Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00152023
Biotechnology Research and Innovation Journal
Review article

The role of fruit vinegar in food science: perspectives among consumers, the scientific community and patent holders

Bruna Rafaela da Silva Monteiro Wanderley; Ana Letícia Andrade Ferreira; Itaciara Larroza Nunes; Renata Dias de Mello Castanho Amboni; Ana Carolina Moura de Sena Aquino; Carlise Beddin Fritzen-Freire

Downloads: 2
Views: 188

Abstract

Fruits are considered excellent sources of substrate for alcoholic and acetic fermentation and are used to produce food products with higher added value. The aim of this study was to map scientific publications and patents related to fruit vinegars. The methodology used consisted of an advanced search by combining keywords in the scientific databases Pubmed, Scopus, Springer, and Web of Science, while the patent documents were searched in the databases European Patent Office (Espacenet®), Instituto Nacional de Propriedade Industrial (Brazilian Institute of Industrial Property (INPI)), Patent Scope and United States Patent and Trademark Office (USPTO). The search resulted in the retrieval of 73 scientific articles and 293 patent documents. The number of scientific publications on the development of fruit vinegars lags the number of patent documents. Despite technological and scientific development, this present study shows that there is a demand for the development of new methods of vinegar production and points out market trends as well as the use of different raw materials, microorganisms, and enzymes in the production process. Another notable deficiency within this study pertains to the need for more comprehensive examinations of the bioactive properties exhibited by products crafted from various raw materials.

Supplementary material

Keywords

Acetic acid; Fermentation; Fruits; Intellectual property

References

Ahmed, J., Thakur, A., & Goyal, A. (2021). Emerging trends on the role of recombinant pectinolytic enzymes in industries- an overview. Biocatalysis and Agricultural Biotechnology, 38, 102200. http://dx.doi.org/10.1016/j.bcab.2021.102200.

Ameur, D., & Heleili, N. (2022). Comparative study on physicochemical and sensory properties of vinegar produced from apple varieties. Agricultural Science Digest, 42(5), 534-540. http://dx.doi.org/10.18805/ag.DF-401.

Aydogmus, O. (2022). Increasing returns and path dependence in knowledge creation and their effects on the dynamics of patent pools. Structural Change and Economic Dynamics, 62, 467-477. http://dx.doi.org/10.1016/j.strueco.2022.06.006.

Bakir, S., Toydemir, G., Boyacioglu, D., Beekwilder, J., & Capanoglu, E. (2016). Fruit antioxidants during vinegar processing: Changes in content and in vitro bio-accessibility. International Journal of Molecular Sciences, 17(10), 1658. http://dx.doi.org/10.3390/ ijms17101658. PMid:27690020.

Boondaeng, A., Kasemsumran, S., Ngowsuwan, K., Vaithanomsat, P., Apiwatanapiwat, W., Trakunjae, C., Janchai, P., Jungtheerapanich, S., & Niyomvong, N. (2022). Comparison of the chemical properties of pineapple vinegar and mixed pineapple and dragon fruit vinegar. Fermentation (Basel, Switzerland), 8(11), 597. http://dx.doi. org/10.3390/fermentation8110597.

Bouatenin, K. M. J. P., Kouamé, K. A., Gueu-Kehi, M. E., Djéni, N. T., & Djè, K. M. (2020). Organic production of vinegar from mango and papaya. Food Science & Nutrition, 9(1), 190-196. http://dx.doi.org/10.1002/fsn3.1981. PMid:33473283.

Budak, N. H., Özdemir, N., & Gökırmaklı, Ç. (2022). The changes of physicochemical properties, antioxidants, organic, and key volatile compounds associated with the flavor of peach (Prunus cerasus L. Batsch) vinegar during the fermentation process. Journal of Food Biochemistry, 46(6), e13978. http://dx.doi.org/10.1111/ jfbc.13978. PMid:34694011.

Cantadori, E., Brugnoli, M., Centola, M., Uffredi, E., Colonello, A., & Gullo, M. (2022). Date fruits as raw material for vinegar and non-alcoholic fermented beverages. Foods, 11(13), 1972. http://dx.doi.org/10.3390/foods11131972. PMid:35804787.

Cavdaroglu, C., & Ozen, B. (2022). Detection of vinegar adulteration with spirit vinegar and acetic acid using UV–visible and Fourier transform infrared spectroscopy. Food Chemistry, 379, 132150. http://dx.doi.org/10.1016/j.foodchem.2022.132150. PMid:35065489.

Chanivet, M., Durán-Guerrero, E., Barroso, C. G., & Castro, R. (2020). Suitability of alternative wood types other than American oak wood for the ageing of Sherry vinegar. Food Chemistry, 316, 126386. http://dx.doi.org/10.1016/j.foodchem.2020.126386. PMid:32066075.

Chen, G. L., Zheng, F. J., Lin, B., Lao, S. B., He, J., Huang, Z., Zeng, Y., Sun, J., & Verma, K. K. (2020). Phenolic and volatile compounds in the production of sugarcane vinegar. ACS Omega, 5(47), 30587-30595. http://dx.doi.org/10.1021/acsomega.0c04524. PMid:33283107.

Chen, G. L., Zheng, F. J., Sun, J., Li, Z. C., Lin, B., & Li, Y. R. (2015). Production and characteristics of high quality vinegar from sugarcane juice. Sugar Tech, 17(1), 89-93. http://dx.doi. org/10.1007/s12355-014-0352-z.

Chou, C. H., Liu, C. W., Yang, D. J., Wu, Y. H. S., & Chen, Y. C. (2015). Amino acid, mineral, and polyphenolic profiles of black vinegar, and its lipid lowering and antioxidant effects in vivo. Food Chemistry, 168, 63-69. http://dx.doi.org/10.1016/j. foodchem.2014.07.035. PMid:25172684.

Ciesarová, Z., Murkovic, M., Cejpek, K., Kreps, F., Tobolková, B., Koplík, R., Belajová, E., Kukurová, K., Daško, Ľ., Panovská, Z., Revenco, D., & Burčová, Z. (2020). Why is sea buckthorn (Hippophae rhamnoides L.) so exceptional? A review. Food Research International, 133, 109170. http://dx.doi.org/10.1016/j. foodres.2020.109170. PMid:32466930.

Costa, J. M., Ampese, L. C., Ziero, H. D. D., Sganzerla, W. G., & Forster-Carneiro, T. (2022). Apple pomace biorefinery: Integrated approaches for the production of bioenergy, biochemicals, and value-added products – An updated review. Journal of Environmental Chemical Engineering, 10(5), 108358. http://dx.doi.org/10.1016/j.jece.2022.108358.

Deconinck, N., Muylaert, K., Ivens, W., & Vandamme, D. (2018). Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Research, 31, 469-477. http://dx.doi.org/10.1016/j.algal.2018.01.016.

Diez-Ozaeta, I., & Astiazaran, O. J. (2022). Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. International Journal of Food Microbiology, 377, 109783. http://dx.doi.org/10.1016/j. ijfoodmicro.2022.109783. PMid:35728418.

Fernandes, A. C. F., de Souza, A. C., Ramos, C. L., Pereira, A. A., Schwan, R. F., & Dias, D. R. (2019). Sensorial, antioxidant and antimicrobial evaluation of vinegars from surpluses of physalis (Physalis pubescens L.) and red pitahaya (Hylocereus monacanthus). Journal of the Science of Food and Agriculture, 99(5), 2267-2274. http://dx.doi.org/10.1002/jsfa.9422. PMid:30328118.

GFAR. (2023). Guangxi Academy of Agricultural Sciences (GXAAS). https://www.gfar.net/content/guangxi-academy-agriculturalsciences- gxaas. Global Industry Analysts. (2022). Apple Cider Vinegar. https://www. marketresearch.com/Global-Industry-Analysts-v1039/Apple- Cider-Vinegar-33901966/

GoodIP IQ. (2023). Wuhu Sanshan District Green Food IND ASS innovation strategy - GoodIP. https://goodip.io/iq/assignee/ wuhu-sanshan-district-green-food-ind-ass

Gullo, M., Verzelloni, E., & Canonico, M. (2014). Aerobic submerged fermentation by acetic acid bacteria for vinegar production: Process and biotechnological aspects. Process Biochemistry, 49(10), 1571-1579. http://dx.doi.org/10.1016/j. procbio.2014.07.003.

Guo, J., Yan, Y., Wang, M., Wu, Y., Liu, S. Q., Chen, D., & Lu, Y. (2018). Effects of enzymatic hydrolysis on the chemical constituents in jujube alcoholic beverage fermented with Torulaspora delbrueckii. LWT, 97, 617-623. http://dx.doi.org/10.1016/j.lwt.2018.07.051.

Hans, M. (1938). Method of manufacturing fruit vinegar (Patent No. GB493224A). Espacenet. https://worldwide. espacenet.com/patent/search/family/003675183/publication/ GB493224A?q=pn%3DGB493224A

Hans, M. (1940). Fruit vinegar (Patent No. US2224059A). Espacenet. https://worldwide.espacenet.com/patent/search/ family/003690136/publication/US2224059A?q=US2224059A

Ho, C. W., Lazim, A. M., Fazry, S., Zaki, U. K. H. H., & Lim, S. J. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221, 1621-1630. http:// dx.doi.org/10.1016/j.foodchem.2016.10.128. PMid:27979138.

Hu, Y., Yan, H., Yin, Y., Li, X., Li, H., & Ren, D. F. (2022). Effect of microwave-assisted hydrothermal extraction on the bioactive compounds and antioxidant activities of dateplum persimmon juice and vinegar. LWT, 154, 112642. http://dx.doi.org/10.1016/j. lwt.2021.112642.

Jannah, S. N., Purwantisari, S., Handayani, D., Hartati, I., & Yulianto, M. E. (2020). Production of coco-vinegar in a bubble biofermentor. Journal of Physics: Conference Series, 1524(1), 012066. http://dx.doi.org/10.1088/1742-6596/1524/1/012066.

Jiang, X., Lu, Y., & Liu, S. Q. (2020). Effects of pectinase treatment on the physicochemical and oenological properties of red dragon fruit wine fermented with Torulaspora delbrueckii. LWT, 132, 109929. http://dx.doi.org/10.1016/j.lwt.2020.109929.

Jiménez-Sánchez, M., Durán-Guerrero, E., Rodríguez-Dodero, M. C., Barroso, C. G., & Castro, R. (2020). Use of ultrasound at a pilot scale to accelerate the ageing of sherry vinegar. Ultrasonics Sonochemistry, 69, 105244. http://dx.doi.org/10.1016/j. ultsonch.2020.105244. PMid:32623345.

John, J., Kaimal, K. K. S., Smith, M. L., Rahman, P. K. S. M., & Chellam, P. V. (2020). Advances in upstream and downstream strategies of pectinase bioprocessing: A review. International Journal of Biological Macromolecules, 162, 1086-1099. http://dx.doi.org/10.1016/j.ijbiomac.2020.06.224. PMid:32599230.

Kim, J. H., Cho, H. D., Won, Y. S., Hong, S. M., Moon, K. D., & Seo, K. (2020). Anti-fatigue effect of prunus mume vinegar in highintensity exercised rats. Nutrients, 12(5), 1205. http://dx.doi. org/10.3390/nu12051205. PMid:32344799.

Li, Z. C., Chen, G. L., Zheng, F. J., Sun, J., Lin, B., Khoo, H. E., & Fang, X. C. (2020a). Effects of sugarcane vinegar supplementation on oxidative stress and weight reduction in hyperlipidaemic mice. International Food Research Journal, 27(6), 1121-1131.

Li, Z., Chen, G., Zheng, F., Sun, J., Lin, B., & Fang, X. (2020b). Effect of sugarcane vinegar on lipid metabolism and redox state of mice fed high-fat diet. Shipin Kexue, 41(9), 86. http://dx.doi. org/10.7506/SPKX1002-6630-20190422-294.

Liu, R. C., Li, R., Wang, Y., & Jiang, Z. T. (2022). Analysis of volatile odor compounds and aroma properties of European vinegar by the ultra-fast gas chromatographic electronic nose. Journal of Food Composition and Analysis, 112, 104673. http://dx.doi. org/10.1016/j.jfca.2022.104673.

Ma, X., Yuan, H., Wang, H., & Yu, H. (2021). Coproduction of bacterial cellulose and pear vinegar by fermentation of pear peel and pomace. Bioprocess and Biosystems Engineering, 44(11), 2231-2244. http://dx.doi.org/10.1007/s00449-021-02599-3. PMid:34165619.

Malheiros, B. A., Spers, E. E., Silva, H. M. R., & Contreras Castillo, C. J. (2022). Southeast brazilian consumers’ involvement and willingness to pay for quality cues in fresh and cooked beef. Journal of Food Products Marketing, 28(6), 276-293. http://dx.doi.org/10.1080/10454446.2022.2129539.

Martín, M. C., DellÓlio, G. A. G., Villar, M. A., Morata, V. I., López, O. V., & Ninago, M. D. (2020). Preparation and characterization of an immobilized enological pectinase on agar-alginate beads. Macromolecular Symposia, 394(1), 1900208. http://dx.doi. org/10.1002/masy.201900208.

Minnaar, P., Jolly, N., Beukes, L., & Benito, S. (2021). Effect of alcoholic and acetous fermentations on the phenolic acids of Keiapple (Dovyalis caffra L.) fruit. Journal of the Science of Food and Agriculture, 101(10), 4315-4320. http://dx.doi.org/10.1002/ jsfa.11071. PMid:33417242.

Mitrou, P., Petsiou, E., Papakonstantinou, E., Maratou, E., Lambadiari, V., Dimitriadis, P., Spanoudi, F., Raptis, S. A., & Dimitriadis, G. (2015). Vinegar consumption increases insulin-stimulated glucose uptake by the forearm muscle in humans with type 2 diabetes. Journal of Diabetes Research, 2015, 175204. http://dx.doi. org/10.1155/2015/175204. PMid:26064976.

Nie, S. P., Huang, J. G., Zhang, Y. N., Hu, J. L., Wang, S., Shen, M. Y., Li, C., Marcone, M. F., & Xie, M. Y. (2013). Analysis of furan in heat-processed foods in China by automated headspace gas chromatography-mass spectrometry (HS-GC-MS). Food Control, 30(1), 62-68. http://dx.doi.org/10.1016/j.foodcont.2012.07.020.

Nie, Z., Zheng, Y., Xie, S., Zhang, X., Song, J., Xia, M., & Wang, M. (2017). Unraveling the correlation between microbiota succession and metabolite changes in traditional Shanxi aged vinegar. Scientific Reports, 7(1), 9240. http://dx.doi.org/10.1038/s41598- 017-09850-6. PMid:28835624.

O’Hagan, L. A. (2023). From fatigue fighter to heartburn healer: The evolving marketing of a functional beverage in sweden. Journal of Food Products Marketing, 29(1), 19-40. http://dx.doi.org/10 .1080/10454446.2023.2174395.

Otero, D. M., Rocha Lemos Mendes, G., Silva Lucas, A. J., Christ- Ribeiro, A., & Ribeiro, C. D. F. (2022). Exploring alternative protein sources: Evidence from patents and articles focusing on food markets. Food Chemistry, 394, 133486. http://dx.doi. org/10.1016/j.foodchem.2022.133486. PMid:35759839.

Ousaaid, D., Mechchate, H., Laaroussi, H., Hano, C., Bakour, M., El Ghouizi, A., Conte, R., Lyoussi, B., & El Arabi, I. (2021). Fruits vinegar: Quality characteristics, phytochemistry, and functionality. Molecules (Basel, Switzerland), 27(1), 222. http://dx.doi. org/10.3390/molecules27010222. PMid:35011451.

Özdemir, G. B., Özdemir, N., Ertekin-Filiz, B., Gökırmaklı, Ç., Kök-Taş, T., & Budak, N. H. (2022a). Volatile aroma compounds and bioactive compounds of hawthorn vinegar produced from hawthorn fruit (Crataegus tanacetifolia (lam.) pers.). Journal of Food Biochemistry, 46(3), e13676. http://dx.doi.org/10.1111/ jfbc.13676. PMid:33650149.

Özdemir, N., Budak, N. H., Filiz, B. E., & Özer, E. (2022b). Occurrences and changes in aroma-associated volatile compound profiles and prominent bioactive compounds at different stages of persimmon vinegar production process. Journal of Food Processing and Preservation, 46(11), e17048. http://dx.doi.org/10.1111/ jfpp.17048.

Özdemir, N., Pashazadeh, H., Zannou, O., & Koca, I. (2022c). Phytochemical content, and antioxidant activity, and volatile compounds associated with the aromatic property, of the vinegar produced from rosehip fruit (Rosa canina L.). LWT, 154, 112716. https://doi.org/10.1016/J.LWT.2021.112716

Özen, M., Özdemir, N., Ertekin Filiz, B., Budak, N. H., & Kök-Taş, T. (2020). Sour cherry (Prunus cerasus L.) vinegars produced from fresh fruit or juice concentrate: Bioactive compounds, volatile aroma compounds and antioxidant capacities. Food Chemistry, 309, 125664. http://dx.doi.org/10.1016/j.foodchem.2019.125664. PMid:31699553.

Öztürk, M., Yalçın, O., Tekgündüz, C., & Tekgündüz, E. (2022). Origin of the effects of optical spectrum and flow behaviour in determining the quality of dry fig, jujube, pomegranate, date palm and concentrated grape vinegars. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 270, 120792. http://dx.doi.org/10.1016/j.saa.2021.120792. PMid:34990917.

Pereira, P. J. E. (1999). Processo para fabricação de vinho licoroso, seco, suave, espumante, vinagre, geléia, licor e extratos derivados de jamelão (Patent No. PI97037273B1). INPI.

Perumpuli, P., & Dilrukshi, D. (2022). Vinegar: a functional ingredient for human health. International Food Research Journal, 29(5), 959-974. http://dx.doi.org/10.47836/ifrj.29.5.01.

Qin, Z., Yu, S., Chen, J., & Zhou, J. (2022). Dehydrogenases of acetic acid bacteria. Biotechnology Advances, 54, 107863. http://dx.doi.org/10.1016/j.biotechadv.2021.107863. PMid:34793881.

Roda, A., De Faveri, D. M., Dordoni, R., & Lambri, M. (2014). Vinegar production from pineapple wastes-preliminary saccharification trials. Chemical Engineering Transactions, 37, 607-612. http://dx.doi.org/10.3303/CET1437102.

Rudra, S. G., Singh, S., Harish, H., Bollinedi, H., Singh, K. N., Nain, L., Singh, S., & Awasthi, O. P. (2022). Anthocyanin-rich fruit vinegar from Grewia and Cantaloupe fruit blends. International Journal of Food Science & Technology, 57(7), 4566-4574. http://dx.doi.org/10.1111/ijfs.15794.

Santos, R. T., Da Costa Castro, C. D. P., Rybka, A. C. P., Biasoto, A. C. T., & Honorato da Silva, F. L. (2021). Estudo prospectivo de documentos de patentes relacionados à produção de bebidas alcoólicas fermentadas de frutas. Cadernos de Prospecção, 14(1), 242. http://dx.doi.org/10.9771/cp.v14i1.30515.

Severo, I. A., dos Santos, A. M., Deprá, M. C., Barin, J. S., & Jacob-Lopes, E. (2021). Microalgae photobioreactors integrated into combustion processes: A patent-based analysis to map technological trends. Algal Research, 60, 102529. http://dx.doi. org/10.1016/j.algal.2021.102529.

Shishehbor, F., Mansoori, A., & Shirani, F. (2017). Vinegar consumption can attenuate postprandial glucose and insulin responses; a systematic review and meta-analysis of clinical trials. Diabetes Research and Clinical Practice, 127, 1-9. http://dx.doi. org/10.1016/j.diabres.2017.01.021. PMid:28292654.

Shrestha, S., Rahman, M. S., & Qin, W. (2021). New insights in pectinase production development and industrial applications. Applied Microbiology and Biotechnology, 105(24), 9069-9087. http://dx.doi.org/10.1007/s00253-021-11705-0. PMid:34846574.

Siqueira, A. E. B., Silva, E. P., Santiago, E. S., Teixeira, É. T. L. B., Mesquita, J. A., de Cristo, P. F. R. F., de Ávila, M. C., Nascimento, E., Spinosa, W. A., & Sousa, D. A. (2021). Elaboration of mangaba vinegar by semi-solid fermentation combined with enzymatic activity: Chemical characterization and sensory evaluation. Ciência Rural, 51(10), e20200638. http://dx.doi.org/10.1590/0103- 8478cr20200638.

Song, J., Zhang, J., Su, Y., Zhang, X., Li, J., Tu, L., Yu, J., Zheng, Y., & Wang, M. (2020). Monascus vinegar-mediated alternation of gut microbiota and its correlation with lipid metabolism and inflammation in hyperlipidemic rats. Journal of Functional Foods, 74, 104152. http://dx.doi.org/10.1016/j. jff.2020.104152.

Song, N. E., Cho, S. H., & Baik, S. H. (2016). Microbial community, and biochemical and physiological properties of Korean traditional black raspberry (Robus coreanus Miquel) vinegar. Journal of the Science of Food and Agriculture, 96(11), 3723-3730. http://dx.doi.org/10.1002/jsfa.7560. PMid:26676481.

Takahashi, T., Ichita, J., & Kato, Y. (2011). Production of vinegar from apple pomace and its physiological function. Nippon Shokuhin Kagaku Kogaku Kaishi, 58(2), 37-42. http://dx.doi.org/10.3136/ nskkk.58.37.

Taweekasemsombut, S., Tinoi, J., Mungkornasawakul, P., & Chandet, N. (2021). Thai Rice Vinegars: Production and Biological Properties. Applied Sciences (Basel, Switzerland), 11(13), 5929. http://dx.doi.org/10.3390/app11135929.

Tomohiko, F. (1986). Production of food vinegar (Patent No. JPS61254180A). Espacenet. https://worldwide.espacenet. com/patent/search/family/014119977/publication/ JPS61254180A?q=JPS61254180A

Vikas Bhat, S., Akhtar, R., & Amin, T. (2014). An overview on the biological production of vinegar. International Journal of Fermented Foods, 3(2), 139-155. http://dx.doi.org/10.5958/2321- 712X.2014.01315.5.

Wang, D., Wang, M., Cao, L., Wang, X., Sun, J., Yuan, J., & Gu, S. (2022). Changes and correlation of microorganism and flavor substances during persimmon vinegar fermentation. Food Bioscience, 46, 101565. http://dx.doi.org/10.1016/j.fbio.2022.101565.

WIPO. (2020a). Global innovation index 2020 - Brazil. https://www. wipo.int/edocs/pubdocs/en/wipo_pub_gii_2020/br.pdf

WIPO. (2020b). Global innovation index 2020 - China. https://www. wipo.int/edocs/pubdocs/en/wipo_pub_gii_2020/cn.pdf

WIPO. (2020c). Global innovation index 2020 - Republic of Korea. https://www.wipo.int/edocs/pubdocs/en/wipo_pub_gii_2020/kr.pdf

Xia, T., Duan, W., Zhang, Z., Li, S., Zhao, Y., Geng, B., Zheng, Y., Yu, J., & Wang, M. (2021). Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcoholinduced inflammation in mice. Food Research International, 140, 110064. http://dx.doi.org/10.1016/j.foodres.2020.110064. PMid:33648287.

Xia, T., Zhang, B., Duan, W., Li, Y., Zhang, J., Song, J., Zheng, Y., & Wang, M. (2019). Hepatoprotective efficacy of Shanxi aged vinegar extract against oxidative damage in vitro and in vivo. Journal of Functional Foods, 60, 103448. http://dx.doi.org/10.1016/j. jff.2019.103448.

Xia, T., Zhang, B., Duan, W., Zhang, J., & Wang, M. (2020). Nutrients and bioactive components from vinegar: A fermented and functional food. Journal of Functional Foods, 64, 103681. http://dx.doi.org/10.1016/j.jff.2019.103681.

Yetiman, A. E., & Kesmen, Z. (2015). Identification of acetic acid bacteria in traditionally produced vinegar and mother of vinegar by using different molecular techniques. International Journal of Food Microbiology, 204, 9-16. http://dx.doi.org/10.1016/j. ijfoodmicro.2015.03.013. PMid:25828705.

Zhai, X., Wang, X., Wang, X., Zhang, H., Ji, Y., Ren, D., & Lu, J. (2021). An efficient method using ultrasound to accelerate aging in crabapple (Malus asiatica) vinegar produced from fresh fruit and its influencing mechanism investigation. Ultrasonics Sonochemistry, 72, 105464. http://dx.doi.org/10.1016/j.ultsonch.2021.105464. PMid:33493927.

Zhang, S., Bilal, M., Zdarta, J., Cui, J., Kumar, A., Franco, M., Ferreira, L. F. R., & Iqbal, H. M. N. (2021). Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Research International, 140, 109979. http://dx.doi.org/10.1016/j. foodres.2020.109979. PMid:33648214.

Zou, B., Li, T., Xu, Y., Yu, Y., & Wu, J. (2022). Structural identification and antioxidant potency evaluation of pomelo vinegar polyphenols. Food Bioscience, 47, 101674. http://dx.doi.org/10.1016/j. fbio.2022.101674.

Zou, B., Wu, J., Yu, Y., Xiao, G., & Xu, Y. (2017). Evolution of the antioxidant capacity and phenolic contents of persimmon during fermentation. Food Science and Biotechnology, 26(3), 563-571. http://dx.doi.org/10.1007/s10068-017-0099-x. PMid:30263580.


Submitted date:
06/19/2023

Accepted date:
09/04/2023

65771ceca953953ee92a3393 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections