Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202203
Biotechnology Research and Innovation Journal
Review Article

A systematic review of drying methods and their impact on technological characteristics of sourdough type III

Ivan De Marco, Cássia Maria da Silva, Jaqueline Oliveira de Moraes, Leidiane Andreia Acordi Menezes, Marília Miotto, João Borges Laurindo, Juliano De Dea Lindner

Downloads: 8
Views: 724

Abstract

Abstract: Type I sourdough refers to a natural fermentation of flour and water used to manufacture baked goods, with specific sensory, technological, and nutritional attributes. However, it is a slow process, quite laborious, and that occurs without standardization. Thus, on an industrial scale, sourdough fermentation becomes viable from the use of type III sourdough, in which microbial cultures are selected and stabilized by drying, and the results in terms of quality of the final product are standardized. However, dry sourdough is challenging; it is preferable to preserve viable cells for further fermentation and the aromas generated in the first fermentation. The objective of this review was to address the influence of drying methods on the technological characteristics of type III sourdough. This study was based on the PRISMA methodology, searching for scientific articles in four databases: Scielo, Science Direct, Scopus, and PubMed, with the descriptors: “sourdough” OR “sourdough drying” OR “sourdough dried”. The search resulted in 6,429, of which only 23 articles addressed the researched topic. The main sourdough drying methods found were oven drying, freeze-drying, and spray-drying. It is noteworthy that low temperatures and vacuum during the freeze-drying, and the sample’s short-residency time during the spray-drying process, better preserve nutrients and microorganisms viability. Methods that include protective agents can increase cell viability and extend the storage time of dehydrated sourdough. The physicochemical characteristics of type III sourdough and baked goods, in addition to sensory analysis, indicate a promising industrial application. Large-scale production of type III sourdough from spray-drying is a viable alternative for operational costs and continuous production; however, studies should focus on obtaining better microbial survival.

Keywords

Bread; Spray-drying; Freeze-drying; Bakery; Cell viability; Baked goods.

References

Aplevicz, K. S., Silva, T., Fritzen-Freire, C. B., Amboni, R. D. M. C., Barreto, P. L. M., & Sant’Anna, E. S. (2014). Effect of the incorporation of different freeze-dried cultures on the properties of sourdough bread. Journal of Culinary Science & Technology, 12(4), 354-367. http://dx.doi.org/10.1080/15428052.2014.904837.

Arendt, E. K., Ryan, L. A. M., & Dal Bello, F. (2007). Impact of sourdough on the texture of bread. Food Microbiology, 24(2), 165-174. http://dx.doi.org/10.1016/j.fm.2006.07.011. PMid:17008161.

Arora, K., Ameur, H., Polo, A., Di Cagno, R., Rizzello, C. G., & Gobbetti, M. (2021). Thirty years of knowledge on sourdough fermentation: A systematic review. Trends in Food Science & Technology, 108, 71-83. http://dx.doi.org/10.1016/j.tifs.2020.12.008.

Azhar, M. D., Hashib, S. A., Ibrahim, U. K., & Rahman, N. A. (2021). Development of carrier material for food applications in spray drying technology: An overview. Materials Today: Proceedings, 47, 1371-1375. http://dx.doi.org/10.1016/j.matpr.2021.04.140.

Barbosa, J., Borges, S., Amorim, M., Pereira, M. J., Oliveira, A., Pintado, M. E., & Teixeira, P. (2015). Comparison of spray drying, freeze drying and convective hot air drying for the production of a probiotic orange powder. Journal of Functional Foods, 17, 340-351. http://dx.doi.org/10.1016/j.jff.2015.06.001.

Bhatta, S., Stevanovic Janezic, T., & Ratti, C. (2020). Freeze-drying of plant-based foods. Foods, 9(1), 87. http://dx.doi.org/10.3390/foods9010087. PMid:31941082.

Brandt, M. J. (2007). Sourdough products for convenient use in baking. Food Microbiology, 24(2), 161-164. http://dx.doi.org/10.1016/j.fm.2006.07.010. PMid:17008160.

Brandt, M. J. (2019). Industrial production of sourdoughs for the baking branch: An overview. International Journal of Food Microbiology, 302, 3-7. http://dx.doi.org/10.1016/j.ijfoodmicro.2018.09.008. PMid:30219200.

Caglar, N., Ermis, E., & Durak, M. Z. (2021). Spray-dried and freezedried sourdough powders: Properties and evaluation of their use in breadmaking. Journal of Food Engineering, 292, 110355. http://dx.doi.org/10.1016/j.jfoodeng.2020.110355.

Catzeddu, P. (2019). Sourdough breads. In V. R. Preedy & R. R. Watson (Eds.), Flour and breads and their fortification in health and disease prevention (pp. 177-188). London: Academic Press. http://dx.doi.org/10.1016/B978-0-12-814639-2.00014-9.

Chavan, R. S., & Chavan, S. R. (2011). Sourdough technology: A traditional way for wholesome foods: A review. Comprehensive Reviews in Food Science and Food Safety, 10(3), 169-182. http://dx.doi.org/10.1111/j.1541-4337.2011.00148.x.

Cossignani, L., Gobbetti, M., Damiani, P., Corsetti, A., Simonetti, M. S., & Manfredi, G. (1996). The sourdough microflora microbiological, biochemical and breadmaking characteristics of doughs fermented with freeze-dried mixed starters, freezedried wheat sourdough and mixed fresh-cell starters. Zeitschrift fur Lebensmittel-Untersuchung und -Forschung, 203(1), 88-94. http://dx.doi.org/10.1007/BF01267776.

Ćurić, D., Tusak, D., Stehlik, V., Bauman, I., Kricka, T., & Koražij, M. (2006). Influence of drying conditions on metabolic activity of lactic acid bacteria in sourdough. In 3rd International Congress FLOUR - BREAD ´05 5th Croatian Congress of Cereal Technologists (pp. 92-97). Opatija.

De Valdez, G. F., & Diekmann, H. (1993). Freeze-drying conditions of starter cultures for sourdoughs. Cryobiology, 30(2), 185-190. http://dx.doi.org/10.1006/cryo.1993.1018.

De Vuyst, L., Van Kerrebroeck, S., & Leroy, F. (2017). Microbial ecology and process technology of sourdough fermentation. Advances in Applied Microbiology, 100, 49-160. http://dx.doi.org/10.1016/bs.aambs.2017.02.003.

El-Dash, A. A. (1971). The precursors of bread flavor: Effect of fermentation and proteolytic activity. Bakers’ Digest 45(6), 26-31.

Ertop, M., & Coşkun, Y. (2018). Shelf-life, physicochemical, and nutritional properties of wheat bread with optimized amount of dried chickpea sourdough and yeast by response surface methodology. Journal of Food Processing and Preservation, 42(7), e13650. http://dx.doi.org/10.1111/jfpp.13650.

Ertop, M., İlter, Ş. M., Yilmaz, F., Baltaci, C., & Gündoğdu, A. (2018). Quality properties of wheat breads incorporated with dried sourdoughs produced with different fermentation and drying Methods. Food Science and Technology Research, 24(6), 971-980. http://dx.doi.org/10.3136/fstr.24.971.

Foerst, P., & Santivarangkna, C. (2015). Advances in starter culture technology. In W. Holzapfel (Ed.), Advances in fermented foods and beverages: Improving quality, technologies and health benefits (pp. 249-270). Oxford: Elsevier. http://dx.doi.org/10.1016/B978-1-78242-015-6.00011-6.

Fu, N., & Chen, X. D. (2011). Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44(5), 1127-1149. http://dx.doi.org/10.1016/j.foodres.2011.03.053.

Fu, N., Huang, S., Xiao, J., & Chen, X. D. (2018). Producing powders containing active dry probiotics with the aid of spray drying. Advances in Food and Nutrition Research, 85, 211-262. https://doi.org/10.1016/bs.afnr.2018.02.003.

Gänzle, M., & Ripari, V. (2016). Composition and function of sourdough microbiota: From ecological theory to bread quality. International Journal of Food Microbiology, 239, 19-25. http://dx.doi.org/10.1016/j.ijfoodmicro.2016.05.004. PMid:27240932.

Gobbetti, M., De Angelis, M., Corsetti, A., & Di Cagno, R. (2005). Biochemistry and physiology of sourdough lactic acid bacteria. Trends in Food Science and Technology, 16(1-3), 57-69. http://dx.doi.org/10.1016/j.tifs.2004.02.013.

Gocmen, D., Gurbuz, O., Kumral, A. Y., Dagdelen, A. F., & Sahin, I. (2007). The effects of wheat sourdough on glutenin patterns, dough rheology and bread properties. European Food Research and Technology, 225(5-6), 821-830. http://dx.doi.org/10.1007/s00217-006-0487-6.

Gul, L. B., Con, A. H., & Gul, O. (2020b). Storage stability and sourdough acidification kinetic of freeze-dried Lactobacillus curvatus N19 under optimized cryoprotectant formulation. Cryobiology, 96, 122-129. http://dx.doi.org/10.1016/j.cryobiol.2020.07.007. PMid:32712072.

Gul, L. B., Gul, O., Yilmaz, M. T., Dertli, E., & Con, A. H. (2020a). Optimization of cryoprotectant formulation to enhance the viability of Lactobacillus brevis ED25: Determination of storage stability and acidification kinetics in sourdough. Journal of Food Processing and Preservation, 44(4), e14400. http://dx.doi.org/10.1111/jfpp.14400.

Huang, S., Vignolles, M.-L., Chen, X. D., Le Loir, Y., Jan, G., Schuck, P., & Jeantet, R. (2017). Spray drying of probiotics and other foodgrade bacteria: A review. Trends in Food Science & Technology, 63, 1-17. http://dx.doi.org/10.1016/j.tifs.2017.02.007.

Khorasanchi, N., Peighambardoust, S., Hejazi, M., & Raafat, S. (2011). Effect of freezing and freeze-drying process on the survival of sourdough lactic acid bacteria. Journal of Food Research, 21(2), 247-255.

Lattanzi, A., Minervini, F., & Gobbetti, M. (2014). Assessment of comparative methods for storing type-I wheat sourdough. Lebensmittel-Wissenschaft + Technologie, 59(2), 948-955. http://dx.doi.org/10.1016/j.lwt.2014.06.032.

Liu, T., Li, Y., Yang, Y., Yi, H., Zhang, L., & He, G. (2020). The influence of different lactic acid bacteria on sourdough flavor and a deep insight into sourdough fermentation through RNA sequencing. Food Chemistry, 307, 125529. http://dx.doi.org/10.1016/j.foodchem.2019.125529. PMid:31644982.

Mantzourani, I., Terpou, A., Alexopoulos, A., Bezirtzoglou, E., & Plessas, S. (2019). Assessment of ready-to-use freeze-dried immobilized biocatalysts as innovative starter cultures in sourdough bread making. Foods, 8(1), 40. http://dx.doi.org/10.3390/foods8010040. PMid:30669666.

Martínez-Anaya, M. A., Pitarch, B., & Barber, C. B. (1993). Biochemical characteristics and breadmaking performance of freeze-dried wheat sour dough starters. Zeitschrift fur LebensmittelUntersuchung und -Forschung, 196(4), 360-365. http://dx.doi. org/10.1007/BF01197936.

Menezes, L. A. A., Sardaro, M. L. S., Duarte, R. T. D., Mazzon, R. R., Neviani, E., Gatti, M., & De Dea Lindner, J. (2020). Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil.

Food Microbiology, 85, 103302. http://dx.doi.org/10.1016/j.fm.2019.103302. Menezes, L. A. A., De Marco, I., Neves Oliveira Dos Santos, N., Costa Nunes, C., Leite Cartabiano, C. E., Molognoni, L., Pereira, G. V.

M., Daguer, H., & De Dea Lindner, J. (2021). Reducing FODMAPs and improving bread quality using type II sourdough with selected starter cultures. International Journal of Food Sciences and Nutrition, 72(7), 912-922. http://dx.doi.org/10.1080/09637486.2021.1892603. PMid:33653200.

Meuser, F., Barber, B., & Fischer, G. (1995). Determination of the microbial activity of dried sourdoughs by revitalization of their lactic acid bacteria and yeasts. Food Control, 6(3), 147-154. http://dx.doi.org/10.1016/0956-7135(94)00009-3.

Mohd Roby, B. H., Muhialdin, B. J., Abadl, M. M. T., Mat Nor, N. A., Marzlan, A. A., Lim, S. A. H., Mustapha, N. A., & Meor Hussin, A. S. (2020). Physical properties, storage stability, and consumer acceptability for sourdough bread produced using encapsulated kombucha sourdough starter culture. Journal of Food Science, 85(8), 2286-2295. http://dx.doi.org/10.1111/1750-3841.15302. PMid:32691422.

Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; A review. Journal of Microbiological Methods, 66(2), 183-193. http://dx.doi.org/10.1016/j.mimet.2006.02.017. PMid:16632005.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., Stewart, L. A., Thomas, J., Tricco, A. C., Welch, V. A., Whiting, P., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Medicine, 18(3), e1003583. http://dx.doi.org/10.1371/journal.pmed.1003583. PMid:33780438.

Peighambardoust, S. H., Golshan Tafti, A., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends in Food Science & Technology, 22(5), 215-224. http://dx.doi.org/10.1016/j.tifs.2011.01.009.

Pétel, C., Onno, B., & Prost, C. (2017). Sourdough volatile compounds and their contribution to bread: A review. Trends in Food Science & Technology, 59, 105-123. http://dx.doi.org/10.1016/j.tifs.2016.10.015.

Reale, A., Di Renzo, T., Preziuso, M., Panfili, G., Cipriano, L., & Messia, M. C. (2019). Stabilization of sourdough starter by spray drying technique: New breadmaking perspective. LWT, 99, 468-475. http://dx.doi.org/10.1016/j.lwt.2018.10.016.

Reyes, V., Chotiko, A., Chouljenko, A., Campbell, V., Liu, C., Theegala, C., & Sathivel, S. (2018). Influence of wall material on production of spray dried Lactobacillus plantarum NRRL B-4496 and its viability at different storage conditions. Drying Technology, 36(14), 1738-1748. http://dx.doi.org/10.1080/07373937.2017.1423324.

Różyło, R., Rudy, S., Krzykowski, A., & Dziki, D. (2015a). Novel application of freeze-dried Amaranth sourdough in gluten-free bread production. Journal of Food Process Engineering, 38(2), 135-143. http://dx.doi.org/10.1111/jfpe.12152.

Różyło, R., Rudy, S., Krzykowski, A., Dziki, D., Gawlik-Dziki, U., Różyło, K., & Skonecki, S. (2015b). Effect of adding fresh and freeze-dried buckwheat sourdough on gluten-free bread quality. International Journal of Food Science & Technology, 50(2), 313-322. http://dx.doi.org/10.1111/ijfs.12622.

Rudy, S. (2009). Energy consumption in the freeze-and convectiondrying of garlic. Teka Commission of Motorization Power Industry in Agriculture, (9), 259-266.

Santivarangkna, C., Kulozik, U., & Foerst, P. (2007). Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnology Progress, 23(2), 302-315. http://dx.doi.org/10.1021/bp060268f. PMid:17305363.

Santivarangkna, C., Kulozik, U., & Foerst, P. (2008). Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. Journal of Applied Microbiology, 105(1), 1-13. http://dx.doi.org/10.1111/j.1365-2672.2008.03744.x. PMid:18266696.

Siepmann, F. B., Sousa de Almeida, B., Waszczynskyj, N., & Spier, M. R. (2019). Influence of temperature and of starter culture on biochemical characteristics and the aromatic compounds evolution on type II sourdough and wheat bread. Lebensmittel-Wissenschaft + Technologie, 108, 199-206. http://dx.doi.org/10.1016/j.lwt.2019.03.065.

Siepmann, F. B., Ripari, V., Waszczynskyj, N., & Spier, M. R. (2018). Overview of sourdough technology: From production to marketing. Food and Bioprocess Technology, 11(2), 242-270. http://dx.doi.org/10.1007/s11947-017-1968-2.

Stefanello, R. F., Machado, A. A. R., Pasqualin Cavalheiro, C., Bartholomei Santos, M. L., Nabeshima, E. H., Copetti, M. V., & Fries, L. L. M. (2018). Trehalose as a cryoprotectant in freezedried wheat sourdough production. Lebensmittel-Wissenschaft + Technologie, 89, 510-517. http://dx.doi.org/10.1016/j.lwt.2017.11.011.

Stefanello, R. F., Nabeshima, E. H., Iamanaka, B. T., Ludwig, A., Fries, L. L. M., Bernardi, A. O., & Copetti, M. V. (2019). Survival and stability of Lactobacillus fermentum and Wickerhamomyces anomalus strains upon lyophilisation with different cryoprotectant agents. Food Research International, 115, 90-94. http://dx.doi.org/10.1016/j.foodres.2018.07.044. PMid:30599986.

Stephan, D., Da Silva, A.-P. M., & Bisutti, I. L. (2016). Optimization of a freeze-drying process for the biocontrol agent Pseudomonas spp. and its influence on viability, storability and efficacy. Biological Control, 94, 74-81. http://dx.doi.org/10.1016/j.biocontrol.2015.12.004.

Tafti, A. G., Peighardoust, S. H., Behnam, F., Bahrami, A., Aghagholizadeh, R., Ghamari, M., & Rafat, S. A. (2013a). Effects of spray-dried sourdough on flour characteristics and rheological properties of dough. Czech Journal of Food Sciences, 31(4), 361-367. http://dx.doi.org/10.17221/183/2012-CJFS.

Tafti, A. G., Peighambardoust, S. H., Hesari, J., Bahrami, A., & Bonab, E. S. (2013b). Physico-chemical and functional properties of spray-dried sourdough in breadmaking. Food Science & Technology International, 19(3), 271-278. http://dx.doi.org/10.1177/1082013212452415. PMid:23515477.

Tan, D. T., Poh, P. E., & Chin, S. K. (2018). Microorganism preservation by convective air-drying: A review. Drying Technology, 36(7), 764-779. http://dx.doi.org/10.1080/07373937.2017.1354876.

Yan, B., Sadiq, F. A., Cai, Y., Fan, D., Chen, W., Zhang, H., & Zhao, J. (2019). Microbial diversity in traditional type I sourdough and jiaozi and its influence on volatiles in Chinese steamed bread. LWT, 101, 764-773. http://dx.doi.org/10.1016/j.lwt.2018.12.004.


Submitted date:
11/26/2021

Reviewed date:
03/14/2022

Accepted date:
03/14/2022

6298f562a9539516287a93c2 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections