Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202201
Biotechnology Research and Innovation Journal
Review Article

Biosynthesis of fatty acids and biosurfactants by the yeast Yarrowia lipolytica with emphasis on metabolic networks and bioinformatics

Claudia M. Bauer, Caroline Schmitz, Melissa Fontes Landell, Marcelo Maraschin

Downloads: 11
Views: 613

Abstract

Abstract: Yarrowia lipolytica is a haploid, aerobic, and non-pathogenic yeast with biotechnological importance due to its lipolytic and proteolytic properties. It is capable of producing lipases, biosurfactants, long chain fatty acids, and also metabolizing different types of carbon sources such as hydrocarbons. Besides, Y. lipolytica also receives attention due to its ability to produce organic acids. In this review, we explore its metabolic abilities to produce fatty acids for the fine chemical industry (fatty acid-derived bio-based compounds) and also biosurfactants, important for the food and pharmaceutical industries and bioremediation. With the accelerated advance of ‘omics’ technologies, e.g., genomics, proteomics, metabolomics, genetic and metabolic engineering, combined with bioinformatics, substantial data are increasingly available, allowing to optimize biotechnological applications of this microorganism. Thus, this review covers the biosynthesis of fatty acids and biosurfactants by Y. lipolytica, exploring the current knowledge of how this yeast regulates the biosynthesis and accumulation of these compounds and the role of cutting-edge technologies in understanding and engineering its metabolism. Topics to be addressed in this review include the channeling of different carbon sources into lipid metabolism, the role of nitrogen and other growth factors in the metabolism of target compounds, besides fatty acid transport, regulatory networks, and the computational models available for metabolic engineering Y. lipolytica.

Keywords

Yarrowia lipolytica; Fatty acids; Biosurfactants; Metabolic network; Metabolic engineering; Computational tools.

References

Albuquerque, C. D., Filetti, A. M., & Campos-Takaki, G. M. (2006). Optimizing the medium components in bioemulsifiers production by Candida lipolytica with response surface method. Canadian Journal of Microbiology, 52(6), 575-583. http://dx.doi.org/10.1139/w06-002. PMid:16788726.

Aly, A. A., Hasan, Y. N., & Al-Farraj, A. S. (2014). Olive mill wastewater treatment using a simple zeolite-based low-cost method. Journal of Environmental Management, 145, 341-348. http://dx.doi.org/10.1016/j.jenvman.2014.07.012. PMid:25113228.

Amaral, P. F., Rocha-Leão, M. H. M., Marrucho, I. M., Coutinho, J. A., & Coelho, M. A. Z. (2006). Improving lipase production using a perfluorocarbon as oxygen carrier. Journal of Chemical Technology and Biotechnology, 81(8), 1368-1374. http://dx.doi.org/10.1002/jctb.1478.

Anastassiadis, S., Aivasidis, A., & Wandrey, C. (2002). Citric acid production by Candida strains under intracellular nitrogen limitation. Applied Microbiology and Biotechnology, 60(1-2), 81-87. http://dx.doi.org/10.1007/s00253-002-1098-1. PMid:12382045.

Arzumanov, T. E., Shishkanova, N. V., & Finogenova, T. V. (2000). Biosynthesis of citric acid by Yarrowia lipolytica repeat-batch culture on ethanol. Applied Microbiology and Biotechnology, 53(5), 525-529. http://dx.doi.org/10.1007/s002530051651. PMid:10855710.

Athenstaedt, K., Jolivet, P., Boulard, C., Zivy, M., Negroni, L., Nicaud, J. M., & Chardot, T. (2006). Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, 6(5), 1450-1459. http://dx.doi.org/10.1002/pmic.200500339. PMid:16470660.

Barth, G., & Gaillardin, C. (1996). Yarrowia lipolytica. In K. Wolf (Ed.), Nonconventional yeasts in biotechnology (pp. 313-388).

Berlin: Springer-Verlag. http://dx.doi.org/10.1007/978-3-642-79856-6_10.

Barth, G., & Gaillardin, C. (1997). Physiology and genetics of the dimorphic fungus Yarrowia lipolytica. FEMS Microbiology Reviews, 19(4), 219-237. http://dx.doi.org/10.1111/j.1574-6976.1997.tb00299.x. PMid:9167256.

Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009a). Yarrowia lipolytica as a model for bio-oil production. Progress in Lipid Research, 48(6), 375-387. http://dx.doi.org/10.1016/j.plipres.2009.08.005. PMid:19720081.

Beopoulos, A., Chardot, T., & Nicaud, J. M. (2009b). Yarrowia lipolytica: a model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6), 692-696. http://dx.doi.org/10.1016/j.biochi.2009.02.004. PMid:19248816.

Beopoulos, A., Mrozova, Z., Thevenieau, F., Le Dall, M. T., Hapala, I., Papanikolaou, S., Chardot, T., & Nicaud, J. M. (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 74(24), 7779-7789. http://dx.doi.org/10.1128/AEM.01412-08. PMid:18952867.

Beopoulos, A., Nicaud, J. M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193-1206. http://dx.doi.org/10.1007/s00253-011-3212-8. PMid:21452033.

Berninger, G., Schmidtchen, R., Casel, G., Knorr, A., Rautenstrauss, K., Kunau, W. H., & Schweizer, E. (1993). Structure and metabolic control of the Yarrowia lipolytica peroxisomal 3-oxoacyl-CoAthiolase gene. European Journal of Biochemistry, 216(2), 607- 613. http://dx.doi.org/10.1111/j.1432-1033.1993.tb18180.x. PMid:7916689.

Blank, L. M., Lehmbeck, F., & Sauer, U. (2005). Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Research, 5(6-7), 545-558. http://dx.doi.org/10.1016/j.femsyr.2004.09.008. PMid:15780654.

Blazeck, J., Hill, A., Jamoussi, M., Pan, A., Miller, J., & Alper, H. S. (2015). Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metabolic Engineering, 32, 66-73. http://dx.doi.org/10.1016/j.ymben.2015.09.005. PMid:26384571.

Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., Pan, A., Otoupal, P., & Alper, H. S. (2014). Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Communications, 5(1), 3131. http://dx.doi.org/10.1038/ncomms4131. PMid:24445655.

Boulton, C. A., & Ratledge, C. (1983). Use of transition studies in continuous cultures of Lipomyces starkeyi, an oleaginous yeast, to investigate the physiology of lipid accumulation. Microbiology, 129(9), 2871-2876. http://dx.doi.org/10.1099/00221287-129-9-2871.

Brown, D. A. (2001). Lipid droplets: proteins floating on a pool of fat. Current Biology, 11(11), R446-R449. http://dx.doi.org/10.1016/S0960-9822(01)00257-3. PMid:11516669.

Chernyavskaya, O. G., Shishkanova, N. V., Il’chenko, A. P., & Finogenova, T. V. (2000). Synthesis of alpha-ketoglutaric acid by Yarrowia lipolytica yeast grown on ethanol. Applied Microbiology and Biotechnology, 53(2), 152-158. http://dx.doi.org/10.1007/s002530050002. PMid:10709976.

Cirigliano, M. C., & Carman, G. M. (1984). Isolation of a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 48(4), 747-750. http://dx.doi.org/10.1128/aem.48.4.747-750.1984. PMid:6439118.

Cirigliano, M. C., & Carman, G. M. (1985). Purification and characterization of Liposan, a bioemulsifier from Candida lipolytica. Applied and Environmental Microbiology, 50(4), 846-850. http://dx.doi.org/10.1128/aem.50.4.846-850.1985. PMid:16346917.

Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-paraffins. Journal of Biotechnology, 110(1), 73-84. http://dx.doi.org/10.1016/j.jbiotec.2004.01.007. PMid:15099907.

Darvishi, F., Nahvi, I., Zarkesh-Esfahani, H., & Momenbeik, F. (2009). Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast. Journal of Biomedicine & Biotechnology, 2009, 562943. http://dx.doi.org/10.1155/2009/562943. PMid:19826636.

Davis, R., Tao, L., Scarlata, C., Tan, E. C. D., Ross, J., Lukas, J., & Sexton, D. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons (No. NREL/TP-5100-60223). Golden, CO: National Renewable Energy Laboratory (NREL).

Deive Herva, F., Sanromán, M., & Longo, M. (2009). A comprehensive study of lipase production by Yarrowia lipolytica CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor. Journal of Chemical Technology and Biotechnology, 85(2), 258-266. http://dx.doi.org/10.1002/jctb.2301.

Devillers, H., & Neuvéglise, C. (2019). Genome sequence of the oleaginous yeast Yarrowia lipolytica H222. Microbiology Resource Announcements, 8(4), e01547-18. http://dx.doi.org/10.1128/MRA.01547-18. PMid:30701247.

Dobrowolski, A., Mituła, P., Rymowicz, W., & Mironczuk, A. (2016). Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica. Bioresource Technology, 207, 237-243. http://dx.doi.org/10.1016/j.biortech.2016.02.039. PMid:26890799.

Domínguez, A., Deive, F. J., Sanromán, M. A., & Longo, M. A. (2003). Effect of lipids and surfactants on extracellular lipase production by Yarrowia lipolytica. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 78(11), 1166-1170. http://dx.doi.org/10.1002/jctb.922.

Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Marck, C., Neuvéglise, C., Talla, E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour, A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J. M., Beyne, E., Bleykasten, C., Boisramé, A., Boyer, J., Cattolico, L., Confanioleri, F., De Daruvar, A., Despons, L., Fabre, E., Fairhead, C., Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jauniaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire, M., Lesur, I., Ma, L., Muller, H., Nicaud, J. M., Nikolski, M., Oztas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard, G. F., Straub, M. L., Suleau, A., Swennen, D., Tekaia, F., Wésolowski-Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic, I., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B., Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P., & Souciet, J. L. (2004). Genome evolution in yeasts. Nature, 430(6995), 35-44. http://dx.doi.org/10.1038/nature02579. PMid:15229592.

Dulermo, T., & Nicaud, J. M. (2011). Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metabolic Engineering, 13(5), 482-491. http://dx.doi.org/10.1016/j.ymben.2011.05.002. PMid:21620992.

Dulermo, T., Tréton, B., Beopoulos, A., Kabran Gnankon, A. P., Haddouche, R., & Nicaud, J. M. (2013). Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation. Biochimica et Biophysica Acta, 1831(9), 1486-1495. http://dx.doi.org/10.1016/j.bbalip.2013.07.001. PMid:23856343.

Egermeier, M., Russmayer, H., Sauer, M., & Marx, H. (2017). Metabolic flexibility of Yarrowia lipolytica growing on glycerol. Frontiers in Microbiology, 8, 49. http://dx.doi.org/10.3389/fmicb.2017.00049. PMid:28174563.

Fickers, P., Fudalej, F., Le Dall, M. T., Casaregola, S., Gaillardin, C., Thonart, P., & Nicaud, J. M. (2005a). Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genetics and Biology, 42(3), 264-274. http://dx.doi.org/10.1016/j.fgb.2004.12.003. PMid:15707847.

Fickers, P., Nicaud, J. M., Destain, J., & Thonart, P. (2005b). Involvement of hexokinase Hxk1 in glucose catabolite repression of LIP2 encoding extracellular lipase in the yeast Yarrowia lipolytica. Current Microbiology, 50(3), 133-137. http://dx.doi.org/10.1007/s00284-004-4401-9. PMid:15883872.

Finogenova, T. V., Kamzolova, S. V., Dedyukhina, E. G., Shishkanova, N. V., Il’chenko, A. P., Morgunov, I. G., Chernyavskaya, O. G., & Sokolov, A. P. (2002). Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolytica N 1 under continuous cultivation. Applied Microbiology and Biotechnology, 59(4-5), 493-500. http://dx.doi.org/10.1007/s00253-002-1022-8. PMid:12172616.

Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: a review of prospects. Applied Biochemistry and Microbiology, 41(5), 418-425. http://dx.doi.org/10.1007/s10438-005-0076-7.

Fröhlich-Wyder, M. T., Arias-Roth, E., & Jakob, E. (2019). Cheese yeasts. Yeast, 36(3), 129-141. http://dx.doi.org/10.1002/yea.3368. PMid:30512214.

Fujimoto, T., Ohsaki, Y., Cheng, J., Suzuki, M., & Shinohara, Y. (2008). Lipid droplets: a classic organelle with new outfits. Histochemistry and Cell Biology, 130(2), 263-279. http://dx.doi.org/10.1007/s00418-008-0449-0. PMid:18546013.

Gaikwad, P., Joshi, S., Mandlecha, A., & RaviKumar, A. (2021). Phylogenomic and biochemical analysis reassesses temperate marine yeast Yarrowia lipolytica NCIM 3590 to be Yarrowia bubula. Scientific Reports, 11(1), 5487. http://dx.doi.org/10.1038/s41598-021-83914-6. PMid:33750815.

Gonçalves, F. A., Colen, G., & Takahashi, J. A. (2014). Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal, 2014, 476207. http://dx.doi.org/10.1155/2014/476207. PMid:24715814.

Goodridge, A. (1972). Regulation of the activity of acetyl coenzyme A carboxylase by palmitoyl coenzyme A and citrate. The Journal of Biological Chemistry, 247(21), 6946-6952. http://dx.doi.org/10.1016/S0021-9258(19)44677-2. PMid:5082134.

Groenewald, M., Boekhout, T., Neuvéglise, C., Gaillardin, C., van Dijck, P. W., & Wyss, M. (2014). Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 40(3), 187-206. http://dx.doi.org/10.3109/1040841X.2013.770386. PMid:23488872.

Gropoşila-Constantinescu, D., Popa, O., Mărgărit, G., & Vişan, L. (2015). Production of microbial lipids by Yarrowia lipolytica. Romanian Biotechnological Letters, 20(6), 10936-10944.

Hassanshahian, M., Tebyanian, H., & Cappello, S. (2012). Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Marine Pollution Bulletin, 64(7), 1386-1391. http://dx.doi.org/10.1016/j.marpolbul.2012.04.020. PMid:22622152.

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., Haraldsdóttir, H. S., Wachowiak, J., Keating, S. M., Vlasov, V., Magnusdóttir, S., Ng, C. Y., Preciat, G., Žagare, A., Chan, S. H. J., Aurich, M. K., Clancy, C. M., Modamio, J., Sauls, J. T., Noronha, A., Bordbar, A., Cousins, B., El Assal, D. C., Valcarcel, L. V., Apaolaza, I., Ghaderi, S., Ahookhosh, M., Ben Guebila, M., Kostromins, A., Sompairac, N., Le, H. M., Ma, D., Sun, Y., Wang, L., Yurkovich, J. T., Oliveira, M. A. P., Vuong, P. T., El Assal, L. P., Kuperstein, I., Zinovyev, A., Hinton, H. S., Bryant, W. A., Aragón Artacho, F. J., Planes, F. J., Stalidzans, E., Maass, A., Vempala, S., Hucka, M., Saunders, M. A., Maranas, C. D., Lewis, N. E., Sauter, T., Palsson, B. Ø., Thiele, I., & Fleming, R. M. T. (2019). Creation and analysis of biochemical constraintbased models using the COBRA toolbox v.3.0. Nature Protocols, 14(3), 639-702. http://dx.doi.org/10.1038/s41596-018-0098-2. PMid:30787451.

Holdsworth, J., & Ratledge, C. (1988). Lipid turnover in oleaginous yeasts. Microbiology, 134(2), 339-346. http://dx.doi.org/10.1099/00221287-134-2-339.

Holkenbrink, C., Dam, M. I., Kildegaard, K. R., Beder, J., Dahlin, J., Doménech Belda, D., & Borodina, I. (2018). EasyCloneYALI: CRISPR/Cas9-based synthetic toolbox for engineering of the yeast Yarrowia lipolytica. Biotechnology Journal, 13(9), e1700543. http://dx.doi.org/10.1002/biot.201700543. PMid:29377615.

Hong, S. P., Sharpe, P. L., Xue, Z., Yadav, N. S., Zhang, H., & Zhu, Q. Q. (2011). Recombinant microbial host cells for high eicosapentaenoic acid production. US Patent Application 20120052537.

Imandi, S., Karanam, S., & Garapati, H. (2010). Optimization of media constituents for the production of lipase in solid state fermentation by Yarrowia lipolytica from palm Kernal cake (Elaeis guineensis). Advances in Bioscience and Biotechnology, 1(2), 115-121. http://dx.doi.org/10.4236/abb.2010.12016.

Johnravindar, D., Karthikeyan, O. P., Selvam, A., Murugesan, K., & Wong, J. W. (2018). Lipid accumulation potential of oleaginous yeasts: a comparative evaluation using food waste leachate as a substrate. Bioresource Technology, 248(Pt A), 221-228. http://dx.doi.org/10.1016/j.biortech.2017.06.151. PMid:28736146.

Johnson, E. A., & Echavarri-Erasun, R. (2011). Yeast biotechnology. In S. P. Kurtzman, J. W. Fell & T. Boekhout (Eds.), The yeast, a taxonomic study (pp. 21-44). London: Elsevier. http://dx.doi.org/10.1016/B978-0-444-52149-1.00003-3.

Kamzolova, S. V., Chiglintseva, M. N., Lunina, J. N., & Morgunov, I. G. (2012). α-Ketoglutaric acid production by Yarrowia lipolytica and its regulation. Applied Microbiology and Biotechnology, 96(3), 783-791. http://dx.doi.org/10.1007/s00253-012-4222-x. PMid:22707058.

Kamzolova, S. V., Morgunov, I. G., Auric, A., Perevoznikova, O. A., Shishkanova, N. V., Stottmeister, U., & Finogenova, T. V. (2005). Lipase secretion and citric acid production in Yarrowia lipolytica yeast grown on animal and vegetable fat. Food Technology and Biotechnology, 43, 113-122.

Kamzolova, S. V., Shamin, R. V., Stepanova, N. N., Morgunov, G. I., Lunina, J. N., Allayarov, R. K., Samoilenko, V. A., & Morgunov, I. G. (2018). Fermentation conditions and media optimization for isocitric acid production from ethanol by Yarrowia lipolytica. BioMed Research International, 2018, 2543210. http://dx.doi.org/10.1155/2018/2543210. PMid:29568744.

Kamzolova, S. V., Yusupova, A. I., Vinokurova, N. G., Fedotcheva, N. I., Kondrashova, M. N., Finogenova, T. V., & Morgunov, I. G. (2009). Chemically assisted microbial production of succinic acid by the yeast Yarrowia lipolytica grown on ethanol. Applied Microbiology and Biotechnology, 83(6), 1027-1034. http://dx.doi.org/10.1007/s00253-009-1948-1. PMid:19300993.

Kavšček, M., Bhutada, G., Madl, T., & Natter, K. (2015). Optimization of lipid production with a genome-scale model of Yarrowia lipolytica. BMC Systems Biology, 9(72), 72. http://dx.doi.org/10.1186/s12918-015-0217-4. PMid:26503450.

Kerkhoven, E., Pomraning, K., Baker, S., & Nielsen, J. (2016). Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica. NPJ Systems Biology and Applications, 2, 16005. http://dx.doi.org/10.1038/npjsba.2016.5. PMid:28725468.

Kurtzman, C. P. (2011). Yarrowia van der Walt & von Arx (1980). In: Kurtzman SP, Fell JW, Boekhout T (eds) The yeast, a taxonomic study. Elsevier BV, London, pp 927-929. http://dx.doi.org/10.1016/B978-0-444-52149-1.00082-3.

Kuttiraja, M., Douha, A., & Tyagi, R. D. (2016a). Kinetics of lipid production at lab scale fermenters by a new isolate of Yarrowia lipolytica SKY7. Bioresource Technology, 221, 234-240. http://dx.doi.org/10.1016/j.biortech.2016.09.015. PMid:27639676.

Kuttiraja, M., Douha, A., Valéro, J. R., & Tyagi, R. D. (2016b). Elucidating the effect of glycerol concentration and C/N ratio on lipid production using Yarrowia lipolytica SKY7. Applied Biochemistry and Biotechnology, 180(8), 1586-1600. http://dx.doi.org/10.1007/s12010-016-2189-2. PMid:27422535.

Larroude, M., Park, Y. K., Soudier, P., Kubiak, M., Nicaud, J. M., & Rossignol, T. (2019). A modular golden gate toolkit for Yarrowia lipolytica synthetic biology. Microbial Biotechnology, 12(6), 1249-1259. http://dx.doi.org/10.1111/1751-7915.13427. PMid:31148366.

Larroude, M., Rossignol, T., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Synthetic biology tools for engineering Yarrowia lipolytica. Biotechnology Advances, 36(8), 2150-2164. http://dx.doi.org/10.1016/j.biotechadv.2018.10.004. PMid:30315870.

Ledesma-Amaro, R., & Nicaud, J. M. (2016a). Metabolic engineering for expanding the substrate range of Yarrowia lipolytica. Trends in Biotechnology, 34(10), 798-809. http://dx.doi.org/10.1016/j.tibtech.2016.04.010. PMid:27207225.

Ledesma-Amaro, R., & Nicaud, J. M. (2016b). Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 61, 40-50. http://dx.doi.org/10.1016/j.plipres.2015.12.001. PMid:26703186.

Ledesma-Amaro, R., Lazar, Z., Rakicka, M., Guo, Z., Fouchard, F., Crutz-Le Coq, A. M., & Nicaud, J. M. (2016). Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metabolic Engineering, 38, 115-124. http://dx.doi.org/10.1016/j.ymben.2016.07.001. PMid:27396355.

Lee, G. H., Bae, J. H., Suh, M. J., Kim, I. H., Hou, C. T., & Kim, H. R. (2007). New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y-2178. Journal of Microbiology and Biotechnology, 17(6), 1054-1057. PMid:18050928.

Liu, N., Qiao, K., & Stephanopoulos, G. (2016). 13C Metabolic Flux Analysis of acetate conversion to lipids by Yarrowia lipolytica. Metabolic Engineering, 38, 86-97. http://dx.doi.org/10.1016/j.ymben.2016.06.006. PMid:27387605.

Loira, N., Dulermo, T., Nicaud, J. M., & Sherman, D. J. (2012). A genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Systems Biology, 6, 35. http://dx.doi.org/10.1186/1752-0509-6-35. PMid:22558935.

Madzak, C. (2021). Yarrowia lipolytica strains and their biotechnological applications: How natural biodiversity and metabolic engineering could contribute to cell factories improvement. Journal of Fungi, 7(7), 548. http://dx.doi.org/10.3390/jof7070548. PMid:34356927.

Magdouli, S., Brar, S. K., & Blais, J. F. (2018). Morphology and rheological behaviour of Yarrowia lipolytica: Impact of dissolved oxygen level on cell growth and lipid composition. Process Biochemistry, 65, 1-10. http://dx.doi.org/10.1016/j.procbio.2017.10.021.

Magdouli, S., Guedri, T., Tarek, R., Brar, S. K., & Blais, J. F. (2017). Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica. Bioresource Technology, 243, 57-68. http://dx.doi.org/10.1016/j.biortech.2017.06.074. PMid:28651139.

Magnan, C., Yu, J., Chang, I., Jahn, E., Kanomata, Y., Wu, J., Zeller, M., Oakes, M., Baldi, P., & Sandmeyer, S. (2016). Sequence assembly of Yarrowia lipolytica strain W29/CLIB89 shows transposable element diversity. PLoS One, 11(9), e0162363. http://dx.doi.org/10.1371/journal.pone.0162363. PMid:27603307.

Mishra, P., Lee, N. R., Lakshmanan, M., Kim, M., Kim, B. G., & Lee, D. Y. (2018). Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC Systems Biology, 12(12, Suppl 2), 12. http://dx.doi.org/10.1186/s12918-018-0542-5. PMid:29560822.

Mlikova, K., Luo, Y., d’Andrea, S., Peč, P., Chardot, T., & Nicaud, J. M. (2004a). Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. Journal of Molecular Catalysis. B, Enzymatic, 28(2-3), 81-85. http://dx.doi.org/10.1016/j.molcatb.2004.01.007.

Mlikova, K., Roux, E., Athenstaedt, K., d’Andrea, S., Daum, G., Chardot, T., & Nicaud, J. M. (2004b). Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 70(7), 3918-3924. http://dx.doi.org/10.1128/AEM.70.7.3918-3924.2004. PMid:15240264.

Moeller, L., Strehlitz, B., Aurich, A., Zehnsdorf, A., & Bley, T. (2007). Optimization of citric acid production from glucose by Yarrowia lipolytica. Engineering in Life Sciences, 7(5), 504-511. http://dx.doi.org/10.1002/elsc.200620207.

Morse, N. J., Wagner, J. M., Reed, K. B., Gopal, M. R., Lauffer, L. H., & Alper, H. S. (2018). T7 polymerase expression of guide RNAs in vivo allows exportable CRISPR-Cas9 editing in multiple yeast hosts. ACS Synthetic Biology, 7(4), 1075-1084. http://dx.doi.org/10.1021/acssynbio.7b00461. PMid:29565571.

Mutlu, H., & Meier, M. A. R. (2010). Castor oil as a renewable resource for the chemical industry. European Journal of Lipid Science and Technology, 112(1), 10-30. http://dx.doi.org/10.1002/ejlt.200900138.

Nambou, K., Jian, X., Zhang, X., Wei, L., Lou, J., Madzak, C., & Hua, Q. (2015). Flux balance analysis inspired bioprocess upgrading for lycopene production by a metabolically engineered strain of Yarrowia lipolytica. Metabolites, 5(4), 794-813. http://dx.doi.org/10.3390/metabo5040794. PMid:26703753.

Navarrete, C., & Martínez, J. L. (2020). Non-conventional yeasts as superior production platforms for sustainable fermentation-based bio-manufacturing processes. AIMS Bioengineering, 7(4), 289-305. http://dx.doi.org/10.3934/bioeng.2020024.

Nicaud, J. M. (2012). Yarrowia lipolytica. Yeast, 29(10), 409-418. http://dx.doi.org/10.1002/yea.2921. PMid:23038056.

Ochoa-Estopier, A., & Guillouet, S. E. (2014). D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica. Journal of Biotechnology, 170, 35-41. http://dx.doi.org/10.1016/j.jbiotec.2013.11.008. PMid:24316225.

Orth, J. D., Thiele, I., & Palsson, B. Ø. (2010). What is flux balance analysis? Nature Biotechnology, 28(3), 245-248. http://dx.doi.org/10.1038/nbt.1614.

Pan, P., & Hua, Q. (2012). Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica. PLoS One, 7(12), e51535. http://dx.doi.org/10.1371/journal.pone.0051535. PMid:23236514.

Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. European Journal of Lipid Science and Technology, 113(8), 1031-1051. http://dx.doi.org/10.1002/ejlt.201100014.

Papanikolaou, S., Beopoulos, A., Koletti, A., Thevenieau, F., Koutinas, A. A., Nicaud, J. M., & Aggelis, G. (2013). Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica. Journal of Biotechnology, 168(4), 303-314. http://dx.doi.org/10.1016/j.jbiotec.2013.10.025. PMid:24432372.

Papanikolaou, S., Chatzifragkou, A., Fakas, S., Galiotou-Panayotou, M., Komaitis, M., Nicaud, J. M., & Aggelis, G. (2009). Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. European Journal of Lipid Science and Technology, 111(12), 1221-1232. http://dx.doi.org/10.1002/ejlt.200900055.

Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2003). Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Current Microbiology, 46(2), 124-130. http://dx.doi.org/10.1007/s00284-002-3833-3. PMid:12520368.

Pareilleux, A. (1979). Hydrocarbon assimilation by Candida lipolytica: Formation of a biosurfactant; Effects on respiratory activity and growth. European Journal of Applied Microbiology and Biotechnology, 8(1-2), 91-101. http://dx.doi.org/10.1007/BF00510270.

Paulino, G. V. B., Félix, C. R., Broetto, L., & Landell, M. F. (2017). Diversity of culturable yeasts associated with zoanthids from Brazilian reef and its relation with anthropogenic disturbance. Marine Pollution Bulletin, 123(1-2), 253-260. http://dx.doi.org/10.1016/j.marpolbul.2017.08.050. PMid:28843512.

Pereira-Meirelles, F. V., Rocha-Leão, M. H., & Santť Anna, G. L. (1997). A stable lipase from Candida lipolytica: cultivation conditions and crude enzyme characteristics. Applied Biochemistry and Biotechnology, 63-65(1), 73-85. http://dx.doi.org/10.1007/BF02920414.

Pomraning, K. R., & Baker, S. E. (2015). Draft genome sequence of the dimorphic yeast Yarrowia lipolytica strain W29. Genome Announcements, 3(6), e01211-e01215. http://dx.doi.org/10.1128/genomeA.01211-15. PMid:26607882.

Pomraning, K. R., Wei, S., Karagiosis, S. A., Kim, Y. M., Dohnalkova, A. C., Arey, B. W., Bredeweg, E. L., Orr, G., Metz, T. O., & Baker, S. E. (2015). Comprehensive metabolomic, lipidomic and microscopic profiling of Yarrowia lipolytica during lipid accumulation identifies targets for increased lipogenesis. PLoS One, 10(4), e0123188. http://dx.doi.org/10.1371/journal. pone.0123188. PMid:25905710.

Qiao, K., Abidi, S. H. I., Liu, H., Zhang, H., Chakraborty, S., Watson, N., Ajikumar, P. K., & Stephanopoulos, G. (2015). Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metabolic Engineering, 29, 56-65. http://dx.doi.org/10.1016/j.ymben.2015.02.005. PMid:25732624.

Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P., & Stephanopoulos, G. (2017). Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 35(2), 173-177. http://dx.doi.org/10.1038/nbt.3763. PMid:28092657.

Ratledge, C. (1994). Yeasts, moulds, algae and bacteria as sources of lipids. In B. S. Kamel & Y. Kakuda (Eds.), Technological advances in improved and alternative sources of lipids (pp. 235-291). Boston: Springer. http://dx.doi.org/10.1007/978-1-4615-2109-9_9.

Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Advances in Applied Microbiology, 51, 1-52. http://dx.doi.org/10.1016/S0065-2164(02)51000-5.

Robles-Rodríguez, C. E., Muñoz-Tamayo, R., Bideaux, C., Gorret, N., Guillouet, S. E., Molina-Jouve, C., Roux, G., & Aceves-Lara, C. A. (2018). Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions. Biotechnology and Bioengineering, 115(5), 1137-1151. http://dx.doi.org/10.1002/bit.26537. PMid:29288574.

Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soares, S., Pinto, J. P., Nielsen, J., Patil, K. R., Ferreira, E. C., & Rocha, M. (2010). OptFlux: an open-source software platform for in silico metabolic engineering. BMC Systems Biology, 4(1), 45. http://dx.doi.org/10.1186/1752-0509-4-45. PMid:20403172.

Rufino, R. D., Luna, J. M., Campos-Takaki, G. M., & Sarubbo, L. A. (2014). Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology, 17(1), 34-38. http://dx.doi.org/10.1016/j.ejbt.2013.12.006.

Rufino, R. D., Luna, J. M., Farias, C. B. B., Gusmão, C. A. B., Sarubbo, L. A., & Campos-Takaki, G. M. (2009). Emulsifiers agents produced by Candida lipolytica cultivated in insoluble substrates. Current Research Topics in Applied Microbiology and Microbial Biotechnology, 78, 681-685. http://dx.doi.org/10.1142/9789812837554_0141.

Rufino, R. D., Sarubbo, L. A., Neto, B., & Campos-Takaki, G. M. (2008). Experimental design for the production of tensio-active agent by Candida lipolytica. Journal of Industrial Microbiology & Biotechnology, 35(8), 907-914. http://dx.doi.org/10.1007/s10295-008-0364-3. PMid:18563463.

Ruiz-Herrera, J., & Sentandreu, R. (2002). Different effectors of dimorphism in Yarrowia lipolytica. Archives of Microbiology, 178(6), 477-483. http://dx.doi.org/10.1007/s00203-002-0478-3. PMid:12420169.

Ryu, S., Hipp, J., & Trinh, C. T. (2015). Activating and elucidating metabolism of complex sugars in Yarrowia lipolytica. Applied and Environmental Microbiology, 82(4), 1334-1345. http://dx.doi.org/10.1128/AEM.03582-15. PMid:26682853.

Rywińska, A., & Rymowicz, W. (2010). High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. Journal of Industrial Microbiology & Biotechnology, 37(5), 431-435. http://dx.doi.org/10.1007/s10295-009-0687-8. PMid:20047064.

Sagnak, R., Cochot, S., Molina-Jouve, C., Nicaud, J. M., & Guillouet, S. E. (2018). Modulation of the Glycerol Phosphate availability led to concomitant reduction in the citric acid excretion and increase in lipid content and yield in Yarrowia lipolytica. Journal of Biotechnology, 265, 40-45. http://dx.doi.org/10.1016/j.jbiotec.2017.11.001. PMid:29102548.

Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., Salgueiro, A. A., & Sarubbo, L. A. (2013). Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. Journal of Petroleum Science Engineering, 105, 43-50. http://dx.doi.org/10.1016/j.petrol.2013.03.028.

Sara, M., Brar, S. K., & Blais, J. F. (2016). Lipid production by Yarrowia lipolytica grown on biodiesel-derived crude glycerol: Optimization of growth parameters and their effects on the fermentation efficiency. RSC Advances, 6(93), 90547-90558. http://dx.doi.org/10.1039/C6RA16382C.

Sarubbo, L. A., Marçal, M. C., Neves, M. L., Silva, M. P., Porto, A. L., & Campos-Takaki, G. M. (2001). Bioemulsifier production in batch culture using glucose as carbon source by Candida lipolytica. Applied Biochemistry and Biotechnology, 95(1), 59-67. http://dx.doi.org/10.1385/ABAB:95:1:59. PMid:11665807.

Sasarman, E., Dicuta, C., Jurcoane, S., Irina, L., GroposilaConstantinescu, D., & Tcacenco, L. (2007). Influence of some nutritional factors on lipase production by Yarrowia lipolytica. Romanian Biotechnological Letters, 12, 3483-3488.

Schwartz, C. M., Hussain, M. S., Blenner, M., & Wheeldon, I. (2016). Synthetic RNA polymerase III promoters facilitate high-efficiency CRISPR–Cas9-mediated genome editing in Yarrowia lipolytica. ACS Synthetic Biology, 5(4), 356-359. http://dx.doi.org/10.1021/acssynbio.5b00162. PMid:26714206.

Sestric, R., Munch, G., Cicek, N., Sparling, R., & Levin, D. B. (2014). Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions. Bioresource Technology, 164, 41-46. http://dx.doi.org/10.1016/j.biortech.2014.04.016. PMid:24835917.

Silva, J., Silva, L., Barbosa, M., Houllou, L., & Malafaia, C. (2020). Bioemulsifier produced by Yarrowia lipolytica using residual glycerol as a carbon source. Journal of Environmental Analysis and Progress, 5(1), 31. http://dx.doi.org/10.24221/jeap.5.1.2020.2700.031-037.

Souza, F. A. S. D., Salgueiro, A. A., & Albuquerque, C. D. C. (2012). Production of bioemulsifiers by Yarrowia lipolytica in sea water using diesel oil as the carbon source. Bioprocess Engineering. Brazilian Journal of Chemical Engineering, 29(1), 61-67. http://dx.doi.org/10.1590/S0104-66322012000100007.

Spagnuolo, M., Shabbir Hussain, M., Gambill, L., & Blenner, M. (2018). Alternative substrate metabolism in Yarrowia lipolytica. Frontiers in Microbiology, 9, 1077. http://dx.doi.org/10.3389/fmicb.2018.01077. PMid:29887845.

Sutherland, J. B., Cornelison, C., & Crow, A. S. (2014) CANDIDA | Yarrowia lipolytica (Candida lipolytica). In C. A. Batt & M. L. Tortorello (Eds.), Encyclopedia of food microbiology (2nd ed., pp. 374-378). Amsterdam: Academic Press.

Syal, P., & Gupta, R. (2017). Heterologous expression of lipases YLIP4, YLIP5, YLIP7, YLIP13, and YLIP15 from Yarrowia lipolytica MSR80 in Escherichia coli: Substrate specificity, kinetic comparison, and enantioselectivity. Biotechnology and Applied Biochemistry, 64(6), 851-861. http://dx.doi.org/10.1002/bab.1542. PMid:27775845.

Szenk, M., Dill, K. A., & Graff, A. M. R. (2017). Why do fast-growing bacteria enter overflow metabolism? Testing the membrane real estate hypothesis. Cell Systems, 5(2), 95-104. http://dx.doi.org/10.1016/j.cels.2017.06.005. PMid:28755958.

Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15, 1-9. http://dx.doi.org/10.1016/j.ymben.2012.08.007. PMid:23026119.

Tsigie, Y. A., Wang, C. Y., Truong, C. T., & Ju, Y. H. (2011). Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate. Bioresource Technology, 102(19), 9216-9222. http://dx.doi.org/10.1016/j.biortech.2011.06.047. PMid:21757339.

Vasiliadou, I., Bellou, S., Daskalaki, A., Tomaszewska-Hetman, L., Chatzikotoula, C., Kompoti, B., Papanikolaou, S., Vayenas, D., Pavlou, S., & Aggelis, G. (2018). Biomodification of fats and oils and scenarios of adding value on renewable fatty materials through microbial fermentations: Modelling and trials with Yarrowia lipolytica. Journal of Cleaner Production, 21, 1037-1044. http://dx.doi.org/10.1016/j.jclepro.2018.07.187.

Wang, H. J., Le Dall, M. T., Wach, Y., Laroche, C., Belin, J. M., Gaillardin, C., & Nicaud, J. M. (1999). Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica. Journal of Bacteriology, 181(17), 5140-5148. http://dx.doi.org/10.1128/JB.181.17.5140-5148.1999. PMid:10464181.

Wei, S., Jian, X., Chen, J., Zhang, C., & Hua, Q. (2017). Reconstruction of genome-scale metabolic model of Yarrowia lipolytica and its application in overproduction of triacylglycerol. Bioresources and Bioprocessing, 4(51), 51. http://dx.doi.org/10.1186/s40643-017-0180-6.

Wong, L., Engel, J., Jin, E., Holdridge, B., & Xu, P. (2017). YaliBricks, a versatile genetic toolkit for streamlined and rapid pathway engineering in Yarrowia lipolytica. Metabolic Engineering Communications, 5, 68-77. http://dx.doi.org/10.1016/j.meteno.2017.09.001. PMid:29188186.

Xie, D. (2017). Integrating cellular and bioprocess engineering in the non-conventional yeast Yarrowia lipolytica for biodiesel production: a review. Frontiers in Bioengineering and Biotechnology, 5, 65. http://dx.doi.org/10.3389/fbioe.2017.00065. PMid:29090211.

Xie, D., Jackson, E. N., & Zhu, Q. (2015). Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Applied Microbiology and Biotechnology, 99(4), 1599-1610. http://dx.doi.org/10.1007/s00253-014-6318-y. PMid:25567511.

Xu, P., Qiao, K., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences of the United States of America, 113(39), 10848-10853. http://dx.doi.org/10.1073/pnas.1607295113. PMid:27621436.

Xu, Y., Holic, R., & Hua, Q. (2020). Comparison and analysis of published genome-scale metabolic models of Yarrowia lipolytica. Biotechnol. Bioproc. E, 25(1), 53-61. http://dx.doi.org/10.1007/s12257-019-0208-1.

Xue, Z., Sharpe, P. L., Hong, S. P., Yadav, N. S., Xie, D., Short, D. R., Damude, H. G., Rupert, R. A., Seip, J. E., Wang, J., Pollak, D. W., Bostick, M. W., Bosak, M. D., Macool, D. J., Hollerbach, D. H., Zhang, H., Arcilla, D. M., Bledsoe, S. A., Croker, K., McCord, E. F., Tyreus, B. D., Jackson, E. N., & Zhu, Q. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 31(8), 734-740. http://dx.doi.org/10.1038/nbt.2622. PMid:23873085.

Yan, J., Han, B., Gui, X., Wang, G., Xu, L., Yan, Y., Madzak, C., Pan, D., Wang, Y., Zha, G., & Jiao, L. (2018). Engineering Yarrowia lipolytica to simultaneously produce lipase and single cell protein from agro-industrial wastes for feed. Scientific Reports, 8(1), 758. http://dx.doi.org/10.1038/s41598-018-19238-9. PMid:29335453.

Yang, Z., Edwards, H., & Xu, P. (2019). CRISPR-Cas12a/Cpf1-assisted precise, efficient and multiplexed genome-editing in Yarrowia lipolytica. Metabolic Engineering Communications, 10, e00112. http://dx.doi.org/10.1016/j.mec.2019.e00112. PMid:31867213.

Yazawa, H., Holic, R., Kumagai, H., & Uemura, H. (2013). Toxicity of ricinoleic acid production in fission yeast Schizosaccharomyces pombe is suppressed by the overexpression of plg7, a phospholipase A2 of a platelet-activating factor (PAF) family homolog. Applied Microbiology and Biotechnology, 97(18), 8193-8203. http://dx.doi.org/10.1007/s00253-013-4987-6. PMid:23700240.

Yazawa, H., Ogiso, M., Kumagai, H., & Uemura, H. (2014). Suppression of ricinoleic acid toxicity by ptl2 overexpression in fission yeast Schizosaccharomyces pombe. Applied Microbiology and Biotechnology, 98(22), 9325-9337. http://dx.doi.org/10.1007/s00253-014-6006-y. PMid:25109267.

Zhang, B., Chen, H., Li, M., Gu, Z., Song, Y., Ratledge, C., Chen, Y. Q., Zhang, H., & Chen, W. (2013). Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microbial Cell Factories, 12, 70-74. http://dx.doi.org/10.1186/1475-2859-12-70. PMid:23866108.

Zhang, B., Rong, C., Chen, H., Song, Y., Zhang, H., & Chen, W. (2012). De novo synthesis of trans-10, cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica. Microbial Cell Factories, 11(1), 51. http://dx.doi.org/10.1186/1475-2859-11-51. PMid:22545818.

Zhao, C., Gu, D., Nambou, K., Wei, L., Chen, J., Imanaka, T., & Hua, Q. (2015). Metabolome analysis and pathway abundance profiling of Yarrowia lipolytica cultivated on different carbon sources. Journal of Biotechnology, 206, 42-51. http://dx.doi.org/10.1016/j.jbiotec.2015.04.005. PMid:25912211.

Zheng, X., Zheng, P., Zhang, K., Cairns, T. C., Meyer, V., Sun, J., & Ma, Y. (2019). 5S rRNA promoter for guide RNA expression enabled highly efficient CRISPR/Cas9 genome editing in Aspergillus niger. ACS Synthetic Biology, 8(7), 1568-1574. http://dx.doi.org/10.1021/acssynbio.7b00456. PMid:29687998.

Zieniuk, B., & Fabiszewska, A. (2018). Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: a minireview. World Journal of Microbiology & Biotechnology, 35(1), 10. http://dx.doi.org/10.1007/s11274-018-2583-8. PMid:30578432.

Zinjarde, S. S., & Pant, A. (2002). Emulsifier from a tropical marine yeast, Yarrowia lipolytica NCIM 3589. Journal of Basic Microbiology, 42(1), 67-73. http://dx.doi.org/10.1002/1521-4028(200203)42:1<67::AID-JOBM67>3.0.CO;2-M. PMid:11925762.


Submitted date:
02/02/2021

Reviewed date:
03/28/2022

Accepted date:
04/12/2022

62911964a953954f852e4833 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections