Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202104
Biotechnology Research and Innovation Journal
Review Article

The 2G and 3G bioplastics: an overview

Luciana Porto de Souza Vandenberghe, Priscilla Zwiercheczewski de Oliveira, Gustavo Amaro Bittencourt, Ariane Fátima Murawski de Mello, Zulma Sarmiento Vásquez, Susan Grace Karp, Carlos Ricardo Soccol

Downloads: 7
Views: 750

Abstract

During the last decades an increase of biobased plastics was observed. This expansion of global biobased market is a reflection of the efforts of academic and industrial researchers, and production and marketing chain members. They have sought new possibilities to contribute to bioplastics´ large-scale production and commercialization cost-effectively. The main commercialized bioplastics are poly lactic acid (PLA), polyhydroxyalkanoates (PHAs), starch, cellulose and proteins plastics. The use of alternative raw materials has been implemented while applying innovations in production processes to reduce cost and decrease environmental impacts. In this review, the 2G and 3G bioplastics are presented as a promising solution to enable large scale and viable production of these biobased materials. 2G bioplastics are produced from lignocellulosic biomass and non-food edible oils, while 3G bioplastics are obtained from sugars or oils produced by micro-organisms (microalgae, bacteria, mushrooms, yeasts and others) or from municipal waste material.

Keywords

Biobased bioplastics; Wastes; Lignocellulosic biomass; Wastewaters; PHA, PLA; Bacteria; Microalgae

References

Al-Battashi, H., Annamalai, N., Al-Kindi, S., Nair, A. S., Al-Bahry, S., Verma, J. P., & Sivakumar, N. (2019). Production of bioplastic (poly-3-hydroxybutyrate) using waste paper as a feedstock: optimization of enzymatic hydrolysis and fermentation employing Burkholderia sacchari. Journal of Cleaner Production, 214, 236-247. http://dx.doi.org/10.1016/j.jclepro.2018.12.239.

Alves de Oliveira, R., Schneider, R., Hoss Lunelli, B., Vaz Rossell, C. E., Maciel Filho, R., & Venus, J. (2020). A Simple Biorefinery Concept to Produce 2G-Lactic Acid from Sugar Beet Pulp (SBP): A High-Value Target Approach to Valorize a Waste Stream. Molecules, 25(9), 2113. http://dx.doi.org/10.3390/molecules25092113. PMid:32365990.

Anderson, J. H., & Anderson, D. H. (2016). Producing polyhydroxyalkanoate copolymers from organic waste products. Patent No. WO2016020816-A1.

Bhatia, S. K., Kim, J.-H., Kim, M.-S., Kim, J., Hong, J. W., Hong, Y. G., Kim, H.-J., Jeon, J.-M., Kim, S.-H., Ahn, J., Lee, H., & Yang, Y.-H. (2018). Production of (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer from coffee waste oil using engineered Ralstonia eutropha. Bioprocess and Biosystems Engineering, 41(2), 229-235. http://dx.doi.org/10.1007/s00449-017-1861-4. PMid:29124334.

Brodin, M., Vallejos, M., Opedal, M. T., Area, M. C., & ChingaCarrasco, G. (2017). Lignocellulosics as sustainable resources for production of bioplastics: a review. Journal of Cleaner Production, 162, 646-664. http://dx.doi.org/10.1016/j.jclepro.2017.05.209.

Broeren, M. L. M., Kuling, L., Worrell, E., & Shen, L. (2017). Environmental impact assessment of six starch plastics focusing on wastewater-derived starch and additives. Conservation and Recycling, 127, 246-255. http://dx.doi.org/10.1016/j.resconrec.2017.09.001.

Changwichan, K., Silalertruksa, T., & Gheewala, S. H. (2018). Ecoefficiency assessment of bioplastics production systems and end-of-life options. Sustainability, 10(4), 952. http://dx.doi.org/10.3390/su10040952.
 Ciapponi, R., Turri, S., & Levi, M. (2019). Mechanical reinforcement by microalgal biofiller in novel thermoplastic biocompounds from plasticized gluten. Materials, 12(9), 1476. http://dx.doi.org/10.3390/ma12091476. PMid:31067771.

Coelho, V. C., Silva, C. K., Terra, A. L., Costa, J. A. V., & de Morais, M. G. (2015). Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations. African Journal of Microbiological Research, 9(24), 1586-1594. http://dx.doi.org/10.5897/AJMR2015.7530.

Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs): A review. International Journal of Biological Macromolecules, 131, 536-547. http://dx.doi.org/10.1016/j.ijbiomac.2019.03.099. PMid:30885732.

Cuervo, G. L. (2020). Method for obtaining polylactic acid from cheese whey. Patent No. WO2020021346-A1.

Das, S. K., Sathish, A., & Stanley, J. (2018). Production of Biofuel and Bioplastic from Chlorella Pyrenoidosa. Materials Today: Proceedings, 5(8), 16774-16781. http://dx.doi.org/10.1016/j.matpr.2018.06.020.

Devadas, V. V., Khoo, K. S., Chia, W. Y., Chew, K. W., Munawaroh, H. S. H., Lam, M. K., Lim, J. W., Ho, Y. C., Lee, K. T., & Show, P. L. (2021). Algae biopolymer towards sustainable circular economy. Bioresource Technology, 325, 124702. http://dx.doi.org/10.1016/j.biortech.2021.124702. PMid:33487515.

Dianursanti, & Khalis, S. A. (2018). The effect of compatibilizer addition on Chlorella vulgaris microalgae utilization as a mixture for bioplastic. E3S Web of Conferences, 67, 2–6. https://doi.org/10.1051/e3sconf/20186703047.

Dianursanti, G., Gozan, M., & Noviasari, C. (2018). The effect of glycerol addition as plasticizer in Spirulina platensis based bioplastic. E3S Web of Conferences, 67, 03048. http://dx.doi.org/10.1051/e3sconf/20186703048.

Dianursanti, N. C., Windiani, L., & Gozan, M. (2019). Effect of compatibilizer addition in Spirulina platensis based bioplastic production. AIP Conference Proceedings, 2092, 030012. https://doi.org/10.1063/1.5096716.

Elrayies, G. M. (2018). Microalgae: prospects for greener future buildings. Renewable & Sustainable Energy Reviews, 81, 1175-1191. http://dx.doi.org/10.1016/j.rser.2017.08.032.

European Bioplastics. (2018). Market: European Bioplastics e.V. https://www.european-bioplastics.org/wpcontent/uploads/2019/11/Report_Bioplastics-Market-Data_2019_%0Ashort_version.pdf%0A

Fabra, M. J., Martínez-Sanz, M., Gómez-Mascaraque, L. G., CollMarqués, J. M., Martínez, J. C., & López-Rubio, A. (2017). Development and characterization of hybrid corn starchmicroalgae films: effect of ultrasound pre-treatment on structural, barrier and mechanical performance. Algal Research, 28, 80-87. http://dx.doi.org/10.1016/j.algal.2017.10.010.

García, G., Sosa-Hernández, J. E., Rodas-Zuluaga, L. I., CastilloZacarías, C., Iqbal, H., & Parra-Saldívar, R. (2020). Accumulation of PHA in the microalgae scenedesmus sp. under nutrient-deficient conditions. Polymers, 13(1):131. PMid:33396913.

Goyal, P., Kumar, N., & Goyal, S. (2019). Preparing bioplastics from waste potatoes, comprises extracting starch from waste potatoes, saccharificating starch, fermenting resultant using microorganism, polymerizing resultant and optionally subjecting resultant to extrusion. Patent No. IN201911018834-A.

Grand View Research. (2020). Bioplastics market size, share & trends analysis report by product (biodegradable, non-biodegradable), by application (packaging, automotive & transportation, textile), by region, and segment forecasts, 2020-2027. https://www.grandviewresearch.com/industry-analysis/bioplastics-industry

Helmes, R. J. K., López-Contreras, A. M., Benoit, M., Abreu, H., Maguire, J., Moejes, F., & Burg, S. W. K. (2018). Environmental impacts of experimental production of lactic acid for bioplastics from Ulva spp. Sustainability, 10(7), 2462. http://dx.doi.org/10.3390/su10072462.

Heng, K. S., Hatti-Kaul, R., Adam, F., Fukui, T., & Sudesh, K. (2017). Conversion of rice husks to polyhydroxyalkanoates (PHA) via a three-step process: Optimized alkaline pretreatment, enzymatic hydrolysis, and biosynthesis by Burkholderia cepacia USM (JCM 15050). Journal of Chemical Technology and Biotechnology, 92(1), 100-108. http://dx.doi.org/10.1002/jctb.4993.

Israni, N., Venkatachalam, P., Gajaraj, B., Varalakshmi, K. N., & Shivakumar, S. (2020). Whey valorization for sustainable polyhydroxyalkanoate production by Bacillus megaterium: production, characterization and in vitro biocompatibility evaluation. Journal of Environmental Management, 255, 109884. http://dx.doi.org/10.1016/j.jenvman.2019.109884. PMid:32063322.

Jin, S. K., Si, J. P., Hyun, J. H., Jung, S. C., Seung, H. L., & Bong, K. S. (2013). Production of polyhydroxyalkanoates from the saccharified solution of hydrodictyaceae algal biomass. Patent No. KR20130040509-A.

Kaparapu, J. (2018). Polyhydroxyalkanoate (PHA) production by genetically engineered microalgae: a review. Journal on New Biological Reports, 7(2), 68-73.

Kartik, A., Akhil, D., Lakshmi, D., Panchamoorthy Gopinath, K., Arun, J., Sivaramakrishnan, R., & Pugazhendhi, A. (2021). A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology, 329(February), 124868. http://dx.doi.org/10.1016/j.biortech.2021.124868. PMid:33707076.

Kavitha, G., Kurinjimalar, C., Sivakumar, K., Kaarthik, M., Aravind, R., Palani, P., & Rengasamy, R. (2016). Optimization of polyhydroxybutyrate production utilizing waste water as nutrient source by Botryococcus braunii Kütz using response surface methodology. International Journal of Biological Macromolecules, 93(Pt A), 534-542. http://dx.doi.org/10.1016/j.ijbiomac.2016.09.019. PMid:27612642.

Liu, P., Zheng, Z., Xu, Q., Qian, Z., Liu, J., & Ouyang, J. (2018). Valorization of dairy waste for enhanced D-lactic acid production at low cost. Process Biochemistry, 71, 18-22. http://dx.doi.org/10.1016/j.procbio.2018.05.014.

Markets and Markets. (2021). Bioplastics & biopolymers market by type (non-biodegradable/bio-based, biodegradable), end-use industry (packaging, consumer goods, automotive & transportation, textiles, agriculture & horticulture), region - global forecast to 2025. https://www.marketsandmarkets.com/Market-Reports/biopolymers-bioplastics-market-88795240.html?gclid=CjwKCAjw2ZaGBhBoEiwA8pfP_ofDmoOnjqBiycrQciwd0CyJsQk2ed7PnsgSEbO3_JUJn3921wSRRoCtoQAvD_BwE

Mendonça, H. V., Assemany, P., Abreu, M., Couto, E., Maciel, A. M., Duarte, R. L., dos Santos, M. G. B., & Reis, A. (2021). Microalgae in a global world: new solutions for old problems? Renewable Energy, 165, 842-862. http://dx.doi.org/10.1016/j.renene.2020.11.014.

Monshupanee, T., Nimdach, P., & Incharoensakdi, A. (2016). Twostage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Scientific Reports, 6(1), 37121. http://dx.doi.org/10.1038/srep37121. PMid:27845413.

Morgan-Sagastume, F., Heimersson, S., Laera, G., Werker, A., & Svanström, M. (2016). Techno-environmental assessment of integrating polyhydroxyalkanoate (PHA) production with services of municipal wastewater treatment. Journal of Cleaner Production, 137, 1368-1381. http://dx.doi.org/10.1016/j.jclepro.2016.08.008.

Muhammad, G., Alam, M. A., Mofijur, M., Jahirul, M. I., Lv, Y., Xiong, W., Ong, H. C., & Xu, J. (2021). Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass. Renewable & Sustainable Energy Reviews, 135, 110209. http://dx.doi.org/10.1016/j.rser.2020.110209.

Mustafa, S., Bhatti, H. N., Maqbool, M., & Iqbal, M. (2021). Microalgae biosorption, bioaccumulation and biodegradation efficiency for the remediation of wastewater and carbon dioxide mitigation: prospects, challenges and opportunities. Journal of Water Process Engineering, 41, 102009. http://dx.doi.org/10.1016/j.jwpe.2021.102009.

Naresh Kumar, A., Chatterjee, S., Hemalatha, M., Althuri, A., Min, B., Kim, S. H., & Venkata Mohan, S. (2020). Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresource Technology, 296, 122315. http://dx.doi.org/10.1016/j.biortech.2019.122315. PMid:31706890.

NaturePlast. (2021). Origin of bioplastic. http://natureplast.eu/en/the-bioplastics-market/origin-of-bioplastic/

Netherlands Enterprise Agency. (2020). The bio-economy in France (Publication No. RVO-005-2020/RP-INT). Ministry of Foreign Affairs. nova-Institute. (2018). Bio-based Building Blocks and Polymers – Global Capacities and Trends 2017-2022 - Renewable Carbon.

Ögmundarson, Ó., Sukumara, S., Laurent, A., & Fantke, P. (2020). Environmental hotspots of lactic acid production systems. Global Change Biology. Bioenergy, 12(1), 19-38. http://dx.doi.org/10.1111/gcbb.12652.

Penkhrue, W., Jendrossek, D., Khanongnuch, C., Pathom-aree, W., Aizawa, T., Behrens, R. L., & Lumyong, S. (2020). Response surface method for polyhydroxybutyrate (PHB) bioplastic accumulation in Bacillus drentensis BP17 using pineapple peel. PLoS One, 15(3), e0230443. http://dx.doi.org/10.1371/journal.pone.0230443. PMid:32191752.

Pernicova, I., Enev, V., Marova, I., & Obruca, S. (2019). Interconnection of waste chicken feather biodegradation and keratinase and mclPHA production employing Pseudomonas putida KT2440. Applied Food Biotechnology, 6(1), 83-90. http://dx.doi.org/10.22037/afb.v6i1.21429.

Pleissner, D., Neu, A. K., Mehlmann, K., Schneider, R., PuertaQuintero, G. I., & Venus, J. (2016). Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresource Technology, 218, 167-173. http://dx.doi.org/10.1016/j.biortech.2016.06.078. PMid:27359065.

Raeesossadati, M. J., Ahmadzadeh, H., McHenry, M. P., & Moheimani, N. R. (2014). CO2 bioremediation by microalgae in photobioreactors: impacts of biomass and CO2 concentrations, light, and temperature. Algal Research, 6, 78-85. http://dx.doi.org/10.1016/j.algal.2014.09.007.

Rai, P., Mehrotra, S., Priya, S., Gnansounou, E., & Sharma, S. K. (2021). Recent advances in the sustainable design and applications of biodegradable polymers. Bioresource Technology, 325, 124739. http://dx.doi.org/10.1016/j.biortech.2021.124739. PMid:33509643.

RameshKumar, S., Shaiju, P., O’Connor, K. E., & P, R. B. (2020). Bio-based and biodegradable polymers: state-of-the-art, challenges and emerging trends. Current Opinion in Green and Sustainable Chemistry, 21, 75-81. http://dx.doi.org/10.1016/j.cogsc.2019.12.005.

Rattana, S., & Gheewala, S. H. (2019). Environment impacts assessment of petroleum plastic and bioplastic carrier bags in Thailand. Journal of Sustainable Energy & Environment, 10, 9-17. Sabathini, H. A., Windiani, L., Dianursanti, & Gozan, M. (2018). Mechanical physicial properties of chlorella-PVA based bioplastic with ultrasonic homogenizer. E3S Web of Conferences, 67, 03046. http://dx.doi.org/10.1051/e3sconf/20186703046.

Sangkharak, K., Khaithongkaeo, P., Chuaikhunupakarn, T., Choonut, A., & Prasertsan, P. (2021). The production of polyhydroxyalkanoate from waste cooking oil and its application in biofuel production. Biomass Conversion and Biorefinery, 11, 1651-1664. http://dx.doi.org/10.1007/s13399-020-00657-6.

Thinagaran, L., & Sudesh, K. (2019). Evaluation of Sludge Palm Oil as Feedstock and Development of Efficient Method for its Utilization to Produce Polyhydroxyalkanoate. Waste and Biomass Valorization, 10(3), 709-720. http://dx.doi.org/10.1007/s12649-017-0078-8.

Vogli, L., Macrelli, S., Marazza, D., Galletti, P., Torri, C., Samorì, C., & Righi, S. (2020). Life cycle assessment and energy balance of a novel polyhydroxyalkanoates production process with mixed microbial cultures fed on pyrolytic products of wastewater treatment sludge. Energies, 13(11), 2706. http://dx.doi.org/10.3390/en13112706.

Wellenreuther, C., & Wolf, A. (2020). Innovative feedstocks in biodegradable bio-based plastics: a literature review (HWWI Research Papers, No. 194). Hamburg Institute of International Economics.

Wydra, S., & Hüsing, B. (2017). Priorities for addressing opportunities and gaps of industrial biotechnology for an efficient use of funding resources. brochure tissue-engineered products: potential future socio-economic impacts of a new European regulatory framework view project analys. Brussels: European Commission.

Wydra, S., Hüsing, B., Köhler, J., Schwarz, A., Schirrmeister, E., & Voglhuber-Slavinsky, A. (2021). Transition to the bioeconomy: analysis and scenarios for selected niches. Journal of Cleaner Production, 294, 126092. http://dx.doi.org/10.1016/j.jclepro.2021.126092.

Yamada, M., Moriya, H., & Shimoii, H. (2020). Methods for producing polyhydroxyalkanoic acid using alginic acid as a carbon source. JP2020031631A.

Yin, F., Li, D., Ma, X., & Zhang, C. (2019). Pretreatment of lignocellulosic feedstock toproduce fermentable sugars for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production using activated sludge. Bioresource Technology, 290, 121773. http://dx.doi.org/10.1016/j.biortech.2019.121773. PMid:31310867.

Zeller, M. A., Hunt, R., Jones, A., & Sharma, S. (2013). Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. Journal of Applied Polymer Science, 130(5), 3263-3275. http://dx.doi.org/10.1002/app.39559.

Zhang, C., Show, P.-L., & Ho, S.-H. (2019). Progress and perspective on algal plastics: a critical review. Bioresource Technology, 289, 121700. http://dx.doi.org/10.1016/j.biortech.2019.121700. PMid:31262543.

Zhu, N., Ye, M., Shi, D., & Chen, M. (2017). Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromolecular Research, 25(2), 165-171. http://dx.doi.org/10.1007/s13233-017-5025-9.


Submitted date:
07/13/2021

Reviewed date:
08/25/2021

Accepted date:
09/17/2021

6193f20fa95395495d7a49e3 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections