Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00162023
Biotechnology Research and Innovation Journal
Research paper

Poly(vinyl alcohol)/ulvan electrospun nanofibers thermallycrosslinked to produce a water stable biomaterial

Luisa Elena Mejía Agüero; Adriana Freire Lubambo; Cyro Ketzer Saul; Beatriz Franco Silva; Rilton Alves de Freitas; Franciely Grose Colodi; Maria Eugênia Rabello Duarte; Miguel Daniel Noseda

Downloads: 2
Views: 148

Abstract

Ulvan is the main sulfated polysaccharide isolated from green seaweeds of the genus Ulva, showing several biological properties. A fibrous ulvan-based mat exhibiting nanofibers with an average diameter of 144 ± 33 nm, was fabricated from electrospun of an aqueous mixture, composed by poly(vinyl alcohol) (PVA) and ulvan in a 5:2 mass ratio (PVA5U2). As expected from its composition, the PVA5U2 mat readily disintegrated upon contact with water, limiting potential uses. For this reason, mat stabilization against water exposition as well as keeping ulvan functional groups availability in the biomaterial, as fundamental aspects for functionalization purposes, became the main objectives of this work. To achieve them, thermal crosslinking (180 °C/60 min), instead of chemical crosslinking, was used for the first time in this type of biomaterial, modulating the poor stability of the ulvan-based electrospun mat in water and preventing the formation of polysaccharides crosslinking complexes during the stabilization treatment. Infrared spectroscopy and scanning electron microscopy were used to characterize the PVA5U2 mat and the thermally-crosslinked PVA5U2 mat, evidencing the presence of nanofibers and ulvan functional groups. Nanofibers increased 30% in diameter after 180 min of water exposition. The PVA5U2 mat exhibit characteristics that turn them into a versatile biotechnological biomaterial.

Supplementary material

Keywords

Electrospinning; Nanofibers; Seaweed; Sulfated polysaccharide; Thermal crosslinking; Ulva fasciata

References

Alves, A., Pinho, E., Neves, N., Sousa, R., & Reis, R. (2012). Processing ulvan into 2D structures: Cross-linked ulvan membranes as new biomaterials for drug delivery applications. International Journal of Pharmaceutics, 426(1–2), 76-81. http://dx.doi.org/10.1016/j. ijpharm.2012.01.021. PMid:22281048.

Alves, A., Sousa, R., & Reis, R. (2013). A practical perspective on ulvan extracted from green algae. Journal of Applied Phycology, 25(2), 407-424. http://dx.doi.org/10.1007/s10811-012-9875-4.

Amiya, S. (1994). A nuclear magnetic resonance study of the microstructure of poly(vinyl alcohol). In K. P. Ghiggino (Ed.), Progress In Pacific Polymer Science 3: Proceedings of the Third Pacific Polymer Conference. (1st ed., pp. 367-379). Springer. https://doi.org/10.1007/978-3-642-78759-1

Amiya, S., Tsuchiya, R., Qian, R., & Nakajima, A. (1990). The study of imcrostructures of poly(vinyl alcohol) by NMR. Pure and Applied Chemistry, 62(11), 2139-2146. http://dx.doi.org/10.1351/ pac199062112139.

Amjadi, S., Almasi, H., Ghorbani, M., & Ramazani, S. (2020). Reinforced ZnONPs/ rosemary essential oil-incorporated zein electrospun nanofibers by κ-carrageenan. Carbohydrate Polymers, 232, 115800. http://dx.doi.org/10.1016/j.carbpol.2019.115800. PMid:31952599.

Anderson, M. A., & Stone, B. A. (1985). A radiochemical approach to the determination of carboxylic acid groups in polysaccharides. Carbohydrate Polymers, 5(2), 115-129. http://dx.doi. org/10.1016/0144-8617(85)90029-3.

Aranha, I. B., & Lucas, E. F. (2001). Poli(álcool vinílico) modificado com cadeias hidrocarbônicas: Avaliação do balanço hidrófilo/ lipófilo. Polímeros: Ciência e Tecnologia, 11(4), 174-181. http:// dx.doi.org/10.1590/S0104-14282001000400007.

Barnes, C. P., Sell, S., Boland, E., Simpson, D., & Bowlin, G. (2007). Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews, 59(14), 1413-1433. http://dx.doi.org/10.1016/j.addr.2007.04.022. PMid:17916396.

Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. http://dx.doi.org/10.1016/j.biotechadv.2010.01.004. PMid:20100560.

Carpita, N., & Shea, E. (1990). Linkage structure of carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially mutilated alditol acetates. In G. D. Biermann & C. J. McGinnins (Eds.), Analysis of carbohydrates by GLC and MS of carbohydrates by GLC and MS (2nd ed., pp. 157-216). CRC Press.

Carvalho, M. M., Freitas, R. A., Ducatti, D. R. B., Ferreira, L. G., Gonçalves, A. G., Colodi, F. G., Mazepa, E., Aranha, E. M., Noseda, M. D., & Duarte, M. E. R. (2018). Modification of ulvans via periodate-chlorite oxidation: Chemical characterization and anticoagulant activity. Carbohydrate Polymers, 197, 631-640. http://dx.doi.org/10.1016/j.carbpol.2018.06.041. PMid:30007656.

Carvalho, M. M., Noseda, M. D., Dallagnol, J. C. C., Ferreira, L. G., Ducatti, D. R. B., Gonçalves, A. G., Freitas, R. A., & Duarte, M. E. R. (2020). Conformational analysis of ulvans from Ulva fasciata and their anticoagulant polycarboxylic derivatives. International Journal of Biological Macromolecules, 162, 599-608. http:// dx.doi.org/10.1016/j.ijbiomac.2020.06.146. PMid:32565303.

Cassolato, J. E. F., Noseda, M. D., Pujol, C. A., Pellizzari, F. M., Damonte, E. B., & Duarte, M. E. R. (2008). Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohydrate Research, 343(18), 3085-3095. http://dx.doi.org/10.1016/j. carres.2008.09.014. PMid:18845298.

Chi, Y., Li, H., Fan, L., Du, C., Zhang, J., Guan, H., Wang, P., & Li, R. (2021). Metal-ion-binding properties of ulvan extracted from Ulva clathrata and structural characterization of its complexes. Carbohydrate Polymers, 272(5), 118508. http:// dx.doi.org/10.1016/j.carbpol.2021.118508. PMid:34420753.

Colodi, F. G., Ducatti, D. R. B., Noseda, M. D., de Carvalho, M. M., Winnischofer, S. M. B., & Duarte, M. E. R. (2021). Semi-synthesis of hybrid ulvan-kappa-carrabiose polysaccharides and evaluation of their cytotoxic and anticoagulant effects. Carbohydrate Polymers, 267, 118161. http://dx.doi.org/10.1016/j.carbpol.2021.118161. PMid:34119135.

Cunha, L., & Grenha, A. (2016). Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Marine Drugs, 14(3), 1-41. http://dx.doi.org/10.3390/md14030042. PMid:26927134.

Daemi, H., Mashayekhi, M., & Modaress, M. P. (2018). Facile fabrication of sulfated alginate electrospun nanofibers. Carbohydrate Polymers, 198, 481-485. http://dx.doi. org/10.1016/j.carbpol.2018.06.105. PMid:30093025.

Dodero, A., Vicini, S., Alloisio, M., & Castellano, M. (2019). Sodium alginate solutions: Correlation between rheological properties and spinnability. Journal of Materials Science, 54(10), 8034-8046. http://dx.doi.org/10.1007/s10853-019-03446-3.

Dodgson, K. S., & Price, R. G. (1962). A note on the determination of the ester sulphate content of sulphated polysaccharides. The Biochemical Journal, 84(1), 106-110. http://dx.doi.org/10.1042/ bj0840106. PMid:13886865.

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356. http:// dx.doi.org/10.1021/ac60111a017.

Filisetti-Cozzi, T. M. C. C., & Carpita, N. C. (1991). Measurement of uronic acids without interference from neutral sugars. Analytical Biochemistry, 197(1), 157-162. http://dx.doi.org/10.1016/0003- 2697(91)90372-Z. PMid:1952059.

Fong, H., Chun, I., & Reneker, D. H. (1999). Beaded nanofibers formed during electrospinning. Polymer, 40(16), 4585-4592. http://dx.doi.org/10.1016/S0032-3861(99)00068-3.

Gajaria, T. K., Bhatt, H., Khandelwal, A., Vasu, V. T., Reddy, C. R. K., & Lakshmi, D. S. (2020). A facile chemical cross- linking approach toward the fabrication of a sustainable porous ulvan scaffold. Bioactive and Compatible Polymerslymers, 35(4–5), 301-313. http://dx.doi.org/10.1177/0883911520939986.

Gibson, P., Schreuder-gibson, H., & Rivin, D. (2001). Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 187–188, 469-481. http://dx.doi.org/10.1016/S0927- 7757(01)00616-1.

Greiner, A., & Wendorff, J. H. (2007). Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition, 46(30), 5670-5703. http://dx.doi. org/10.1002/anie.200604646. PMid:17585397.

Hwang, P. A., Chen, H. Y., Chang, J. S., & Hsu, F. Y. (2023). Electrospun nanofiber composite mat based on ulvan for wound dressing applications. International Journal of Biological Macromolecules, 253(Pt 1), 126646. http://dx.doi.org/10.1016/j. ijbiomac.2023.126646. PMid:37659492.

Jaulneau, V., Lafitte, C., Jacquet, C., Fournier, S., Salamagne, S., Briand, X., Esquerré-Tugayé, M. T., & Dumas, B. (2010). Ulvan, a sulfated polysaccharide from green algae, activates plant immunity through the jasmonic acid signaling pathway. Journal of Biomedicine & Biotechnology, 2010, 525291. http://dx.doi. org/10.1155/2010/525291. PMid:20445752.

Jesus Raposo, M. F., Morais, A. M., & Costa de Morais, R. M. (2015). Marine polysaccharides from algae with potential biomedical applications. Marine Drugs, 13(5), 2967-3028. http://dx.doi. org/10.3390/md13052967. PMid:25988519.

Kamoun, E. A., Chen, X., Mohy Eldin, M. S., & Kenawy, E. S. (2014). Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications : A review of remarkably blended polymers. Arabian Journal of Chemistry, 8(1), 1-14. http://dx.doi.org/10.1016/j. arabjc.2014.07.005.

Kidgell, J. T., Carnachan, S. M., Magnusson, M., Lawton, R. J., Sims, I. M., Hinkley, S. F. R., De Nys, R., & Glasson, C. R. K. (2021). Are all ulvans equal? A comparative assessment of the chemical and gelling properties of ulvan from blade and filamentous Ulva. Carbohydrate Polymers, 264, 525291. http://dx.doi. org/10.1016/j.carbpol.2021.118010. PMid:33910714.

Kikionis, S., Ioannou, E., Toskas, G., & Roussis, V. (2015). Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO. Journal of Applied Polymer Science, 132(26), 1-5. http://dx.doi. org/10.1002/app.42153.

Kikionis, S., Koromvoki, M., Tagka, A., Polichronaki, E., Stratigos, A., Panagiotopoulos, A., Kyritsi, A., Karalis, V., Vitsos, A., Rallis, M., Ioannou, E., & Roussis, V. (2022). Ulvan-based nanofibrous patches enhance wound healing of skin trauma resulting from cryosurgical treatment of keloids. Marine Drugs, 20(9), 551. http://dx.doi. org/10.3390/md20090551. PMid:36135740.

Krimm, S., Liang, C. Y., & Sutherland, G. B. B. M. (1956). Infrared spectra of high polymers. Polyvinyl Alcohol., 22(101), 227-247. Lahaye, M. (1998). NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohydrate Research, 314(1–2), 1-12. http://dx.doi.org/10.1016/S0008-6215(98)00293- 6. PMid:10230036.

Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765-1774. http://dx.doi.org/10.1021/bm061185q. PMid:17458931.

Lahaye, M., Brunel, M., & Bonnin, E. (1997). Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohydrate Research, 304(3–4), 325-333. http://dx.doi.org/10.1016/S0008-6215(97)00270-X. PMid:9468631.

Lahaye, M., Inizan, F., & Vigoureux, J. (1998). NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohydrate Polymers, 36(2–3), 239-249. http:// dx.doi.org/10.1016/S0144-8617(98)00026-5.

Li, C., Ma, H., Venkateswaran, S., & Hsiao, B. S. (2020). Highly efficient and sustainable carboxylated cellulose filters for removal of cationic dyes/heavy metals ions. Chemical Engineering Journal, 389, 1-13. http://dx.doi.org/10.1016/j.cej.2019.123458.

Li, Y., Wang, X., Jiang, Y., Wang, J., Hwang, H., Yang, X., & Wang, P. (2019). Structure characterization of low molecular weight sulfate Ulva polysaccharide and the effect of its derivative on iron deficiency anemia. International Journal of Biological Macromolecules, 126, 747-754. http://dx.doi.org/10.1016/j. ijbiomac.2018.12.214. PMid:30584945.

Lowry, O. H., Rosebrough, N. J., Farr, L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265-275. http://dx.doi.org/10.1016/ S0021-9258(19)52451-6. PMid:14907713.

Lubambo, A. F., Ono, L., Drago, V., Mattoso, N., Varalda, J., Sierakowski, M. R., Sakakibara, C. N., Freitas, R. A., & Saul, C. K. (2015). Tuning Fe3O4 nanoparticle dispersion through pH in PVA/guar gum/electrospun membranes. Carbohydrate Polymers, 134, 775-783. http://dx.doi.org/10.1016/j.carbpol.2015.08.013. PMid:26428185.

Ma, X., Liu, X., Anderson, D. P., & Chang, P. R. (2015). Modification of porous starch for the adsorption of heavy metal ions from aqueous solution. Food Chemistry, 181, 133-139. http://dx.doi. org/10.1016/j.foodchem.2015.02.089. PMid:25794731.

Madany, M. A., Abdel-Kareem, M. S., Al-Oufy, A. K., Haroun, M., & Sheweita, S. A. (2021). The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication. International Journal of Biological Macromolecules, 177, 401-412. http://dx.doi. org/10.1016/j.ijbiomac.2021.02.047. PMid:33577821.

Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today. Chemistry, 8, 42-55. http://dx.doi.org/10.1016/j.mtchem.2018.02.004.

Mata, G. C., Morais, M. S., Oliveira, W. P., & Aguiar, M. L. (2022). Composition effects on the morphology of PVA/Chitosan electrospun nanofibers. Polymers, 14(22), 1-19. http://dx.doi. org/10.3390/polym14224856. PMid:36432987.

Mejía Agüero, L. E., Saul, C. K., De Freitas, R. A., Rabello Duarte, M. E., & Noseda, M. D. (2022). Electrospinning of marine polysaccharides: Processing and chemical aspects, challenges, and future prospects. Nanotechnology Reviews, 11(1), 3250-3280. http://dx.doi.org/10.1515/ntrev-2022-0491. Mirtič, J., Balažic, H., Zupančič, Š., & Kristl, J. (2019). Effect of solution composition variables on electrospun alginate nanofibers: Response surface analysis. Polymers, 11(4), 1-20. http://dx.doi. org/10.3390/polym11040692. PMid:30995752.

Morelli, A., & Chiellini, F. (2010). Ulvan as a new type of biomaterial from renewable resources: Functionalization and hydrogel preparation. Macromolecular Chemistry and Physics, 211(7), 821-832. http://dx.doi.org/10.1002/macp.200900562.

Panzavolta, S., Gioffrè, M., Focarete, M., Gualandi, C., Foroni, L., & Bigi, A. (2011). Electrospun gelatin nanofibers: Optimization of genipin cross-linking to preserve fiber morphology after exposure to water. Acta Biomaterialia, 7(4), 1702-1709. http://dx.doi. org/10.1016/j.actbio.2010.11.021. PMid:21095244.

Patil, S. V. (2008). Crosslinking of polysaccharides: Methods and applications. Pharmaceutical Reviews, 6(2), 1-8.

Pelipenko, J., Kocbek, P., Govedarica, B., Rošic, R., Baumgartner, S., & Kristl, J. (2013). The topography of electrospun nanofibers and its impact on the growth and mobility of keratinocytes. European Journal of Pharmaceutics and Biopharmaceutics, 84(2), 401-411. http://dx.doi.org/10.1016/j.ejpb.2012.09.009. PMid:23085581.

Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: A review. Macromolecular Materials and Engineering, 298(5), 504-520. http://dx.doi.org/10.1002/mame.201200290.

Petit, J.-M., & Zhu, X. X. (1996). 1H and 13C NMR study on local dynamics of poly(vinyl alcohol) in aqueous solutions. Macromolecules, 29(6), 2075-2081. http://dx.doi.org/10.1021/ ma951502d.

Phan, D. N., Khan, M. Q., Nguyen, N. T., Phan, T. T., Ullah, A., Khatri, M., Kien, N. N., & Kim, I. S. (2021). A review on the fabrication of several carbohydrate polymers into nanofibrous structures using electrospinning for removal of metal ions and dyes. Carbohydrate Polymers, 252, 117175. http://dx.doi. org/10.1016/j.carbpol.2020.117175. PMid:33183622.

Qi, X., Tong, X., Pan, W., Zeng, Q., You, S., & Shen, J. (2021). Recent advances in polysaccharide-based adsorbents for wastewater treatment. Journal of Cleaner Production, 315, 1-27. http:// dx.doi.org/10.1016/j.jclepro.2021.128221.

Ramakrishna, S., Fujihara, K., Teo, W. E., Yong, T., Ma, Z., & Ramaseshan, R. (2006). Electrospun nanofibers: Solving global issues. Materials Today, 9(3), 40-50. http://dx.doi.org/10.1016/ S1369-7021(06)71389-X.

Raveendran, S., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2013). Pharmaceutically versatile sulfated polysaccharide based bionano platforms. Nanomedicine; Nanotechnology, Biology, and Medicine, 9(5), 605-626. http://dx.doi.org/10.1016/j.nano.2012.12.006. PMid:23347895.

Riyajan, S. A., Chaiponban, S., & Tanbumrung, K. (2009). Investigation of the preparation and physical properties of a novel semiinterpenetrating polymer network based on epoxised NR and PVA using maleic acid as the crosslinking agent. Chemical Engineering Journal, 153(1–3), 199-205. http://dx.doi.org/10.1016/j. cej.2009.05.043.

Robic, A., Bertrand, D., Sassi, J. F., Lerat, Y., & Lahaye, M. (2009). Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. Journal of Applied Phycology, 21(4), 451-456. http://dx.doi.org/10.1007/s10811-008-9390-9.

Robic, A., Sassi, J. F., Dion, P., Lerat, Y., & Lahaye, M. (2009). Seasonal variability of physicochemical and rheological properties of ulvan in two Ulva species (Chlorophyta) from the Brittany coast. Journal of Phycology, 45(4), 962–973. https://doi.org/10.1111/j.1529- 8817.2009.00699.x

Rwei, S. P., & Huang, C. C. (2012). Electrospinning PVA solutionrheology and morphology analyses. Fibers and Polymers, 13(1), 44-50. http://dx.doi.org/10.1007/s12221-012-0044-9.

Rynkowska, E., Fatyeyeva, K., Marais, S., Kujawa, J., & Kujawski, W. (2019). Chemically and thermally crosslinked PVA-based membranes: Effect on swelling and transport behavior. Polymers, 11(11), 1-18. http://dx.doi.org/10.3390/polym11111799. PMid:31684000.

Santos, C., Silva, C. J., Büttel, Z., Guimarães, R., Pereira, S. B., Tamagnini, P., & Zille, A. (2014). Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohydrate Polymers, 99, 584-592. http://dx.doi.org/10.1016/j.carbpol.2013.09.008. PMid:24274547.

Saravanakumar, G., Jo, D., & Park, H. (2012). Polysaccharide-based nanoparticles: A versatile platform for drug delivery and biomedical imaging. Current Medicinal Chemistry, 19(19), 3212-3229. http:// dx.doi.org/10.2174/092986712800784658. PMid:22612705.

Sari-Chmayssem, N., Taha, S., Mawlawi, H., Guégan, J. P., Jeftić, J., & Benvegnu, T. (2019). Extracted ulvans from green algae Ulva linza of Lebanese origin and amphiphilic derivatives: Evaluation of their physico-chemical and rheological properties. Journal of Applied Phycology, 31(3), 1931-1946. http://dx.doi.org/10.1007/ s10811-018-1668-y.

Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews (Philadelphia, Pa.), 48(2), 317-352. http://dx.doi. org/10.1080/15583720802022182.

Shaohua, H., Fumitaka, H., & Odani, H. (1990). 1H NMR study of the solvation and gelation in a poly(vinyl alcohol)/DMSO-d6/H20 system. Bulletin of the Institute for Chemical Research, 67(5-6), 239-248. http://hdl.handle.net/2433/77317

Shen, W., & Hsieh, Y. (2014). Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking. Carbohydrate Polymers, 102, 893-900. http://dx.doi.org/10.1016/j. carbpol.2013.10.066. PMid:24507361.

Taylor, R. L., & Conrad, H. E. (1972). Stoichiometric depolymerization of polyuronides and glycosaminoglycuronans to monosaccharides following reduction of their carbodiimide-activated carboxyl groups. Biochemistry, 11(8), 1383-1388. http://dx.doi. org/10.1021/bi00758a009. PMid:4259914.

Terezaki, A., Kikionis, S., Ioannou, E., Sfiniadakis, I., Tziveleka, L. A., Vitsos, A., Roussis, V., & Rallis, M. (2022). Ulvan/gelatin-based nanofibrous patches as a promising treatment for burn wounds. Journal of Drug Delivery Science and Technology, 74, 103535. http://dx.doi.org/10.1016/j.jddst.2022.103535.

Thu, T., Thanh, T., Minh, T., Quach, T., Nguyen, T. N., Luong, D. V., Bui, M. L., & Van Tran, T. T. (2016). Structure and cytotoxic activity of Ulvan extracted from green seaweed Ulva lactuca. International Journal of Biological Macromolecules, 93(Pt A), 695-702. PMid:27637450.

Toskas, G., Hund, R. D., Laourine, E., Cherif, C., Smyrniotopoulos, V., & Roussis, V. (2011). Nanofibers based on polysaccharides from the green seaweed Ulva rigida. Carbohydrate Polymers, 84(3), 1093-1102. http://dx.doi.org/10.1016/j.carbpol.2010.12.075.

Tziveleka, L. A., Ioannou, E., & Roussis, V. (2019). Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydrate Polymers, 218, 355-370. http://dx.doi.org/10.1016/j.carbpol.2019.04.074. PMid:31221340.

Tziveleka, L. A., Pippa, N., Georgantea, P., Ioannou, E., Demetzos, C., & Roussis, V. (2018). Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme. International Journal of Biological Macromolecules, 118(Pt A), 69-75. http://dx.doi.org/10.1016/j.ijbiomac.2018.06.050. PMid:29906535.

van der Velden, G., & Beulen, J. (1982). 300-MHz 1H NMR and 25- MHz 13 C NMR investigations of sequence distributions in vinyl alcohol-vinyl acetate copolymers. Macromolecules, 15(4), 1071- 1075. http://dx.doi.org/10.1021/ma00232a022.

Vass, P., Szabó, E., Domokos, A., Hirsch, E., Galata, D., Farkas, B., Démuth, B., Andersen, S. K., Vigh, T., Verreck, G., Marosi, G., & Nagy, Z. K. (2020). Scale-up of electrospinning technology: Applications in the pharmaceutical industry. Nanomedicine and Nanobiotechnology, 12(4), e1611. PMid:31863572.

Vigani, B., Rossi, S., Milanesi, G., Bonferoni, M. C., Sandri, G., Bruni, G., & Ferrari, F. (2018). Electrospun alginate fibers: Mixing of two different poly(ethylene oxide) grades to improve fiber functional properties. Nanomaterials (Basel, Switzerland), 8(12), 1-17. http://dx.doi.org/10.3390/nano8120971. PMid:30477265.

Wani, S., Sofi, H. S., Majeed, S., & Sheikh, F. A. (2017). Recent trends in chitosan nanofibers: from tissue-engineering to environmental importance: A review. Material Science Research India, 14(2), 89-99. http://dx.doi.org/10.13005/msri/140202.

Webster, E. A., Murphy, A. J., Chudek, J. A., & Gadd, G. M. (1997). Metabolism-independent binding of toxic metals by Ulva lactuca: Cadmium binds to oxygen-containing groups, as determined by NMR. Biometals, 10(2), 105-117. http://dx.doi. org/10.1023/A:1018379106700.

Williams, G., Raimi-Abraham, B., & Luo, C. (2018). Electrospinning fundamentals. In G. R. Williams, C. J. Luo & B. R. Raimi-Abraham (Eds.), Nanofibers in drug delivery (pp. 24–59). UCL Press and JSTOR. /http://dx.doi.org/10.2307/j.ctv550dd1.6

Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, 119(8), 5298-5415. http://dx.doi.org/10.1021/ acs.chemrev.8b00593. PMid:30916938.

Zhang, Y., Zhu, P. C., & Edgren, D. (2010). Crosslinking reaction of poly(vinyl alcohol) with glyoxal. Journal of Polymer Research, 17(5), 725-730. http://dx.doi.org/10.1007/s10965-009-9362-z.


Submitted date:
07/05/2023

Accepted date:
11/03/2023

6570d1aea9539552887b7a93 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections