., Ayad, O., Choquet, A., Bourgaux, J. F., Prudhomme, M., Pannequin, J., Macari, F., & David, A. (2016). Antibiotics inhibit sphere-forming ability in suspension culture. Cancer Cell International, 16(1), 6. http://dx.doi.org/10.1186/ s12935-016-0277-6. PMid:26877710.

Ringer, S. (1882). Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. The Journal of Physiology, 3(5–6), 380-393. http://dx.doi.org/10.1113/ jphysiol.1882.sp000111. PMid:16991333.

Ryu, A. H., Eckalbar, W. L., Kreimer, A., Yosef, N., & Ahituv, N. (2017). Use antibiotics in cell culture with caution: Genome-wide identification of antibiotic-induced changes in gene expression and regulation. Scientific Reports, 7(1), 7533. http://dx.doi. org/10.1038/s41598-017-07757-w. PMid:28790348.

Sanchez, A. (2018). Update laws regulations concerning cell cultured meat. Food and Drug Law Institute. https://www.fdli. org/2018/02/update-laws-regulations-concerning-cell-culturedmeat-cellular-agriculture

Singh, S., Yap, W. S., Ge, X. Y., Min, V. L. X., & Choudhury, D. (2022). Cultured meat production fuelled by fermentation. Trends in Food Science & Technology, 120, 48-58. http://dx.doi.org/10.1016/j. tifs.2021.12.028.

Specht, L. (2020). An analysis of culture medium costs and production volumes for cultivated meat. Good Food Institute. https://gfi. org/resource/analyzing-cell-culture-medium-costs/ Stout, A. J., Mirliani, A. B., Rittenberg, M. L., Shub, M., White, E. C.,

Yuen Junior, J. S. K., & Kaplan, D. L. (2022). Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Communications Biology, 5(1), 466. http://dx.doi.org/10.1038/s42003-022-03423-8. PMid:35654948.

Stout, A. J., Rittenberg, M. L., Shub, M., Saad, M. K., Mirliani, A. B., Dolgin, J., & Kaplan, D. L. (2023). A Beefy-R culture medium: Replacing albumin with rapeseed protein isolates. Biomaterials, 296, 122092. http://dx.doi.org/10.1016/j. biomaterials.2023.122092.

Subbiahanadar Chelladurai, K., Selvan Christyraj, J. D., Rajagopalan, K., Yesudhason, B. V., Venkatachalam, S., Mohan, M., Chellathurai Vasantha, N., & Selvan Christyraj, J. R. S. (2021). Alternative to FBS in animal cell culture – An overview and future perspective. Heliyon, 7(8), e07686. http://dx.doi.org/10.1016/j.heliyon.2021. e07686. PMid:34401573.

Torgan, C. E., Burge, S. S., Collinsworth, A. M., Truskey, G. A., & Kraus, W. E. (2000). Differentiation of mammalian skeletal muscle cells cultured on microcarrier beads in a rotating cell culture system. Medical & Biological Engineering & Computing, 38(5), 583-590. PMid:11094818. http://dx.doi.org/10.1007/BF02345757.

Tuomisto, H. L., & Teixeira, M. J. M. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 45(14), 6117-6123. http://dx.doi.org/10.1021/es200130u. PMid:21682287.

Verma, A., Verma, M., & Singh, A. (2020). Animal tissue culture principles and applications. In A. S. Verma & A. Singh (Eds.), Animal biotechnology: Models in discoverty and translation (pp. 269-293). Academic Press. http://dx.doi.org/10.1016/B978-0- 12-811710-1.00012-4.

Vogelaar, J. P. M., & Erlichman, E. (1933). A feeding solution for cultures of human fibroblasts. The American Journal of Cancer, 18(1), 28-38. http://dx.doi.org/10.1158/ajc.1933.28.

Warner, R. D. (2019). Review: Analysis of the process and drivers for cellular meat production. Animal, 13(12), 3041-3058. http:// dx.doi.org/10.1017/S1751731119001897. PMid:31456539.

Yao, T., & Asayama, Y. (2017). Animal-cell culture media: History, characteristics, and current issues. Reproductive Medicine and Biology, 16(2), 99-117. http://dx.doi.org/10.1002/rmb2.12024. PMid:29259457.

Ye, Y., Zhou, J., Guan, X., & Sun, X. (2022). Commercialization of cultured meat products: Current status, challenges, and strategic prospects. Future Foods, 6, 100-177. http://dx.doi.org/10.1016/j. fufo.2022.100177.

Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443-450. http://dx.doi. org/10.1016/j.tifs.2020.01.026.

Zhang, M., Cao, T. T., Wei, Z. G., & Zhang, Y. Q. (2019). Silk sericin hydrolysate is a potential candidate as a serum-substitute in the culture of Chinese hamster ovary and Henrietta lacks cells. Journal of Insect Science, 19(1), 10. http://dx.doi.org/10.1093/ jisesa/iey137. PMid:30690536.

Zuelke, K. A., & Bracketf, B. G. (1990). Luteinizing hormone-enhanced in vitro maturation of bovine oocytes with and without protein supplementation. Biology of Reproduction, 43(5), 784-787. PMid:2291914. http://dx.doi.org/10.1095/biolreprod43.5.784.


Submitted date:
09/08/2022

Accepted date:
11/11/2022

646e5819a9539568b1705a62 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections