Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.0142023
Biotechnology Research and Innovation Journal
Research paper

Antiproliferative potential of Petiveria alliacea L extract-loaded nanodispersion against cancer cells

Ariadna Lafourcade Prada; Jesús Rafael Rodríguez Amado; Eduarda Tibúrcio do Nascimento Reis; Giovana Bicudo; Renata Trentin Perdomo; Marco António Utrera Martines

Downloads: 0
Views: 165

Abstract

Cancer is characterized by the uncontrolled growth of unhealthy cells that invade tissues and organs, causing thousands of deaths worldwide. In this work, a nanodispersion loaded with soft extract of Petiveria alliacea L. was developed for use as an antitumoral. The nanodispersion was prepared using the polymer deposition-solvent displacement method, with Kollicoat MAE 100P as the matrix former polymer. A nanodispersion with a particle size of 147 nm and high homogeneity of size (polydispersity index 0.162) was obtained, along with a ζ-potential of -10.80 mV. The polymer deposition-solvent displacement method allowed for high encapsulation efficiency (86.25%) and high stability on the shelf for a year. The nanodispersion did not show hemolytic effect and inhibited the growth of liver cancer cells (HepG2) with high selectivity (IG50 18.08 μg/mL, SI 13.82). The nanodispersion also showed strong antiproliferation activity and high selectivity against breast cancer cells (MDA-MB-231: IG50 28.22 μg/mL, SI 8.85) and kidney cancer cells (786-0: IG50 82.38 μg/mL, SI 3.03). Due to the low values of GI50 and selectivity higher than 3, the polymeric nanodispersion loaded with soft extract of Petiveria alliacea L. can be a promising product for the treatment of these three types of cancer. However, further studies will need to be conducted to investigate its actual usefulness in anticancer therapy.

Keywords

Nanoparticles; Cytotoxicity; Antiproliferative; Cancer; Petiveria alliacea L.; Kollicoat

References

Abotaleb, M., Samuel, S. M., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., & Büsselberg, D. (2018). Flavonoids in cancer and apoptosis. Cancers (Basel), 11(1), 28. PMid:30597838.

Agência Nacional de Vigilância Sanitária (2019). Farmacopeia Brasileira (5. ed., Vol. 1). ANVISA.

Ajji, P. K., Walder, K., & Puri, M. (2020). Combination of balsamin and flavonoids induce apoptotic effects in liver and breast cancer cells. Frontiers in Pharmacology, 11, 574496. http://dx.doi. org/10.3389/fphar.2020.574496. PMid:33192517.

Akintan, M. O., & Akinneye, J. O. (2020). Fumigant toxicity and phytochemical analysis of Petiveria alliacea (Linneaus) leaf and root bark oil on adult Culex quinquefasciatus. Bulletin of the National Research Center, 44(1), 129. http://dx.doi.org/10.1186/ s42269-020-00355-3.

Andrade, T. M., de Melo, A. S., Dias, R. G. C., Varela, E. L. P., de Oliveira, F. R., Vieira, J. L. F., de Andrade, M. A., Baetas, A. C., Monteiro, M. C., & Maia, C. D. S. F. (2012). Potential behavioral and pro-oxidant effects of Petiveria alliacea L. extract in adult rats. Journal of Ethnopharmacology, 143(2), 604-610. http://dx.doi.org/10.1016/j.jep.2012.07.020. PMid:22890225.

Awouafack, M. D., McGaw, L. J., Gottfried, S., Mbouangouere, R., Tane, P., Spiteller, M., & Eloff, J. N. (2013). Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae). BMC Complementary and Alternative Medicine, 13(1), 289. http://dx.doi.org/10.1186/1472-6882-13-289. PMid:24165199.

Ayaz, M., Nawaz, A., Ahmad, S., Mosa, O. F., Eisa Hamdoon, A. A., Khalifa, M. A., Sadiq, A., Ullah, F., Wadood, A., Kabra, A., & Ananda Murthy, H. C. (2022). Underlying anticancer mechanisms and synergistic combinations of phytochemicals with cancer chemotherapeutics: Potential benefits and risks. Journal of Food Quality, 2022, 1-15. http://dx.doi.org/10.1155/2022/1189034.

BASF Pharm. (2019). Kollicoat Mae 100P: Technical information: Methacrylic acids/ethyl acrylates copolymer for enteric coating. BASF SE.

Batista, D. A., Betancourt, E., Zapata, E., Alfonso, A., Martínez, O., & Lemus, M. Z. (2011). Efecto protector de Petiveria alliacea L. (Anamú) sobre la inmunosupresión inducida por 5-fluoruracilo en ratones Balb/c. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 10, 256-264.

Benevides, P. J. C., Young, M. C. M., Giesbrecht, A. M., Roque, N. F., & Bolzani, V. da S. (2001). Antifungal polysulphides from Petiveria alliacea L. Phytochemistry, 57(5), 743-747. http://dx.doi.org/10.1016/S0031-9422(01)00079-6. PMid:11397443.

British Pharmacopeia .(2019). British Pharmacopeia-BP 2019th ed., Vol. 1. Her Majesty Stationary Office. London-UK.

Cheong, J. N., Tan, C. P., Man, Y. B. C., & Misran, M. (2008). α-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. Journal of Food Engineering, 89(2), 204-209. http://dx.doi.org/10.1016/j.jfoodeng.2008.04.018.

Cos, P., Vlietinck, A. J., Berghe, D., & Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept.”. Journal of Ethnopharmacology, 106(3), 290-302. PMid:16698208.

Duarte, M. R., & Lopes, J. F. (2005). Leaf and stem morphoanatomy of Petiveria alliacea. Fitoterapia, 76(7–8), 599-607. http://dx.doi. org/10.1016/j.fitote.2005.05.004. PMid:16242265.

Fessi, H., Puisieux, F., Devissaguet, J.P., Ammoury, N., Benita, S. (1989) Nanocapsule formation by interfacial polymer depositionfollowing solvent deplacement. Int. J. Pharm. 55, 25–28. http://dx.doi. org/10.1016/j.ijpharm.2004.05.016

Fibach, E., & Rachmilewitz, E. (2008). The role of oxidative stress in hemolytic anemia. Current Molecular Medicine, 8(7), 609-619. http://dx.doi.org/10.2174/156652408786241384. PMid:18991647.

Florentino Neto, S., Prada, A. L., Achod, L. D. R., Torquato, H. F. V., Lima, C. S., Paredes-Gamero, E. J., Silva de Moraes, M. O., Lima, E. S., Sosa, E. H., de Souza, T. P., & Amado, J. R. R. (2021). α-amyrin-loaded nanocapsules produce selective cytotoxic activity in leukemic cells. Biomedicine and Pharmacotherapy, 139, 111656. http://dx.doi.org/10.1016/j.biopha.2021.111656. PMid:34243603.

Food and Agriculture Organization. (2002). Human vitamins and mineral requirements. Report of a joint FAO/WHO expert consultation. FAO/WHO.

Germano, D. H. P., Caldeira, T. T. O., Mazella, A. A. G., Sertié, J. A. A., & Bacchi, E. M. (1993). Topical anti-inflammatory activity and toxicity of Petiveria alliacea. Fitoterapia, 64(5), 459-462.

Gomes, M. A., Priolli, D. G., Tralhão, J. G., & Botelho, M. F. (2013). Hepatocellular carcinoma: Epidemiology, biology, diagnosis, and therapies. Revista da Associação Médica Brasileira, 59(5), 514-524. PMid:24041910.

Grisson, S. M., & Berlin, J. A. (2013). Haemolytic activity and oxidative stress: Implications for redox-based therapies in sickle cell disease. Antioxidants & Redox Signaling, 18(7), 1255-1271.

Han, L. T., Fang, Y., Li, M. M., Yang, H. B., & Huang, F. (2013). The antitumor effects of triterpenoid saponins from the Anemone flaccida and the underlying mechanism. Evidence- Based Complementary and Alternative Medicine, 2013, 517931. http://dx.doi.org/10.1155/2013/517931. PMid:24191167.

Hernández, J. F., Urueña, C. P., Cifuentes, M. C., Sandoval, T. A., Pombo, L. M., Castañeda, D., Asea, A., & Fiorentino, S. (2014). A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism. Journal of Ethnopharmacology, 153(3), 641-649. http://dx.doi. org/10.1016/j.jep.2014.03.013. PMid:24637191.

Hu, Z., Pan, J., Wang, J., Pei, Y., & Zhou, R. (2022). Current research status of alkaloids against breast cancer. The Chinese Journal of Physiology, 65(1), 12-20. http://dx.doi.org/10.4103/cjp. cjp_89_21. PMid:35229748.

Indrayanto, G., Putra, G. S., & Suhud, F. (2021). Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles of Drug Substances, Excipients, and Related Methodology, 46, 273-307. http://dx.doi.org/10.1016/bs.podrm.2020.07.005. PMid:33461699.

Instituto Nacional de Câncer. (2022a). Atlas de mortalidade por câncer. INCA.

Instituto Nacional de Câncer. (2022b). Gastos federais atuais e futuros com os cânceres atribuíveis aos fatores de risco relacionados à alimentação, nutrição e atividade física no Brasil. INCA.

Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ali, B., Shah, S. A., & Khalil, A. T. (2017). Plant-derived anticancer agents: A green anticancer approach. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1129-1150. http://dx.doi.org/10.1016/j.apjtb.2017.10.016.

Kim, S., Kubec, R., & Musah, R. A. (2006). Antibacterial and antifungal activity of sulfur-containing compounds from Petiveria alliacea L. Journal of Ethnopharmacology, 104(1–2), 188-192. http://dx.doi. org/10.1016/j.jep.2005.08.072. PMid:16229980.

Klein, C., & Ladeira, E. A. (2004). Geochemistry and mineralogy of neoproterozoic banded iron-formations and some selected, siliceous manganese formations from the urucum district, Mato Grosso do Sul, Brazil. Economic Geology and the Bulletin of the Society of Economic Geologists, 99(6), 1233-1244. http://dx.doi. org/10.2113/gsecongeo.99.6.1233.

Kubec, R., & Musah, R. A. (2001). Cysteine sulfoxide derivatives in Petiveria alliacea. Phytochemistry, 58(6), 981-985. http:// dx.doi.org/10.1016/S0031-9422(01)00304-1. PMid:11684199.

Kubec, R., Kim, S., & Musah, R. A. (2002). S-Substituted cysteine derivatives and thiosulfinate formation in Petiveria alliacea: Part II. Phytochemistry, 61(6), 675-680. http://dx.doi.org/10.1016/ S0031-9422(02)00328-X. PMid:12423888.

Lima, T. C. M., Morato, G. S., & Takahashi, R. N. (1991). Evaluation of antinociceptive effect of Petiveria alliacea (Guine) in animals. Memorias do Instituto Oswaldo Cruz, 86(Suppl 2), 153-158. http://dx.doi.org/10.1590/S0074-02761991000600035. PMid:1841991.

Low, T., Rood, T., & Beresford, R. (1999). Segredos e virtudes das plantas medicinais (1st ed.). Reader`s Digest Brasil, Ltda. Marini, S., Jovicevic, L., Milanese, C., Giardina, B., Tentori, L., Leone, M. G., & Rossi, V. (1993). Effects of Petiveria Alliacea L. on cytokine production and natural killer cell activity. Pharmacological Research, 27, 107-108. http://dx.doi. org/10.1006/phrs.1993.1088.

Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. JNCI Journal of the National Cancer Institute, 83(11), 757-766. http://dx.doi. org/10.1093/jnci/83.11.757. PMid:2041050.

National Institutes of Health. (2023). Cancer Stat Facts: Cancer of Any Site. NIH. https://seer.cancer.gov/statfacts/html/all.html

Olajubutu, O. G., Ogunremi, B. I., Adewole, A. H., Awotuya, O. I., Fakola, E. G., Anyim, G., & Faloye, K. O. (2022). Topical antiinflammatory activity of Petiveria alliacea, chemical profiling and computational investigation of phytoconstituents identified from its active fraction. Chemistry Africa, 5(3), 557-565. http://dx.doi. org/10.1007/s42250-022-00339-y.

Organisation for Economic Co-operation and Development. (2009). Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials. OECD.

Peña-Morán, O., Villarreal, M., Álvarez-Berber, L., Meneses-Acosta, A., & Rodríguez-López, V. (2016). Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules (Basel, Switzerland), 21(8), 1013. http://dx.doi.org/10.3390/molecules21081013. PMid:27527135.

Rodriguez Amado, J. R., Prada, A. L., Duarte, J. L., Keita, H., Silva, H. R., Ferreira, A. M., Sosa, E. H., & Carvalho, J. C. T. (2017). Development, stability, and in vitro delivery profile of new loratadine-loaded nanoparticles. Saudi Pharmaceutical Journal, 25(8), 1158-1168. http://dx.doi.org/10.1016/j.jsps.2017.07.008. PMid:30166904.

Rodriguez, A. J. R., Pérez, R. R., & Escalona, A. J. C. (2012). Standardization of the quality control parameters of the Tamarindus indica L. soft extract. Revista Cubana de Plantas Medicinales, 17(1), 108-114.

Roig, J. T. (1974). Plantas medicinales, aromáticas o venenosas de Cuba (3rd ed., Vol. 1). Instituto Cubano del Libro.

Samimi, S., Maghsoudnia, N., Eftekhari, R. B., & Dorkoosh, F. (2019). Lipid-based nanoparticles for drug delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra & S. Thomas (Eds.), Characterization and biology of nanomaterials for drug delivery (pp. 47-76). Elsevier. https://doi.org/10.1016/B978-0- 12-814031-4.00003-9

Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., & Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. JNCI Journal of the National Cancer Institute, 82(13), 1107-1112. http://dx.doi.org/10.1093/jnci/82.13.1107. PMid:2359136.

Sousa, J. R., Demuner, A. J., Pinheiro, J. A., Breitmaier, E., & Cassels, B. K. (1990). Dibenzyl trisulphide and trans-N-methyl-4- methoxyproline from Petiveria alliacea. Phytochemistry, 29(11), 3653-3655. http://dx.doi.org/10.1016/0031-9422(90)85294-P.

Taylor, L. (2002). Technical data report for anamú: Petiveria alliacea. Sage Press. https://www.rain-tree.com/reports/anamu-tech.pdf

United State Pharmacopeia. (2019). United States Pharmacopeial Convention (Vol. 1). Washington-USA.

Weerapreeyakul, N., Nonpunya, A., Barusrux, S., Thitimetharoch, T., & Sripanidkulchai, B. (2012). Evaluation of the anticancer potential of six herbs against a hepatoma cell line. Chinese Medicine, 7(1), 15. http://dx.doi.org/10.1186/1749-8546-7-15. PMid:22682026.

World Health Organization. (1998). Quality control methods for medicinal plant materials. WHO.


Submitted date:
06/17/2023

Accepted date:
11/03/2023

659bf22da953952f3a7d8e82 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections