Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.2019092
Biotechnology Research and Innovation Journal
Research Paper

Integrative approach reveals new insights into photosynthetic and redox protection in ex vitro tobacco plantlets acclimatization to increasing light intensity

Cinthya F. Vieira, Fabricio E. L. Carvalho, Yugo Lima-Melo, Cristina P. S. Carvalho, Milton C. Lima Netob, Marcio O. Martins, Joaquim A. G. Silveira

Downloads: 1
Views: 239

Abstract

Integrative mechanisms involving photosynthetic and antioxidant protection regulated by light intensity during in vitro and ex vitro plantlets acclimatization are poorly understood. Tobacco plantlets grown under in vitro and ex vitro environments were exposed to different light regimes to evaluate the role of photosynthesis and antioxidant protection. In vitro plantlets displayed a narrow photosynthetic capacity to cope with light as revealed by low net CO2 assimilation (PN), decreased actual quantum efficiency of photosystem II (ΦPSII) associated with non-induction of non-photochemical quenching (NPQ). In contrast, acclimated ex vitro plants showed strong stimulation in PN whereas ΦPSII and NPQ remained at high levels. In vitro plantlets exposed to moderate light suffered strong oxidative stress associated with increased activities of superoxide dismutases, catalases and ascorbate peroxidases, revealing an ineffective antioxidant system. In contrast, ex vitro plants presented lower oxidative damage in parallel to unchanged enzymatic activities, indicating an efficient antioxidant steady state. The levels of reduced ascorbate (ASC) and glutathione (GSH) were also increased only in ex vitro plants in response to excess light. An integrative study based on correlation networks and principal component analyses (PCA) corroborate that the two plant groups indeed displayed contrasting acclimation processes. In conclusion, during in vitro to ex vitro transition, tobacco plantlets exposed to increasing light display physiological adjustments involving photosynthesis and improvement of the enzymatic and non-enzymatic antioxidant systems. These findings highlight the importance of integrative approaches to understand ex vitro acclimatization to environmental stimuli.

References

Adams 3rd, W. W., Muller, O., Cohu, C. M., & Demmig-Adams, B. (2013). May photoinhibition be a consequence, rather than a cause, of limited plant productivity? Photosynthesis Research, 117(1-3), 31-44. http://dx.doi.org/10.1007/s11120-013-9849-7. PMid:23695654.

Alvarez, C., Sáez, P., Sáez, K., Sánchez-Olate, M., & Ríos, D. (2012). Effects of light and ventilation on physiological parameters during in vitro acclimatization of Gevuina avellana mol. Plant Cell, Tissue and Organ Culture, 110(1), 93-101. http://dx.doi.org/10.1007/s11240-012-0133-x.

Amako, K., Chen, G.-X., & Asada, K. (1994). Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant & Cell Physiology, 35, 497-504.

Apóstolo, N. M., Brutti, C. B., & Llorente, B. E. (2005). Leaf anatomy of Cynara scolymus L. in succesive micropropagation stages. In vitro Cellular & Developmental Biology. Plant, 41(3), 307-313. http://dx.doi.org/10.1079/IVP2004606.

Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391-396. http://dx.doi.org/10.1104/pp.106.082040. PMid:16760493.

Barry-Etienne, D., Bertrand, B., Vasquez, N., & Etienne, H. (2002). Comparison of somatic embryogenesis-derived coffee (Coffea arabica L.) plantlets regenerated in vitro or ex vitro : Morphological, mineral and water characteristics. Annals of Botany, 90(1), 77-85. http://dx.doi.org/10.1093/aob/mcf149. PMid:12125775.

Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44(1), 276-287. http://dx.doi.org/10.1016/0003-2697(71)90370-8. PMid:4943714.

Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21(1), 43-47. http://dx.doi.org/10.2135/cropsci1981.0011183X002100010013x. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3. PMid:942051.

Cakmak, I., & Horst, W. J. (1991). Effect of aluminium on net efflux of nitrate and potassium from root tips of soybean (Glycine max L.). Journal of Plant Physiology, 138(4), 400-403. http://dx.doi.org/10.1016/S0176-1617(11)80513-4.

Cardoso, J. C., Rossi, M. L., Rosalem, I. B., & Teixeira da Silva, J. A. (2013). Pre-acclimatization in the greenhouse: An alternative to optimizing the micropropagation of gerbera. Scientia Horticulturae, 164, 616-624. http://dx.doi.org/10.1016/j.scienta.2013.10.022.

Carvalho, F. E. L., Ware, M. A., & Ruban, A. V. (2015). Quantifying the dynamics of light tolerance in arabidopsis plants during Ontogenesis. Plant, Cell & Environment, 38(12), 2603-2617. http://dx.doi.org/10.1111/pce.12574. PMid:26012511.

Carvalho, L. C., Vilela, B. J., Vidigal, P., Mullineaux, P. M., & Amâncio, S. (2006). Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro . International Journal of Plant, 167(4), 759-770. http://dx.doi.org/10.1086/503919.

Chandra, S., Bandopadhyay, R., Kumar, V., & Chandra, R. (2010). Acclimatization of tissue cultured plantlets: From laboratory to land. Biotechnology Letters, 32(9), 1199-1205. http://dx.doi.org/10.1007/s10529-010-0290-0. PMid:20455074.

Daloso, D. M., Medeiros, D. B., Anjos, L., Yoshida, T., Araújo, W. L., & Fernie, A. R. (2017). Metabolism within the specialized guard cells of plants. The New Phytologist, 216(4), 1018-1033. http://dx.doi.org/10.1111/nph.14823. PMid:28984366.

Dias, M. C., Pinto, G., & Santos, C. (2011). Acclimatization of micropropagated plantlets induces an antioxidative burst: A case study with Ulmus minor Mill. Photosynthetica, 49(2), 259-266. http://dx.doi.org/10.1007/s11099-011-0028-9.

Dietz, K.-J. (2014). Redox regulation of transcription factors in plant stress acclimation and development. Antioxidants & Redox Signaling, 21(9), 1356-1372. http://dx.doi.org/10.1089/ars.2013.5672. PMid:24182193.

Elstner, E. F., & Heupel, A. (1976). Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Analytical Biochemistry, 70(2), 616-620. http://dx.doi.org/10.1016/0003-2697(76)90488-7. PMid:817618.

Exposito-Rodriguez, M., Laissue, P. P., Yvon-Durocher, G., Smirnoff, N., & Mullineaux, P. M. (2017). Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nature Communications, 8(1), 49. http://dx.doi.org/10.1038/s41467-017-00074-w. PMid:28663550.

Flexas, J., Ribas-Carbó, M., Diaz-Espejo, A., Galmés, J., & Medrano, H. (2008). Mesophyll conductance to CO2: Current knowledge and future prospects. Plant, Cell & Environment, 31(5), 602-621. http://dx.doi.org/10.1111/j.1365-3040.2007.01757.x. PMid:17996013.

Foyer, C. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134-142. http://dx.doi.org/10.1016/j.envexpbot.2018.05.003. PMid:30283160.

Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., & Harbinson, J. (2012). Photosynthetic control of electron transport and the regulation of gene expression. Journal of Experimental Botany, 63(4), 1637-1661. http://dx.doi.org/10.1093/jxb/ers013. PMid:22371324.

Foyer, C. H., Ruban, A. V., & Noctor, G. (2017). Viewing oxidative stress through the lens of oxidative signalling rather than damage. The Biochemical Journal, 474(6), 877-883. http://dx.doi.org/10.1042/BCJ20160814. PMid:28270560.

Genty, B., Briantais, J.-M. M., & Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta. G, General Subjects, 990(1), 87-92. http://dx.doi.org/10.1016/S0304-4165(89)80016-9.

Georgieva, K., Yordanov, I., & Kroumova, A. (1996). Photosynthetic characteristics of transformed tobacco plants grown in vitro after their transplantation in natural conditions. Bulgarian Journal of Plant Physiology, 22, 3-13.

Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: II. purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59(2), 315-318. http://dx.doi.org/10.1104/pp.59.2.315. PMid:16659840.

Gollan, P. J., Lima-Melo, Y., Tiwari, A., Tikkanen, M., & Aro, E.-M. (2017). Interaction between photosynthetic electron transport and chloroplast sinks triggers protection and signalling important for plant productivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 372(1730), 20160390. http://dx.doi.org/10.1098/rstb.2016.0390. PMid:28808104.

Guan, Q. Z., Guo, Y. H., Sui, X. L., Li, W., & Zhang, Z. X. (2008). Changes in photosynthetic capacity and antioxidant enzymatic systems in micropropagated Zingiber officinale plantlets during their acclimation. Photosynthetica, 46(2), 193-201. http://dx.doi.org/10.1007/s11099-008-0031-y.

Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiology, 84(2), 450-455. http://dx.doi.org/10.1104/pp.84.2.450. PMid:16665461.

Jimbo, H., Yutthanasirikul, R., Nagano, T., Hisabori, T., Hihara, Y., & Nishiyama, Y. (2018). Oxidation of translation factor EF-Tu inhibits the repair of photosystem II. Plant Physiology, 176(4), 2691-2699. http://dx.doi.org/10.1104/pp.18.00037. PMid:29439212.

Kadleček, P., Tichá, I., Haisel, D., Čapková, V., & Schäfer, C. (2001). Importance of in vitro pretreatment for ex vitro acclimatization and growth. Plant Science, 161(4), 695-701. http://dx.doi.org/10.1016/S0168-9452(01)00456-3.

Kamada, T., & Kawai, S. (1989). An algorithm for drawing general undirected graphs. Information Processing Letters, 31(1), 7-15. http://dx.doi.org/10.1016/0020-0190(89)90102-6.

Kapchina-Toteva, V., Dimitrova, M. A., Stefanova, M., Koleva, D., Kostov, K., Yordanova, ZhP., Stefanov, D., & Zhiponova, M. K. (2014). Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation. Journal of Plant Physiology, 171(15), 1344-1353. http://dx.doi.org/10.1016/j.jplph.2014.05.010. PMid:25046755.

König, K., Vaseghi, M. J., Dreyer, A., & Dietz, K.-J. (2018). The significance of glutathione and ascorbate in modulating the retrograde high light response in Arabidopsis thaliana leaves. Physiologia Plantarum, 162(3), 262-273. http://dx.doi.org/10.1111/ppl.12644. PMid:28984358.

Kromdijk, J., Głowacka, K., Leonelli, L., Gabilly, S. T., Iwai, M., Niyogi, K. K., & Long, S. P. (2016). Improving photosynthesis and crop productivity by accelerating recovery from photoprotection. Science, 354(6314), 857-861. http://dx.doi.org/10.1126/science.aai8878. PMid:27856901.

Lando, A. P., Wolfart, M. R., Fermino, P. C. P. P., & Santos, M. (2016). Structural effects on Cattleya xanthina leaves cultivated in vitro and acclimatized ex vitro . Biologia Plantarum, 60(2), 219-225. http://dx.doi.org/10.1007/s10535-016-0589-3.

Li, J., Wang, M., Li, Y., Zhang, Q., Lindsey, K., Daniell, H., Jin, S., & Zhang, X. (2019). Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnology Journal, 17(2), 435-450. http://dx.doi.org/10.1111/pbi.12988. PMid:29999579.

Li, L., Aro, E. M., & Millar, A. H. (2018). Mechanisms of photodamage and protein turnover in photoinhibition. Trends in Plant Science, 23(8), 667-676. http://dx.doi.org/10.1016/j.tplants.2018.05.004. PMid:29887276.

Li, Y., Fan, Y., Ma, Y., Zhang, Z., Yue, H., Wang, L., Li, J., & Jiao, Y. (2017). Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress. Journal of Plant Growth Regulation, 36(2), 436-449. http://dx.doi.org/10.1007/s00344-016-9652-8.

Li, Z., Wakao, S., Fischer, B. B., & Niyogi, K. K. (2009). Sensing and responding to excess light. Annual Review of Plant Biology, 60(1), 239-260. http://dx.doi.org/10.1146/annurev.arplant.58.032806.103844. PMid:19575582.

Lichtenthaler, H., & Wellburn, A. (1983). Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. http://dx.doi.org/10.1042/bst0110591.

Lieth, J. H., & Reynolds, J. F. (1987). The nonrectangular hyperbola as a photosynthetic light response model: Geometrical interpretation and estimation of the parameter - θ. Photosynthetica, 21, 363-366. Lima-Melo, Y., Alencar, V. T. C. B., Lobo, A. K. M., Sousa, R. H. V., Tikkanen, M., Aro, E.-M., Silveira, J. A. G., & Gollan, P. J. (2019b). Photoinhibition of photosystem I provides oxidative protection during imbalanced photosynthetic electron transport in Arabidopsis thaliana. Frontiers of Plant Science, 10, 916. http://dx.doi.org/10.3389/fpls.2019.00916. PMid:31354779.

Lima-Melo, Y., Gollan, P. J., Tikkanen, M., Silveira, J. A. G., & Aro, E. M. (2019a). Consequences of photosystem-I damage and repair on photosynthesis and carbon use in Arabidopsis thaliana. The Plant Journal, 97(6), 1061-1072. http://dx.doi.org/10.1111/tpj.14177. PMid:30488561.

Monja-Mio, K. M., Pool, F. B., Herrera, G. H., EsquedaValle, M., & Robert, M. L. (2015). Development of the stomatal complex and leaf surface of Agave angustifolia haw. ‘Bacanora’ plantlets during the in vitro to ex vitro transition process. Scientia Horticulturae, 189, 32-40. http://dx.doi.org/10.1016/j.scienta.2015.03.032.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962. tb08052.x.

Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867-880.

Perveen, S., & Anis, M. (2015). Physiological and biochemical parameters influencing ex vitro establishment of the in vitro regenerants of Albizia lebbeck (L.) Benth.: An important soil reclaiming plantation tree. Agroforestry Systems, 89(4), 721-733. http://dx.doi.org/10.1007/s10457-015-9809-7.

Perveen, S., Anis, M., & Aref, I. M. (2013a). Lipid peroxidation, H2O2 content, and antioxidants during acclimatization of Abrus precatorius to ex vitro conditions. Biologia Plantarum, 57(3), 417-424. http://dx.doi.org/10.1007/s10535-013-0328-y.

Perveen, S., Javed, S. B., Anis, M., & Aref, I. M. (2013b). Rapid in vitro multiplication and ex vitro establishment of caribbean copper plant (Euphorbia cotinifolia L.): An important medicinal shrub. Acta Physiologiae Plantarum, 35(12), 3391-3400. http://dx.doi.org/10.1007/s11738-013-1374-y.

Pospíšilová, J. H., Synková, H., Haisel, D., & Baťková, P. (2009). Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micropropagated tobacco plantlets. Biologia Plantarum, 53(1), 11-20. http://dx.doi.org/10.1007/s10535-009-0003-5.

Rival, A., Beule, T., Lavergne, D., Nato, A., Havaux, M., & Puard, M. (1997). Development of photosynthetic characteristics in oil palm during in vitro micropropagation. Journal of Plant Physiology, 150(5), 520-527. http://dx.doi.org/10.1016/S0176-1617(97)80314-8.

Roach, T., & Krieger-Liszkay, A. (2019). Photosynthetic regulatory mechanisms for efficiency and prevention of photo-oxidative stress. Annual Plant Reviews, 2(1), 1-34. http://dx.doi.org/10.1002/9781119312994.apr0666.

Ruban, A. V. (2015). Evolution under the sun: Optimizing light harvesting in photosynthesis. Journal of Experimental Botany, 66(1), 7-23. http://dx.doi.org/10.1093/jxb/eru400. PMid:25336689.

Sáez, P. L., Bravo, L. A., Latsague, M. I., Sánchez, M. E., & Ríos, D. G. (2012). Increased light intensity during in vitro culture improves water loss control and photosynthetic performance of Castanea sativa grown in ventilated vessels. Scientia Horticulturae, 138, 7-16. http://dx.doi.org/10.1016/j.scienta.2012.02.005.

Sáez, P. L., Bravo, L. A., Latsague, M. I., Toneatti, M. J., Coopman, R. E., Álvarez, C. E., Sánchez-Olate, M., & Ríos, D. G. (2015). Influence of in vitro growth conditions on the photosynthesis and survival of Castanea sativa plantlets during ex vitro transfer. Plant Growth Regulation, 75(3), 625-639. http://dx.doi.org/10.1007/s10725-014-9965-1.

Sáez, P. L., Bravo, L. A., Latsague, M. I., Toneatti, M. J., SánchezOlate, M., & Ríos, D. G. (2013). Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Science, 201–202, 12-24. http://dx.doi.org/10.1016/j.plantsci.2012.11.008. PMid:23352399.

Schreiber, U., Bilger, W., & Neubauer, C. (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In E. D. Schulze & M. M. Caldwell (Eds.), Ecophysiology of Photosynthesis (pp. 49-70). Springer. http://dx.doi.org/10.1007/978-3-642-79354-7_3.

Semorádová, Š., Synková, H., & Pospíšilová, J. (2002). Responses of tobacco plantlets to change of irradiance during transfer from in vitro to ex vitro conditions. Photosynthetica, 40(4), 605-614. http://dx.doi.org/10.1023/A:1024316405903.

Silveira, J. A. G., & Carvalho, F. E. L. (2016). Proteomics, photosynthesis and salt resistance in crops: An integrative view. Journal of Proteomics, 143, 24-35. http://dx.doi.org/10.1016/j.jprot.2016.03.013. PMid:26957143.

Sousa, R. H. V., Carvalho, F. E. L., Lima-Melo, Y., Alencar, V. T. C. B., Daloso, D. M., Margis-Pinheiro, M., Komatsu, S., & Silveira, J. A. G. (2019). Impairment of peroxisomal APX and CAT activities increases protection of photosynthesis under oxidative stress. Journal of Experimental Botany, 70(2), 627-639. http://dx.doi.org/10.1093/jxb/ery354. PMid:30312463.

Souza, G. M., Ribeiro, R. V., Prado, C. H. B. A., Damineli, D. S. C., Sato, A. M., & Oliveira, M. S. (2009). Using network connectance and autonomy analyses to uncover patterns of photosynthetic responses in tropical woody species. Ecological Complexity, 6(1), 15-26. http://dx.doi.org/10.1016/j.ecocom.2008.10.002.

Swain, S. S., Tripathy, T., Mohapatra, P. K., & Chand, P. K. (2010). Photosynthetic and transpiration responses of in vitro -regenerated Solanum nigrum L. plants to ex vitro adaptation. In vitro Cellular & Developmental Biology - Plant, 46(2), 134-141. http://dx.doi.org/10.1007/s11627-009-9269-8.

Thordal-Christensen, H., Zhang, Z., Wei, Y., & Collinge, D. B. (1997). Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant Journal, 11(6), 1187-1194. http://dx.doi.org/10.1046/j.1365-313X.1997.11061187.x.

Varshney, A., & Anis, M. (2012). Improvement of shoot morphogenesis in vitro and assessment of changes of the activity of antioxidant enzymes during acclimation of micropropagated plants of desert teak. Acta Physiologiae Plantarum, 34(3), 859-867. http://dx.doi.org/10.1007/s11738-011-0883-9.

Wickramasuriya, A. M., & Dunwell, J. M. (2015). Global scale transcriptome analysis of arabidopsis embryogenesis in vitro . BMC Genomics, 16(1), 301. http://dx.doi.org/10.1186/s12864-015-1504-6. PMid:25887996.

Yu, H., Zhao, W., Wang, M., Yang, X., & Jiang, W. (2016). The exogenous application of spermidine alleviates photosynthetic inhibition and membrane lipid peroxidation under low-light stress in tomato (Lycopersicon esculentum Mill.) seedlings. Plant Growth Regulation, 78(3), 413-420. http://dx.doi.org/10.1007/s10725-015-0102-6.

Zhou, M., Diwu, Z., Panchuk-Voloshina, N., & Haugland, R. P. (1997). A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: Applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry, 253(2), 162-168. http://dx.doi.org/10.1006/abio.1997.2391. PMid:9367498.

Zhu, H., Li, X., Zhai, W., Liu, Y., Gao, Q., Liu, J., Ren, L., Chen, H., & Zhu, Y. (2017). Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS One, 12(6), 1-17. http://dx.doi.org/10.1371/journal.pone.0179305. PMid:28609452.

Zobayed, S. M. A., Armstrong, J., & Armstrong, W. (2001). Leaf anatomy of in vitro tobacco and cauliflower plantlets as affected by different types of ventilation. Plant Science, 161(3), 537-548. http://dx.doi.org/10.1016/S0168-9452(01)00438-1.

Zulfugarov, I. S., Tovuu, A., Eu, Y.-J., Dogsom, B., Poudyal, R. S., Nath, K., Hall, M., Banerjee, M., Yoon, U. C., Moon, Y. H., An, G., Jansson, S., & Lee, C. H. (2014). Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC Plant Biology, 14(1), 242. http://dx.doi.org/10.1186/s12870-014-0242-2. PMid:25342550.

6101b0fda9539516d8779812 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections