Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202205
Biotechnology Research and Innovation Journal
Review Article

Xanthan gum: applications, challenges, and advantages of this asset of biotechnological origin

Ingrid F. S. P. C. Furtado, Eduardo B. Sydney, Sabrina A. Rodrigues, Alessandra C. N. Sydney

Downloads: 13
Views: 1108

Abstract

Abstract: Cosmetic formulators have numerous thickeners at their disposal to stabilize and increase the viscosity of their formulations. Traditionally, some ingredients are the most widely used for these purposes, such as polyvinylpyrrolidone, polyvinyl alcohol, sodium carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose, and other cellulose derivatives, as well as carbomer and acrylic acid derivatives (acrylates). As an alternative to chemical compounds, many of them of fossil origin, there are gums of natural origin, such as guar gum, Arabic gum, pectin, and alginate. There are also thickeners of mineral origin, such as aluminum and magnesium silicates, bentonite, and hectorite. However, xanthan gum stands out among all the others due to its biotechnological origin, which allows the insertion of an ingredient that in addition to causing an increase in viscosity can also bring a greater degree of sustainability to the final product. Xanthan gum is an anionic polysaccharide, with high molecular weight, industrially produced by the bacterium Xanthomonas sp. This gum forms pseudoplastic solutions, showing good flow behavior. In addition to good formulation stability, it brings good sensory characteristics, such as a pleasant and light structure to the final product. It is versatile, as it can be used in hot and cold formulations and is stable over a wide range of pH and temperature. It can be used in the formulation of toothpaste, creams, lotions, shampoos, etc. This work highlights the properties and applications of xanthan gum in the cosmetic industry, as well as a section dedicated to exposing and discussing the advantages that this asset, of biotechnological origin, brings about its competing ingredients for the final product and, consequently, for the company that uses it.

Keywords

Xanthan gum; Cosmetics; Biotechnological thickener.

References

Abu, M. H., Goda, E. S., Gab-Allah, M. A., Hong, S. E., Pandit, B., Lee, S., Gamal, H., Rehman, A., & Yoon, K. R. (2021). Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. Journal of Environmental Chemical Engineering, 9(1), 104702. http://dx.doi.org/10.1016/j.jece.2020.104702.

Ahmad, N. H., Mustafa, S., & Man, Y. B. C. (2015). Microbial polysaccharides and their modification approach: A review. International Journal of Food Properties, 18(2), 332-347. http://dx.doi.org/10.1080/10942912.2012.693561.

Asthana, N., Pal, K., Aljabali, A. A. A., Tambuwala, M. M., de Souza, F. G., & Pandey, K. (2020). Polyvinyl alcohol (PVA) mixed greenclay and aloe vera based polymeric membrane optimization: Peel-off mask formulation for skin care cosmeceuticals in green nanotechnology. Journal of Molecular Structure, 1229, 129592. http://dx.doi.org/10.1016/j.molstruc.2020.129592.

Becker, I.A., 1998. Xanthan gum biosynthesis and application : a biochemical / genetic perspective 145–152.

Bokov Dmitry, O., Sokurenko Maria, S., Malinkin Alexei, D., Khromchenkova Elena, P., Shevyakova Lyudmila, V., & Bessonov Vladimir, V. (2020). Physiochemical features, qualitative and quantitative analysis, present status physiochemical features, qualitative and quantitative analysis, present status and application prospects of polysaccharide gums. International Journal of Pharmaceutical Quality Assurance, 11(1), 154-162.

Cadmus, M.C., Knutson, C.A., Lagoda, A.A., Burton, K.A., 1978. Synthetic Media for Production of Quality Xanthan Gum in 20 Liter Fermentors * XX, 1003–1014.

Carvalho, L.T., Vieira, T.A., Zhao, Y., Celli, A., Medeiros, S.F., Lacerda, T.M., 2021. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides International Journal of Biological Macromolecules Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int. J. Biol. Macromol. 183. https://doi.org/10.1016/j.ijbiomac.2021.05.025

Ciriminna, R., Chavarría-Hernández, N., Inés Rodríguez Hernández, A., & Pagliaro, M. (2015). Pectin: A new perspective from the biorefinery standpoint. Biofuels, Bioproducts & Biorefining, 9(4), 368-377. http://dx.doi.org/10.1002/bbb.1551.

Corticosteroids, C., 2014. Cosmetics and Personal Care Products,
Third Edition. ed, Encyclopedia of Toxicology. Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00979-9

Dauqan, E., & Abdullah, A. (2013). Utilization of gum arabic for industries and human health. American Journal of Applied Sciences, 10(10), 1270-1279. http://dx.doi.org/10.3844/ajassp.2013.1270.1279.

Ding, B., Li, C., Pan, M., Chiou, Y., Li, Z., Wei, S., Yin, X., 2019. Microencapsulation of xanthan gum based on palm stearin / beeswax matrix as wall system. J. Food Process Eng. 1–8. https://doi.org/10.1111/jfpe.13102

Fagioli, L., Pavoni, L., Logrippo, S., Pelucchini, C., Rampoldi, L., Cespi, M., Bonacucina, G., Casettari, L., 2018. Linear Viscoelastic Properties of Selected Polysaccharide Gums as Function of Concentration , pH , and Temperature. https://doi.org/10.1111/1750-3841.14407

FDA, 2016. FDA Warns Consumers Not to Use “Best Bentonite Clay” [WWW Document]. Food Drug Adm. URL https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-consumers-notuse-best-bentonite-clay Feddersen, R. L., & Thorp, S. N. (1993). Sodium carboxymethylcellulose (3rd ed.). San Diego: Academic Press.

Filomena Freitas; Vıtor D. Alves; Maria A. M. Reis, 2015. Bacterial Polysaccharides: Production and Applications in Cosmetic Industry. Polysaccharides Bioactivity Biotechnol. 2018–2039. https://doi.org/10.1007/978-3-319-16298-0

Fiume, M. M., Heldreth, B., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks Junior, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2016). Safety Assessment of microbial polysaccharide gums as used in cosmetics. International Journal of Toxicology, 35(1, Suppl), 5S-49S. http://dx.doi.org/10.1177/1091581816651606. PMid:27383198.

Fiume, M. M., Heldreth, B., Boyer, I., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks Junior, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2017). Safety assessment of cross-linked alkyl acrylates as used in cosmetics. International Journal of Toxicology, 36(5, Suppl 2), 59S-88S. http://dx.doi.org/10.1177/1091581817707927. PMid:29025328.

García-Ochoa, F., Santos, V. E., Casas, J. A., & Gómez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18(7), 549-579. http://dx.doi.org/10.1016/S0734-9750(00)00050-1. PMid:14538095.

Gilbert, L., Picard, C., Savary, G., Grisel, M., 2013. Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers : relationships between both data. Colloids Surfaces A Physicochem. Eng. Asp. 421, 150–163. https://doi.org/10.1016/j.colsurfa.2013.01.003

Jindal, N., Singh Khattar, J., 2018. Microbial Polysaccharides in Food Industry, in: Biopolymers for Food Design. Elsevier Inc., India, pp. 95–123. https://doi.org/10.1016/B978-0-12-811449-0.00004-9

Krstono, V., 2015. Food Hydrocolloids Influence of xanthan gum on oil-in-water emulsion characteristics stabilized by OSA starch 45, 9–17. https://doi.org/10.1016/j.foodhyd.2014.10.024

Kurakula, M., & Rao, G. S. N. K. (2020). Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. Journal of Drug Delivery Science and Technology, 60, 102046. http://dx.doi.org/10.1016/j.jddst.2020.102046. PMid:32905026.

Lei, S., Edmund, T.F., Polytechnic, T., 2017. Polysaccharides, Microbial 1–19. https://doi.org/10.1016/B978-0-12-809633-8.13102-4

Luo, Y., Wang, Q., 2014. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 64, 353–367. https://doi.org/10.1016/j.ijbiomac.2013.12.017

Miranda, A. L., Costa, S. S., Assis, D. J., Jesus, C. S., Guimarães, A. G., & Druzian, J. I. (2020). Influence of strain and fermentation time on the production, composition, and properties of xanthan gum. Journal of Applied Polymer Science, 137(15), 1-11. http://dx.doi.org/10.1002/app.48557.

Moraes, J. D. D., Bertolino, S. R. A., Cuffini, S. L., Ducart, D. F., Bretzke, P. E., & Leonardi, G. R. (2017). Clay minerals: Properties and applications to dermo-cosmetic products and perspectives of natural raw materials for therapeutic purposes: A review. International Journal of Pharmaceutics, 534(1-2), 213-219. http://dx.doi.org/10.1016/j.ijpharm.2017.10.031. PMid:29038067.

New Jersey Department of Health, 2017. Hazardous substance fact sheet.

Nordin, N. Z., Rashidi, A. R., Dailin, D. J., Abd. Malek, R., Azelee, N. I. W., Abd. Manas, N. H., Selvamanil, S., Zaidel, D. N. A., Abd Alsaheb, R. A., Sukmawati, D., & El Enshasy, H. (2020). Xanthan biopolymer in pharmaceutical and cosmeceutical applications: Critical review article. Bioscience Research, 17, 205-220.

Petri, D. F. S. (2015). Xanthan gum: A versatile biopolymer for biomedical and technological applications. Journal of Applied Polymer Science, 132(23). http://dx.doi.org/10.1002/app.42035.

ReportLinker, 2020. Global Xanthan Gum Industry [WWW Document]. Globe Newswire. URL https://www.globenewswire.com/newsrelease/2020/12/15/2145513/0/en/Global-Xanthan-GumIndustry.html Saha, D., & Bhattacharya, S. (2010). Hydrocolloids as a thickening and gelling agents in food: A critical review. Journal of Food Science and Technology, 47(6), 587-597. http://dx.doi.org/10.1007/s13197-010-0162-6.

Thombare, N., Jha, U., Mishra, S., & Siddiqui, M. Z. (2016). Guar gum as a promising starting material for diverse applications: A review. International Journal of Biological Macromolecules, 88, 361-372. http://dx.doi.org/10.1016/j.ijbiomac.2016.04.001. PMid:27044346.

Woźniak, M., Kowalska, M., Tavernier, S., & Żbikowska, A. (2021). Enzymatically modified fats applied in emulsions stabilized by polysaccharides. Biomolecules, 11(1), 49. http://dx.doi.org/10.3390/biom11010049.

Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Dusemund, B., Filipič, M., Frutos, M. J., Galtier, P., Gott, D., Gundert-Remy, U., Kuhnle, G. G., Leblanc, J. C., Lillegaard, I. T., Moldeus, P., Mortensen, A., Oskarsson, A., Stankovic, I., Waalkens-Berendsen, I., Woutersen, R. A., Wright, M., Boon, P., Gürtler, R., Mosesso, P., Parent-Massin, D., Tobback, P., Chrysafidis, D., Rincon, A. M., Tard, A., & Lambré, C. (2018). Re-evaluation of calcium silicate (E 552), magnesium silicate (E 553a (i)), magnesium trisilicate (E 553a (ii)), and talc (E 553b) as food additives. EFSA Journal, 16(8), e05375. PMid:32626019.

Zhu, J., & Liu, W. (2020). A tale of two databases: The use of Web of Science and Scopus in academic papers. Scientometrics, 123(1), 321-335. http://dx.doi.org/10.1007/s11192-020-03387-8.


Submitted date:
11/23/2021

Accepted date:
05/03/2022

629e5849a95395380533e472 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections