Environmental bacterial species with antimicrobial potential against ESKAPEE pathogens: a scoping review
Andreia Bueno da Silva; Eduardo Santos Biasi; Bruno Paulo Rodrigues Lustosa; Mariana Vieira Porsani; Guilherme Fonseca Reis; Géssica Slompo de Deus; Juliana Thaler; Lorena Carolina Peña; Arandi Ginane Bezerra Jr; Luciano Aparecido Panagio; Marconi Rodrigues de Farias; Ida Chapaval Pimentel; Keite da Silva Nogueira; Vânia Aparecida Vicente
Abstract
Antimicrobial resistance poses a serious threat to global health, complicating the treatment of infectious diseases and increasing mortality rates and healthcare expenditures. Although antibiotic use in some areas has decreased, multidrug-resistant bacteria, especially those among significant pathogens such as ESKAPEE, are a major global challenge. The aim of this review was to gather data on bacterial genera from various environmental sources that synthesize compounds with antimicrobial activity against pathogens belonging to the ESKAPEE group. The MEDLINE/PubMed, Scopus, and Science Direct databases were searched for articles published from 2001 to 2023. The included publications were carefully selected based on their relevance to the topic and methodologies used. In total, 50 articles were reviewed and 20 bacterial genera with significant antimicrobial activity were identified, with Streptomyces spp. being the most prevalent. The bacteria were isolated from different environments, including marine sediments, endophytes, and extreme environments. The evaluation of bacterial extracts against ESKAPEE pathogens revealed considerable inhibition capacities, particularly for Streptomyces spp., Bacillus spp. and Pseudomonas spp. However, no single extract was effective in inhibiting all target pathogens. Furthermore, 33(33/64) bacterial extracts from the 50 studies included in the review characterized, at least partially, the secondary metabolites responsible for the observed antibacterial potential. Twenty patents filed for compounds characterized with antibacterial activity against ESKAPEE bacteria were found. And in the search for marketed products, a total of 22 compounds were found. The discussion highlights the marine environment as a rich source of antimicrobial-producing bacteria due to its unique ecological conditions. Streptomyces spp. remains promising candidates for antibiotic discovery, due to a diverse range of antimicrobial compounds. In conclusion, this review highlights the strong ability of bacteria from a wide range of environments to combat antimicrobial resistance. By elucidating antimicrobial activity and compound characterization, this review provides valuable insights into antibiotic research, crucial to managing the growing threat of multidrug-resistant pathogens.
Keywords
References
Adams, R. A., Leon, G., Miller, N. M., Reyes, S. P., Thantrong, C. H., Thokkadam, A. M., Lemma, A. S., Sivaloganathan, D. M., Wan, X., & Brynildsen, M. P. (2021). Rifamycin antibiotics and the mechanisms of their failure. The Journal of Antibiotics, 74(11), 786-798. http://doi.org/10.1038/s41429-021-00462-x. PMid:34400805.
Al-Ansari, M., Kalaiyarasi, M., Almalki, M. A., & Vijayaraghavan, P. (2020). Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. Journal of King Saud University. Science, 32(3), 1993-1998. http:// doi.org/10.1016/j.jksus.2020.02.005.
Al-Daghistani, H. I., Mohammad, B. T., Kurniawan, T. A., Singh, D., Rabadi, A. D., Xue, W., Avtar, R., Othman, M. H., & Shirazian, S. (2021). Characterization, and applications of Thermomonas hydrothermalis isolated from Jordan’s hot springs for biotechnological and medical purposes. Process Biochemistry, 104, 171-181. http://doi.org/10.1016/j.procbio.2021.03.010.
Al-Dhabi, N. A., Mohammed Ghilan, A. K., Esmail, G. A., Valan Arasu, M., Duraipandiyan, V., & Ponmurugan, K. (2019). Bioactivity assessment of the Saudi Arabian Marine Streptomyces sp. Al-Dhabi-90, metabolic profiling, and it’s in vitro inhibitory property against multidrug-resistant and extended-spectrum beta-lactamase clinical bacterial pathogens. Journal of Infection and Public Health, 12(4), 549-556. http://doi.org/10.1016/j. jiph.2019.01.065. PMid:30755364.
Alseekh, S., Aharoni, A., Brotman, Y., Contrepois, K., D’Auria, J., Ewald, J., C Ewald, J., Fraser, P. D., Giavalisco, P., Hall, R. D., Heinemann, M., Link, H., Luo, J., Neumann, S., Nielsen, J., Perez de Souza, L., Saito, K., Sauer, U., Schroeder, F. C., Schuster, S., Siuzdak, G., Skirycz, A., Sumner, L. W., Snyder, M. P., Tang, H., Tohge, T., Wang, Y., Wen, W., Wu, S., Xu, G., Zamboni, N., & Fernie, A. R. (2021). Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nature Methods, 18(7), 747-756. http://doi.org/10.1038/s41592- 021-01197-1. PMid:34239102.
Alshaibani, M., Jalil, J., Sidik, N., Edrada-Ebel, R., & Zin, N. M. (2016). Isolation, and characterization of cyclo-(tryptophanylprolyl) and chloramphenicol from Streptomyces sp. SUK 25 with anti-methicillin-resistant Staphylococcus aureus activity. Drug Design, Development and Therapy, 10, 1817-1827. http://doi. org/10.2147/DDDT.S101212. PMid:27330275.
Arivuselvam, R., Dera, A. A., Parween Ali, S., Alraey, Y., Saif, A., Hani, U., Arumugam Ramakrishnan, S., Azeeze, M. S., Rajeshkumar, R., Susil, A., Harindranath, H., & Kumar, B. R. P. (2023). Isolation, identification, and antibacterial properties of prodigiosin, a bioactive product produced by a new Serratia marcescens JSSCPM1 strain: Exploring the biosynthetic gene clusters of serratia species for biological applications. Antibiotics, 12(9), 1466. http://doi. org/10.3390/antibiotics12091466. PMid:37760761.
Arumugam, T., Senthil Kumar, P., & Gopinath, K. P. (2017). HPTLC fingerprint profile, in vitro antioxidant and evaluation of antimicrobial compound produced from Brevibacillus brevis -EGS9 against multidrug resistant Staphylococcus aureus. Microbial Pathogenesis, 102, 166-172. http://doi.org/10.1016/j. micpath.2016.12.002. PMid:27939872.
Asagabaldan, M. A., Ayuningrum, D., Kristiana, R., Sabdono, A., Radjasa, O. K., & Trianto, A. (2017). Identification and antibacterial activity of bacteria isolated from marine sponge Haliclona (Reniera) sp. against multidrug-resistant human pathogen. IOP Conference Series. Earth and Environmental Science, 55, 012019. http://doi.org/10.1088/1755-1315/55/1/012019.
Assad, B. M., Savi, D. C., Biscaia, S. M., Mayrhofer, B. F., Iantas, J., Mews, M., Oliveira, J. C., Trindade, E. S., & Glienke, C. (2021). Endophytic actinobacteria of Hymenachne amplexicaulis from the Brazilian Pantanal wetland produce compounds with antibacterial and antitumor activities. Microbiological Research, 248, 126768. http://doi.org/10.1016/j.micres.2021.126768. PMid:33873141.
Back, C. R., Stennett, H. L., Williams, S. E., Wang, L., Ojeda Gomez, J., Abdulle, O. M., Duffy, T., Neal, C., Mantell, J., Jepson, M. A., Hendry, K. R., Powell, D., Stach, J. E., Essex-Lopresti, A. E., Willis, C. L., Curnow, P., & Race, P. R. (2021). A New Micromonospora strain with antibiotic activity isolated from the microbiome of a mid-atlantic deep-sea sponge. Marine Drugs, 19(2), 105. http:// doi.org/10.3390/md19020105. PMid:33670308.
Barzkar, N., Sukhikh, S., & Babich, O. (2024). Study of marine microorganism metabolites: New resources for bioactive natural products. Frontiers in Microbiology, 14, 1285902. http://doi. org/10.3389/fmicb.2023.1285902. PMid:38260902.
Canuto, G., Costa, J. L., Cruz, P., Souza, A., Faccio, A., Klassen, A., Rodrigues, K., & Tavares, M. (2018). Metabolomics: Definitions, state-of-the-art and representative applications. Química Nova, 41(1), 75-91. http://doi.org/10.21577/0100-4042.20170134.
Chakraborty, K., Francis, A., Chakraborty, R. D., Asharaf, S., Kizhakkekalam, V. K., & Paulose, S. K. (2021a). Marine macroalga-associated heterotrophic Bacillus velezensis: A novel antimicrobial agent with siderophore mode of action against drug-resistant nosocomial pathogens. Archives of Microbiology, 203(9), 5561-5575. http://doi.org/10.1007/s00203-021-02513-1. PMid:34436634.
Chakraborty, K., Kizhakkekalam, V. K., Joy, M., & Chakraborty, R. D. (2021b). Novel amylomacins from seaweed-associated Bacillus amyloliquefaciens as prospective antimicrobial leads attenuating resistant bacteria. World Journal of Microbiology & Biotechnology, 37(12), 200. http://doi.org/10.1007/s11274- 021-03161-9. PMid:34664128.
Chakraborty, K., Kizhakkekalam, V. K., & Joy, M. (2022). Polyketidederived macrobrevins from marine macroalga-associated Bacillus amyloliquefaciens as promising antibacterial agents against pathogens causing nosocomial infections. Phytochemistry, 193, 112983. http://doi.org/10.1016/j.phytochem.2021.112983. PMid:34695706.
Chandrakar, S., & Gupta, A. K. (2019). Actinomycin-producing endophytic Streptomyces parvulus associated with root of Aloe vera and optimization of conditions for antibiotic production. Probiotics and Antimicrobial Proteins, 11(3), 1055-1069. http:// doi.org/10.1007/s12602-018-9451-6. PMid:30058033.
Chanthasena, P., & Nantapong, N. (2016). Biodiversity of antimicrobial-producing actinomycetes strains isolated from dry dipterocarp forest soil in Northeast Thailand. Brazilian Archives of Biology and Technology, 59, e16150674. http://doi. org/10.1590/1678-4324-2016150674.
Contreras-Castro, L., Martínez-García, S., Cancino-Diaz, J. C., Maldonado, L. A., Hernández-Guerrero, C. J., Martínez-Díaz, S. F., GonzÁlez-Acosta, B., & Quintana, E. T. (2020). Marine sediment recovered Salinispora sp. inhibits the growth of emerging bacterial pathogens and other multi-drug-resistant bacteria. Polish Journal of Microbiology, 69(3), 321-330. http://doi.org/10.33073/pjm2020-035. PMid:33574861.
De La Hoz-Romo, M. C., Díaz, L., & Villamil, L. (2022). Marine Actinobacteria a new source of antibacterial metabolites to treat acne vulgaris disease: A systematic literature review. Antibiotics, 11(7), 965. http://doi.org/10.3390/antibiotics11070965. PMid:35884220.
Delfino, V., Calonico, C., Nostro, A. L., Castronovo, L. M., Duca, S. D., Chioccioli, S., Coppini, E., Fibbi, D., Vassallo, A., & Fani, R. (2021). Antibacterial activity of bacteria isolated from Phragmites australis against multidrug-resistant human pathogens. Future Microbiology, 16(5), 291-303. http://doi.org/10.2217/fmb-2020- 0244. PMid:33709774.
Efimenko, T. A., Efremenkova, O. V., Demkina, E. V., Petrova, M. A., Sumarukova, I. G., Vasilyeva, B. F., & El’-Registan, G. I. (2018). Bacteria isolated from Antarctic permafrost are efficient antibiotic producers. Microbiology, 87(5), 692-698. http://doi. org/10.1134/S0026261718050089.
Engelhardt, K., Degnes, K. F., Kemmler, M., Bredholt, H., Fjærvik, E., Klinkenberg, G., Sletta, H., Ellingsen, T. E., & Zotchev, S. B. (2010). Production of a new thiopeptide antibiotic, TP-1161, by a marine Nocardiopsis species. Applied and Environmental Microbiology, 76(15), 4969-4976. http://doi.org/10.1128/ AEM.00741-10. PMid:20562278.
Finocchiaro, G. (2020). Actinomycin D: A new opening for an old drug. Neuro-Oncology, 22(9), 1235-1236. http://doi.org/10.1093/ neuonc/noaa172. PMid:32678904.
Flora, D. O., Adeyemi, A. I., & George, W. P. (2015). Hyoscyamineproducing marine Actinomycetes from lagos lagoon sediment. Asian Pacific Journal of Tropical Biomedicine, 5(3), 196-201. http://doi.org/10.1016/S2221-1691(15)30006-X.
Flores Clavo, R., Ruiz Quiñones, N., Hernández-Tasco, A. J., José Salvador, M., Tasca Gois Ruiz, A. L., Oliveira Braga, L. E., Henrique Costa, J., Pacheco Fill, T., Arce Gil, Z. L., Serquen Lopez, L. M., & Fantinatti Garboggini, F. (2021). Evaluation of antimicrobial and antiproliferative activities of Actinobacteria isolated from the saline lagoons of northwestern Peru. PLoS One, 16(9), e0240946. http://doi.org/10.1371/journal.pone.0240946. PMid:34495972.
Garcia-Gonzalez, E., Müller, S., Hertlein, G., Heid, N., Süssmuth, R. D., & Genersch, E. (2014). Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honeybee pathogenic bacterium Paenibacillus larvae. MicrobiologyOpen, 3(5), 642-656. http://doi.org/10.1002/mbo3.195. PMid:25044543.
Ghashghaei, S., Etemadifar, Z., & Mofid, M. R. (2018). Studies on the kinetics of antibacterial agent production in two actinomycete strains, F9 and Is5, isolated from soil samples, in Iran. Iranian Journal of Science and Technology. Transaction A, Science, 42(3), 1139-1147. http://doi.org/10.1007/s40995-017-0171-7.
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimized digital transparency and Open Synthesis. Campbell Systematic Reviews, 18, e1230. http://doi.org/10.1002/cl2.1230.
Hamedi, J., Imanparast, S., & Mohammadipanah, F. (2015). Molecular, chemical, and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites. Iranian Journal of Microbiology, 7(1), 23-30. PMid:26644870.
Ibrahim, N., Usup, G., & Ahmad, A. (2018). Antimicrobial activity screening of marine bacteria isolated from Port Klang and Port Tanjung Pelepas. AIP Conference Proceedings, 1940, 020077. http://doi.org/10.1063/1.5027992.
Ibrahimi, M., Korichi, W., Hafidi, M., Lemee, L., Ouhdouch, Y., & Loqman, S. (2020). Marine Actinobacteria: Screening for predation leads to the discovery of potential new drugs against multidrugresistant bacteria. Antibiotics, 9(2), 91. http://doi.org/10.3390/ antibiotics9020091. PMid:32092889.
Jee, Y., Carlson, J., Rafai, E., Musonda, K., Huong, T. T., Daza, P., Sattayawuthipong, W., & Yoon, T. (2018). Antimicrobial resistance: A threat to global health. The Lancet. Infectious Diseases, 18(9), 939-940. http://doi.org/10.1016/S1473-3099(18)30471-7. PMid:30152350.
Jiang, K., Chen, X., Zhang, W., Guo, Y., & Liu, G. (2023). Nonribosomal antibacterial peptides isolated from Streptomyces agglomeratus 5-1-3 in the Qinghai-Tibet Plateau. Microbial Cell Factories, 22(1), 5. http://doi.org/10.1186/s12934-023-02018-0. PMid:36609255.
Jiang, Z.-K., Tuo, L., Huang, D.-L., Osterman, I. A., Tyurin, A. P., Liu, S.-W., Lukyanov, D. A., Sergiev, P. V., Dontsova, O. A., Korshun, V. A., Li, F. N., & Sun, C. H. (2018). Diversity, novelty, and antimicrobial activity of endophytic Actinobacteria from mangrove plants in beilun estuary national nature reserve of Guangxi, China. Frontiers in Microbiology, 9, 868. http://doi. org/10.3389/fmicb.2018.00868. PMid:29780376.
Jiménez, M. C., Kowalski, L., Souto, R. B., Alves, I. A., Viana, M. D., & Aragón, D. M. (2022). New drugs against multidrug-resistant gram-negative bacteria: A systematic review of patents. Future Microbiology, 17(17), 1393-1408. http://doi.org/10.2217/fmb2022-0104. PMid:36169345.
Kannabiran, K. (2016). Bioactivity of Pyrrolo [1, 2-a] pyrazine-1, 4-dione, hexahydro-3-(phenylmethyl)-extracted from Streptomyces sp. VITPK9 isolated from the Salt Spring Habitat of Manipur, India. Asian Journal of Pharmaceutics, 10, 4-12.
Kiran, G. S., Priyadharsini, S., Sajayan, A., Ravindran, A., & Selvin, J. (2018). An antibiotic agent pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multidrug-resistant Staphylococcus aureus. RSC Advances, 8(32), 17837-17846. http://doi. org/10.1039/C8RA00820E. PMid:35542054.
Kristiana, R., Bedoux, G., Pals, G., Mudianta, I. W., Taupin, L., Marty, C., Asagabaldan, M. A., Ayuningrum, D., Trianto, A., Bourgougnon, N., Radjasa, O. K., Sabdono, A., & Hanafi, M. (2020). Bioactivity of compounds secreted by symbiont bacteria of Nudibranchs from Indonesia. PeerJ, 8, e8093. http://doi.org/10.7717/peerj.8093. PMid:31915568.
Kumar, D., Kumar, S., & Kumar, A. (2021). Extraction, and characterization of secondary metabolites produced by bacteria isolated from industrial wastewater. Journal of Water Process Engineering, 40, 101811. http://doi.org/10.1016/j. jwpe.2020.101811.
Labeda, D. P., Dunlap, C. A., Rong, X., Huang, Y., Doroghazi, J. R., Ju, K. S., & Metcalf, W. W. (2017). Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie van Leeuwenhoek, 110(4), 563-583. http:// doi.org/10.1007/s10482-016-0824-0. PMid:28039547.
León, J., Aponte, J. J., Rojas, R., Cuadra, D., Ayala, N., Tomás, G., & Guerrero, M. (2011). Estudio de actinomicetos marinos aislados de la costa central del Perú y su actividad antibacteriana frente a Staphylococcus aureus meticilina resistentes y Enterococcus faecalis vancomicina resistentes. Revista Peruana de Medicina Experimental y Salud Pública, 28(2), 237-246. http://doi. org/10.17843/rpmesp.2011.282.489. PMid:21845303.
Liu, S., Wang, T., Lu, Q., Li, F., Wu, G., Jiang, Z., Habden, X., Liu, L., Zhang, X., Lukianov, D. A., Osterman, I. A., Sergiev, P. V., Dontsova, O. A., & Sun, C. (2021). Bioprospecting of soilderived Actinobacteria along the Alar-Hotan desert highway in the Taklamakan desert. Frontiers in Microbiology, 12, 604999. http://doi.org/10.3389/fmicb.2021.604999. PMid:33790875.
Marcolefas, E., Leung, T., Okshevsky, M., McKay, G., Hignett, E., Hamel, J., Aguirre, G., Blenner-Hassett, O., Boyle, B., Lévesque, R. C., Nguyen, D., Gruenheid, S., & Whyte, L. (2019). Culture-dependent bioprospecting of bacterial isolates from the Canadian high arctic displaying antibacterial activity. Frontiers in Microbiology, 10, 1836. http://doi.org/10.3389/ fmicb.2019.01836. PMid:31447822.
Mary, T. R., Kannan, R. R., Iniyan, A. M., Ramachandran, D., & Vincent, S. G. (2021). Cell wall distraction and biofilm inhibition of marine Streptomyces derived angucycline in methicillin resistant Staphylococcus aureus. Microbial Pathogenesis, 150, 104712. http://doi.org/10.1016/j.micpath.2020.104712. PMid:33359358.
Mehdi, B. A. R., Shaaban, K. A., Rebai, I. K., Smaoui, S., Bejar, S., & Mellouli, L. (2009). Five naturally bioactive molecules including two rhamnopyranoside derivatives isolated from the Streptomyces sp. strain TN58. Natural Product Research, 23(12), 1095-1107. http://doi.org/10.1080/14786410802362352. PMid:19662574.
Meenakshi, S., Hiremath, J., Meenakshi, M. H., & Shivaveerakumar, S. (2024). Actinomycetes: Isolation, cultivation, and its active biomolecules. Journal of Pure & Applied Microbiology, 18(1), 118-143. http://doi.org/10.22207/JPAM.18.1.48.
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., & Johnson, S. C. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet, 399(10325), 629-655. http://doi.org/10.1016/S0140-6736(21)02724-0. PMid:35065702.
Murugaiyan, J., Kumar, P. A., Rao, G. S., Iskandar, K., Hawser, S., Hays, J. P., Mohsen, Y., Adukkadukkam, S., Awuah, W. A., Jose, R. A., Sylvia, N., Nansubuga, E. P., Tilocca, B., Roncada, P., Roson-Calero, N., Moreno-Morales, J., Amin, R., Kumar, B. K., Kumar, A., Toufik, A. R., Zaw, T. N., Akinwotu, O. O., Satyaseela, M. P., & van Dongen, M. B. M. (2022). Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics, 11(2), 200. http://doi.org/10.3390/ antibiotics11020200. PMid:35203804.
National Center for Biotechnology Information. (2024a). PubChem. Bethesda: NCBI. https://pubchem.ncbi.nlm.nih.gov
National Center for Biotechnology Information. (2024b). PubChem Compound Summary. Bethesda: NCBI. https://pubchem.ncbi. nlm.nih.gov/compound/
Neto, V., Esteves-Ferreira, S., Inácio, I., Alves, M., Dantas, R., Almeida, I., Guimarães, J., Azevedo, T., & Nunes, A. (2022). Metabolic profile characterization of different thyroid nodules using ftir spectroscopy: A review. Metabolites, 12(1), 53. http:// doi.org/10.3390/metabo12010053. PMid:35050174.
Nunes, S. D., Oliveira, B. F., Giambiagi-deMarval, M., & Laport, M. S. (2020). Antimicrobial and antibiofilm activities of marine spongeassociated bacteria against multidrug-resistant Staphylococcus spp. isolated from canine skin. Microbial Pathogenesis, 152, 104612. http://doi.org/10.1016/j.micpath.2020.104612. PMid:33212197.
O’ Neill, J. (2016). The review on antimicrobial resistance: tackling drug-resistant infections globally: final report and recommendations. https://amr-review.org/sites/default/ files/160518_Final%20paper_with%20cover.pdf
Ouchene, R., Intertaglia, L., Zaatout, N., Kecha, M., & Suzuki, M. T. (2022a). Selective isolation, antimicrobial screening, and phylogenetic diversity of marine actinomycetes derived from the Coast of Bejaia City (Algeria), a polluted and microbiologically unexplored environment. Journal of Applied Microbiology, 132(4), 2870-2882. http://doi.org/10.1111/jam.15415. PMid:34919313.
Ouchene, R., Stien, D., Segret, J., Kecha, M., Rodrigues, A. M. S., Veckerlé, C., & Suzuki, M. T. (2022b). Integrated metabolomic, molecular networking, and genome mining analyses uncover novel angucyclines from Streptomyces sp. RO-S4 strain isolated from Bejaia Bay, Algeria. Frontiers in Microbiology, 13, 906161. http://doi.org/10.3389/fmicb.2022.906161. PMid:35814649.
Park, S. R., Tripathi, A., Wu, J., Schultz, P. J., Yim, I., McQuade, T. J., Yu, F., Arevang, C. J., Mensah, A. Y., Tamayo-Castillo, G., Xi, C., & Sherman, D. H. (2016). Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nature Communications, 7(1), 10710. http://doi.org/10.1038/ ncomms10710. PMid:26880271.
Poudel, A. N., Zhu, S., Cooper, N., Little, P., Tarrant, C., Hickman, M., & Yao, G. (2023). The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS One, 18(5), e0285170. http://doi.org/10.1371/journal.pone.0285170. PMid:37155660.
Priyanto, J., Prastya, M., Astuti, R., & Kristiana, R. (2023). The Antibacterial and antibiofilm activities of the endophytic bacteria associated with archidendron pauciflorum against multidrug-resistant strains. Applied Biochemistry and Biotechnology, 195(11), 6653- 6674. http://doi.org/10.1007/s12010-023-04382-4. PMid:36913097.
Qian, M., Yang, Y., Hu, B., Xu, Y., Wang, Z., Li, Q., Gao, Y., Luo, X., & Zhao, L. (2022). Baoshanmycin and a new furanone derivative from a soil-derived actinomycete, Amycolatopsis sp. YNNP 00208. Chemistry & Biodiversity, 19(5), e202200064. http:// doi.org/10.1002/cbdv.202200064.
Quinn, G. A., & Dyson, P. J. (2024). Going to extremes: Progress in exploring new environments for novel antibiotics. npj Antimicrobials and Resistance, 2(1), 8. http://doi.org/10.1038/ s44259-024-00025-8. PMid:39843508.
Quinn, G. A., Abdelhameed, A. M., Alharbi, N. K., Cobice, D., Adu, S. A., Swain, M. T., Castro, H. C., Facey, P. D., Bakshi, H. A., Tambuwala, M. M., & Banat, I. M. (2020). The isolation of a novel Streptomyces sp. CJ13 from a traditional Irish Folk medicine alkaline grassland soil that inhibits multiresistant pathogens and yeasts. Applied Sciences, 11(1), 173. http://doi.org/10.3390/ app11010173.
Qureshi, K. A., Bholay, A. D., Rai, P. K., Mohammed, H. A., Khan, R. A., Azam, F., Jaremko, M., Emwas, A. H., Stefanowicz, P., Waliczek, M., Kijewska, M., Ragab, E. A., Rehan, M., Elhassan, G. O., Anwar, M. J., & Prajapati, D. K. (2021). Isolation, characterization, anti-MRSA evaluation, and in-silico multi-target anti-microbial validations of actinomycin X2 and actinomycin D produced by novel Streptomyces smyrnaeus UKAQ_23. Scientific Reports, 11(1), 14539. http://doi.org/10.1038/s41598-021-93285-7. PMid:34267232.
Raja, M. M., Reehana, N., Ahamed, A. A., & Begum, A. F. (2023). Characterization of bioactive compound isolated from Micromonospora marina KPMS1 and its activity against emerging antibiotics resistant strains of Klebsiella pneumoniae HAUTI7 and Proteus vulgaris HAUTI14. International Journal of Biological Macromolecules, 250, 125954. http://doi.org/10.1016/j. ijbiomac.2023.125954. PMid:37532185.
Ralhan, K., Iyer, K. A., Diaz, L. L., Bird, R., Maind, A., & Zhou, Q. A. (2024). Navigating Antibacterial Frontiers: A panoramic exploration of antibacterial landscapes, resistance mechanisms, and emerging therapeutic strategies. ACS Infectious Diseases, 10(5), 1483-1519. http://doi.org/10.1021/acsinfecdis.4c00115.
Ruekit, S., Srijan, A., Serichantalergs, O., Margulieux, K. R., Mc Gann, P., Mills, E. G., Stribling, W. C., Pimsawat, T., Kormanee, R., Nakornchai, S., Sakdinava, C., Sukhchat, P., Wojnarski, M., Demons, S. T., Crawford, J. M., Lertsethtakarn, P., & Swierczewski, B. E. (2022). Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017-2018). BMC Infectious Diseases, 22(1), 695. http://doi. org/10.1186/s12879-022-07678-8. PMid:35978294.
Ryandini, D., Radjasa, O. K., & Oedjijono. (2021). Bioactive compounds derived from Streptomyces sp. SA32: Antibacterial activity, chemical profile, and their related genes. IOP Conference Series. Earth and Environmental Science, 948(1), 012062. http:// doi.org/10.1088/1755-1315/948/1/012062.
Saadatpour, F., & Mohammadipanah, F. (2020). Bioprospecting of Indigenous myxobacteria from Iran and potential of Cystobacter as a source of anti-MDR compounds. Folia Microbiologica, 65(4), 639- 648. http://doi.org/10.1007/s12223-019-00768-2. PMid:31907732.
Sabido, E. M., Tenebro, C. P., Suarez, A. F. L., Ong, S. D. C., Trono, D. J. V. L., Amago, D. S., Evangelista Júnior, J. E., Reynoso, A. M. Q., Villalobos, I. G. M., Alit, L. D. D., Surigao, C. F., Villanueva, C. A., Saludes, J. P., & Dalisay, D. S. (2020). Marine sedimentderived Streptomyces strain produces angucycline antibiotics against multidrug-resistant Staphylococcus aureus harboring SCCmec type 1 gene. Journal of Marine Science and Engineering, 8(10), 734. http://doi.org/10.3390/jmse8100734.
Schlimpert, S., & Elliot, M. A. (2023). The best of both worlds: Streptomyces coelicolor and Streptomyces venezuelae as model species for studying antibiotic production and bacterial multicellular development. Journal of Bacteriology, 205(7), e0015323. http://doi.org/10.1128/jb.00153-23. PMid:37347176.
Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted metabolomics strategies: Challenges and emerging directions. Journal of the American Society for Mass Spectrometry, 27(12), 1897-1905. http://doi.org/10.1007/ s13361-016-1469-y. PMid:27624161.
Schultz, J., Modolon, F., Peixoto, R. S., & Rosado, A. S. (2023). Shedding light on the composition of extreme microbial dark matter: Alternative approaches for culturing extremophiles. Frontiers in Microbiology, 14, 1167718. http://doi.org/10.3389/ fmicb.2023.1167718. PMid:37333658.
Shanthi, J., Senthil, A., Gopikrishnan, V., & Balagurunathan, R. (2015). Characterization of a potential β-lactamase inhibitory metabolite from a marine Streptomyces sp. PM49 active against multidrugresistant pathogens. Applied Biochemistry and Biotechnology, 175(8), 3696-3708. http://doi.org/10.1007/s12010-015-1538-x. PMid:25737024.
Singh, S., Prasad, P., Subramani, R., & Aalbersberg, W. (2014). Production, and purification of a bioactive substance against multidrug-resistant human pathogens from the marine-spongederived Salinispora sp. Asian Pacific Journal of Tropical Biomedicine, 4(10), 825-831. http://doi.org/10.12980/APJTB.4.2014C1154.
Skariyachan, S. G., Rao, A., Patil, M. R., Saikia, B., Bharadwaj, K. N. V., & Rao, G. S. J. (2014). Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India. Letters in Applied Microbiology, 58(3), 231-241. http://doi.org/10.1111/ lam.12178. PMid:24138171.
Srinivasan, R., Kannappan, A., Shi, C., & Lin, X. (2021). Marine bacterial secondary metabolites: A treasure house for structurally unique and effective antimicrobial compounds. Marine Drugs, 19(10), 530. http://doi.org/10.3390/md19100530. PMid:34677431.
Stincone, P., & Brandelli, A. (2020). Marine bacteria as source of antimicrobial compounds. Critical Reviews in Biotechnology, 40(3), 306-319. http://doi.org/10.1080/07388551.2019.17104 57. PMid:31992085.
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., Lewin, S., Godfrey, C. M., MacDonald, M. T., Langlois, E. V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö., & Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467-473. http://doi.org/10.7326/M18-0850. PMid:30178033.
Wahaab, F., & Subramaniam, K. (2018). Bioprospecting marine actinomycetes for multidrug-resistant pathogen control from Rameswaram coastal area, Tamil Nadu, India. Archives of Microbiology, 200(1), 57-71. http://doi.org/10.1007/s00203- 017-1417-7. PMid:28785779.
World Health Organization. (2021). La escasez mundial de antibióticos innovadores favorece la aparición y propagación de la farmacorresistencia. Geneva: WHO. https://www.who.int/es/ news/item/15-04-2021-global-shortage-of-innovative-antibioticsfuels-emergence-and-spread-of-drug-resistance
World Health Organization. (2024). Bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: WHO. https://www.who.int/ publications/i/item/9789240093461
Yoon, S. Y., Lee, S. R., Hwang, J. Y., Benndorf, R., Beemelmanns, C., Chung, S. J., & Kim, K. H. (2019). Fridamycin A, a microbial natural product, stimulates glucose uptake without inducing adipogenesis. Nutrients, 11(4), 765. http://doi.org/10.3390/ nu11040765. PMid:30939853.
Submitted date:
06/18/2024
Accepted date:
10/31/2024