Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.202101
Biotechnology Research and Innovation Journal
Review Article

Cultivated meat: recent technological developments, current market and future challenges

Luiz Alberto Junior Letti, Susan Grace Karp, Carla Forte Maiolino Molento, Brigitte Sthepani Orozco Colonia, Raphael Aparecido Boschero, Vanete Thomaz Soccol, Leonardo Wedderhoff Herrmann, Rafaela de Oliveira Penha, Adenise Lorenci Woiciechowski, Carlos Ricardo Soccol

Downloads: 19
Views: 2365

Abstract

The increasing demand for food, the debates regarding the ethics involved in slaughtering animals and the many associated environmental issues promote the emergence of an interesting question: is it possible to substitute conventional meat? In this context, Cultivated Meat (CM) is a promising alternative to replace meat, or at least to complement protein nutrition for humans. This overview aims to show the current technological developments for the production of CM, starting with the tissue engineering used to collect, grow and differentiate the cells, and also the characteristics of matrixes, culture media, types of bioreactors and techniques employed for cell cultivation. In addition, bioeconomy and sustainability issues are discussed, as well as social aspects and policy regulation. Furthermore, the fast growing market is presented, starting with the first meat ball in 2016, passing through some examples of recent funding and operating companies and start-ups, the continuous efforts to lower production costs, besides the most recent patented processes. Finally, and in the light of recent developments, future challenges and expectations for the future of CM are discussed, such as tissue engineering bottlenecks, bioreactor design optimization and public acceptance issues.

Keywords

Future food; Cultivated meat; Tissue engineering; Food sustainability; Bioeconomy; Recent patents.

References

Aleph Farms. (2021). About us. Israel. Allan, S. J., De Bank, P. A., & Ellis, M. J. (2019). Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems, 3, 44. http://dx.doi.org/10.3389/fsufs.2019.00044.

Alvaro, C. (2019). Lab-grown meat and veganism: a virtue-oriented perspective. Journal of Agricultural & Environmental Ethics, 32(1), 127-141. http://dx.doi.org/10.1007/s10806-019-09759-2. Arbib, J., Dorr, A., & Seba, T. (2021). RethinkX: disruption implications report (Vol. 1). RethinkX.

Arshad, M. S., Javed, M., Sohaib, M., Saeed, F., Imran, A., & Amjad, Z. (2017). Tissue engineering approaches to develop cultured meat from cells: a mini review. Cogent Food & Agriculture, 3(1), 1320814. http://dx.doi.org/10.1080/23311932.2017.1320814.

Bellani, C. F., Ajeian, J., Duffy, L., Miotto, M., Groenewegen, L., & Connon, C. J. (2020). Scale-up technologies for the manufacture of adherent cells. Frontiers in Nutrition, 7, 575146. http://dx.doi.org/10.3389/fnut.2020.575146. PMid:33251241.

Bhat, Z. F., & Bhat, H. (2011a). Animal-free meat biofabrication. American Journal of Food Technology, 6(6), 441-459. http://dx.doi.org/10.3923/ajft.2011.441.459.

Bhat, Z. F., & Bhat, H. (2011b). Tissue engineered meat - Future meat. Journal of Stored Products and Postharvest Research, 2(1), 1-10.

Bhat, Z. F., Kumar, S., & Fayaz, H. (2015). In vitro meat production: challenges and benefits over conventional meat production. Journal of Integrative Agriculture, 14(2), 241-248. http://dx.doi.org/10.1016/S2095-3119(14)60887-X.

Bodiou, V., Moutsatsou, P., & Post, M. J. (2020). Microcarriers for upscaling cultured meat production. Frontiers in Nutrition, 7, 10. http://dx.doi.org/10.3389/fnut.2020.00010. PMid:32154261.

Bogliotti, Y. S., Wu, J., Vilarino, M., Okamura, D., Soto, D. A., Zhong, C., Sakurai, M., Sampaio, R. V., Suzuki, K., Belmonte, J. C. I., & Ross, P. J. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 115(9), 2090-2095. http://dx.doi.org/10.1073/pnas.1716161115. PMid:29440377.

Bryant, C. J., & Barnett, J. C. (2019). What’s in a name? Consumer perceptions of in vitro meat under different names. Appetite, 137, 104-113. http://dx.doi.org/10.1016/j.appet.2019.02.021. PMid:30840874.

Calkins, C. R., & Hodgen, J. M. (2007). A fresh look at meat flavor. Meat Science, 77(1), 63-80. http://dx.doi.org/10.1016/j.meatsci.2007.04.016. PMid:22061397.

Chriki, S., & Hocquette, J.-F. (2020). The myth of cultured meat: a review. Frontiers in Nutrition, 0, 7. http://dx.doi.org/10.3389/fnut.2020.00007. PMid:32118026.

Djisalov, M., Knežić, T., Podunavac, I., Živojević, K., Radonic, V., Knežević, N. Ž., Bobrinetskiy, I., & Gadjanski, I. (2021). Cultivating multidisciplinarity: manufacturing and sensing challenges in cultured meat production. Biology, 10(3), 204. http://dx.doi.org/10.3390/biology10030204. PMid:33803111.

Food and Drug Administration – FDA. (2019). Formal agreement between FDA and USDA regarding oversight of human food produced using animal cell technology derived from cell lines of USDA-amenable species. St. Paul: FDA.

Food Standards Australia New Zealand – FSANZ. (2017). Australia New Zealand Food Standards Code: standard 1.5.1: novel foods. New Zealand: Attorney-General’s Department.

Godfray, H. C. J., Aveyard, P., Garnett, T., Hall, J. W., Key, T. J., Lorimer, J., Pierrehumbert, R. T., Scarborough, P., Springmann, M., & Jebb, S. A. (2018). Meat consumption, health, and the environment. Science, 361(6399), eaam5324. http://dx.doi.org/10.1126/science.aam5324. PMid:30026199.

Guan, X., Lei, Q., Yan, Q., Li, X., Zhou, J., Du, G., & Chen, J. (2021). Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods, 3, 100032. http://dx.doi.org/10.1016/j.fufo.2021.100032.

Guinard, J. X., & Mazzucchelli, R. (1996). The sensory perception of texture and mouthfeel. Trends in Food Science & Technology, 7(7), 213-219. http://dx.doi.org/10.1016/0924-2244(96)10025-X.

Hanga, M. P., de la Raga, F. A., Moutsatsou, P., Hewitt, C. J., Nienow, A. W., & Wall, I. (2021). Scale-up of an intensified bioprocess for the expansion of bovine adipose-derived stem cells (bASCs) in stirred tank bioreactors. Biotechnology and Bioengineering, 118(8), 3175-3186. http://dx.doi.org/10.1002/bit.27842. PMid:34076888.

Heidemann, M. S., Taconeli, C. A., Reis, G. G., Parisi, G., & Molento, C. F. M. (2020). Critical perspective of animal production specialists on cell-based meat in Brazil: from bottleneck to best scenarios. Animals (Basel), 10(9), 1-19. http://dx.doi.org/10.3390/ani10091678. PMid:32957553.

Hiller, G. W., Gagnon, M. P., & Coffman, J. (2017). Linked perfusion to continuous-flow stirred-tank reactor cell culture system. Patent No. WO2017132185A1. https://patents.google.com/patent/WO2017132185A1/fi

Hui, Y. H., Aalhus, J. L., Cocolin, L., Guerrero-Legarreta, I., Nollet, L. M., Chas, R. W. P., Schilling, M. W., Stanfield, P., & Xiong, Y. L. (2012). Handbook of meat and meat processing (2nd ed.). Boca Raton : CRC Press.

Jairath, G., Mal, G., Gopinath, D., & Singh, B. (2021). A holistic approach to access the viability of cultured meat: a review. Trends in Food Science & Technology, 110, 700-710. http://dx.doi.org/10.1016/j.tifs.2021.02.024.

Kang, D.-H., Louis, F., Liu, H., Shimoda, H., Nishiyama, Y., Nozawa, H., Kakitani, M., Takagi, D., Kasa, D., Nagamori, E., Irie, S., Kitano, S., & Matsusaki, M. (2021). Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications, 12(1), 5059. http://dx.doi.org/10.1038/s41467-021-25236-9. PMid:34429413.

Khan, M. (2017). Bioreactor for the cultivation of mammalian cells. Patent No. US20170267962A1. https://patents.google.com/patent/US20170267962A1/en

Khan, M. I., Jo, C., & Tariq, M. R. (2015). Meat flavor precursors and factors influencing flavor precursors: a systematic review. Meat Science, 110, 278-284. http://dx.doi.org/10.1016/j.meatsci.2015.08.002. PMid:26319308.

Leung, M., Warner, M., Vanderpol, R. E., Hsiu, T. P.-J., & Carswell, K. (2021). Apparatuses and systems for preparing a meat product. Patent No. US20210145031A1. https://uspto.report/patent/app/20210145031

Li, X., Zhang, G., Zhao, X., Zhou, J., Du, G., & Chen, J. (2020). A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production. Chemical Engineering Science, 211, 115269. http://dx.doi.org/10.1016/j.ces.2019.115269.

Listek, V. (2020, December). The cultured meat revolution: Singapore and Israel one step closer to commercializing lab grown chicken. The Voice of 3D Printing/Additive Manufacturing.

Lonergan, E. H., Zhang, W., & Lonergan, S. M. (2010). Biochemistry of postmortem muscle: lessons on mechanisms of meat tenderization. Meat Science, 86(1), 184-195. http://dx.doi.org/10.1016/j.meatsci.2010.05.004. PMid:20566247.

Mattick, C. S., Landis, A. E., & Allenby, B. R. (2015a). A case for systemic environmental analysis of cultured meat. Journal of Integrative Agriculture, 14(2), 249-254. http://dx.doi.org/10.1016/S2095-3119(14)60885-6.

Mattick, C. S., Landis, A. E., Allenby, B. R., & Genovese, N. J. (2015b). Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science & Technology, 49(19), 11941-11949. http://dx.doi.org/10.1021/acs.est.5b01614. PMid:26383898.

Mekonnen, M. M., & Hoekstra, A. Y. (2012). A global assessment of the water footprint of farm animal products. Ecosystems, 15(3), 401-415. http://dx.doi.org/10.1007/s10021-011-9517-8.

Memphis Meats. (2021). General 6: UPSIDE foods. Berkeley. Minari, G. (2021, 25 de junho). 1a fábrica de carne cultivada em laboratório do mundo é inaugurada em Israel. Canaltech. Mohorčich, J., & Reese, J. (2019). Cell-cultured meat: lessons from GMO adoption and resistance. Appetite, 143, 104408. http://dx.doi.org/10.1016/j.appet.2019.104408. PMid:31449883.

Ng, S., & Kurisawa, M. (2021). Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomaterialia, 124, 108-129. http://dx.doi.org/10.1016/j.actbio.2021.01.017. PMid:33472103.

O’Neill, E. N., Cosenza, Z. A., Baar, K., & Block, D. E. (2021). Considerations for the development of cost-effective cell culture media for cultivated meat production. Comprehensive Reviews in Food Science and Food Safety, 20(1), 686-709. http://dx.doi.org/10.1111/1541-4337.12678. PMid:33325139.

Okamoto, Y., Haraguchi, Y., Sawamura, N., Asahi, T., & Shimizu, T. (2020). Mammalian cell cultivation using nutrients extracted from microalgae. Biotechnology Progress, 36(2), e2941. http://dx.doi.org/10.1002/btpr.2941. PMid:31756286.

Poinski, M. (2020, December). Eat just lands first regulatory approval for cell-based meat. Food Dive.

Post, M. J., Levenberg, S., Kaplan, D. L., Genovese, N., Fu, J., Bryant, C. J., Negowetti, N., Verzijden, K., & Moutsatsou, P. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food, 1(7), 403-415. http://dx.doi.org/10.1038/s43016-020-0112-z.

Seah, J. S. H., Singh, S., Tan, L. P., & Choudhury, D. (2021). Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology. In press. http://dx.doi.org/10.1080/07388551. 2021.1931803. PMid:34151657.

Spearman, M., Chan, S., Jung, V., Kowbel, V., Mendoza, M., Miranda, V., & Butler, M. (2016). Components of yeast (Sacchromyces cervisiae) extract as defined media additives that support the growth and productivity of CHO cells. Journal of Biotechnology, 233, 129-142. http://dx.doi.org/10.1016/j.jbiotec.2016.04.031. PMid:27165505.

Sy, V., Herold, M., Achard, F., Beuchle, R., Clevers, J. G. P. W., Lindquist, E., & Verchot, L. (2015). Land use patterns and related carbon losses following deforestation in South America. Environmental Research Letters, 10(12), 124004. http://dx.doi.org/10.1088/1748-9326/10/12/124004.

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260-20264. http://dx.doi.org/10.1073/pnas.1116437108. PMid:22106295.

Tuomisto, H. L., & Mattos, M. J. T. (2011). Environmental impacts of cultured meat production. Environmental Science & Technology, 45(14), 6117-6123. http://dx.doi.org/10.1021/es200130u. PMid:21682287.

Turck, D., Bresson, J. L., Burlingame, B., Dean, T., Fairweather-Tait, S., Heinonen, M., Hirsch-Ernst, K. I., Mangelsdorf, I., McArdle, H., Naska, A., Neuhäuser-Berthold, M., Nowicka, G., Pentieva, K., Sanz, Y., Siani, A., Sjödin, A., Stern, M., Tomé, D., Vinceti, M., Willatts, P., Engel, K.-H., Marchelli, R., Pöting, A., Poulsen, M., Salminen, S., Schlatter, J., Arcella, D., Gelbmann, W., Sesmaisons-Lecarré, A., Verhagen, H., & van Loveren, H. (2016). Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA Journal, 14(11), e04594. http://dx.doi.org/10.2903/J.EFSA.2016.4594.

Valente, J. de P. S., Fiedler, R. A., Sucha Heidemann, M., & Molento, C. F. M. (2019). First glimpse on attitudes of highly educated consumers towards cell-based meat and related issues in Brazil. PLoS One, 14(8), e0221129. http://dx.doi.org/10.1371/journal.pone.0221129. PMid:31469862.

Warner, R. D. (2019). Review: Analysis of the process and drivers for cellular meat production. Animal, 13(12), 3041-3058. http://dx.doi.org/10.1017/S1751731119001897. PMid:31456539.

Yuki, H., & Ikko, K. (2017). Growth induction system, growth induction control apparatus, growth induction control method, and growth induction control program. Patent No. WO2017191691.

Zhang, G., Zhao, X., Li, X., Du, G., Zhou, J., & Chen, J. (2020). Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 97, 443-450. http://dx.doi.org/10.1016/j.tifs.2020.01.026.


Submitted date:
09/01/2021

Reviewed date:
09/22/2021

Accepted date:
10/01/2021

6193ed2da9539546f07b6c72 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections