Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00092023
Biotechnology Research and Innovation Journal
Research paper

Survival mechanisms of microorganisms occurring in acid mine drainage: sulfur, iron, carbon, and nitrogen metabolic pathways

Estácio Jussie Odisi; Diego Serrasol do Amaral; Marcus Adonai Castro da Silva; André Oliveira de Souza Lima; Leonardo Rubi Rörig

Downloads: 0
Views: 144

Abstract

Despite its economic importance, mining usually generates intense environmental degradation. The excavation process carried out in mining activities exposes minerals to atmospheric oxygen and water, conditioning a series of biogeochemical processes that can lead to the production of acid mine drainage (AMD). AMD has low pH and high concentrations of sulphates and heavy metals, creating environments with extreme conditions for life. These environments are usually inhabited by microorganisms able to acquire energy from iron and sulfur, using limited sources of carbon and nitrogen. In addition, these microorganisms need mechanisms to resist to extremely low pH and high concentration of heavy metals that can be toxic and lethal to the cellular structure. Acid stress tolerance involves active mechanisms to maintain intracellular pH at adequate levels despite low external values, and adaptive processes against acid stress allowing microorganisms to operate metabolically at low pH. The set of these adaptations give microorganisms the possibility of surviving in AMD environments and, consequently, represent potential for bioremediation and other biotechnological applications like biomining and search for biomolecules for industrial processes. The purpose of this review was to compile the metabolic and adaptive mechanisms involved in the survival of microorganisms occurring in AMD environments, focusing on how they utilize sulfur, iron, carbon and nitrogen metabolic pathways.

Keywords

Acid mine drainage; Extremophilic microorganisms; Sulfur microbial metabolism; iron microbial metabolism

References

Alkorta, I., Aizpurua, A., Riga, P., Albizu, I., Amézaga, I., & Garbisu, C. (2003). Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health, 18(1), 65-73. http:// dx.doi.org/10.1515/REVEH.2003.18.1.65. PMid:12875512.

Andrews, S. C., Robinson, A. K., & Rodríguez-Quiñones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2–3), 215-237. http://dx.doi.org/10.1016/S0168-6445(03)00055-X. PMid:12829269.

Ayangbenro, A. S., Olanrewaju, O. S., & Babalola, O. O. (2018). Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in Microbiology, 9(AUG), 1986. http://dx.doi.org/10.3389/fmicb.2018.01986. PMid:30186280.

Badger, M. R., & Price, G. D. (2003). CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383), 609-622. http://dx.doi.org/10.1093/jxb/erg076. PMid:12554704.

Baeseman, J. L., Smith, R. L., & Silverstein, J. (2006). Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron. Microbial Ecology, 51(2), 232-241. http://dx.doi.org/10.1007/s00248-005-5155-z. PMid:16463131.

Bang, S. W., Clark, D. S., & Keasling, J. D. (2000). Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica serovar typhimurium in Escherichia coli. Applied and Environmental Microbiology, 66(9), 3939-3944. http://dx.doi. org/10.1128/AEM.66.9.3939-3944.2000. PMid:10966412.

Bhandari, P., & Choudhary, S. (2021). Insights on the role of sulfur oxidizing bacteria in acid mine drainage. Biogeochemistry, 39(3–5), 270-281. http://dx.doi.org/10.1080/01490451.2021.1985190.

Boughanemi, S., Infossi, P., Giudici-Orticoni, M. T., Schoepp-Cothenet, B., & Guiral, M. (2020). Sulfite oxidation by the quinone-reducing molybdenum sulfite dehydrogenase SoeABC from the bacterium Aquifex aeolicus. Bioenergetics, 1861(11), 148279. http://dx.doi. org/10.1016/j.bbabio.2020.148279. PMid:32735861.

Burns, J. L., & Dichristina, T. J. (2009). Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica serovar typhimurium LT2. Applied and Environmental Microbiology, 75(16), 5209-5217. http://dx.doi.org/10.1128/ AEM.00888-09. PMid:19542325.

Campbell, B. J., & Cary, S. C. (2004). Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Applied and Environmental Microbiology, 70(10), 6282-6289. http://dx.doi.org/10.1128/ AEM.70.10.6282-6289.2004. PMid:15466576.

Cannon, G. C., Baker, S. H., Soyer, F., Johnson, D. R., Bradburne, C. E., Mehlman, J. L., Davies, P. S., Jiang, Q. L., Heinhorst, S., & Shively, J. M. (2003). Organization of carboxysome genes in the thiobacilli. Current Microbiology, 46(2), 115-119. http://dx.doi. org/10.1007/s00284-002-3825-3 PMid:12520366.

Cárdenas, J. P., Valdés, J., Quatrini, R., Duarte, F., & Holmes, D. S. (2010). Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Applied Microbiology and Biotechnology, 88(3), 605-620. http:// dx.doi.org/10.1007/s00253-010-2795-9. PMid:20697707.

Chakravarty, R., & Banerjee, P. C. (2008). Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles, 12(2), 279-284. http://dx.doi.org/10.1007/s00792-007-0128-4. PMid:18193380.

Chareyre, S., & Mandin, P. (2018). Bacterial iron homeostasis regulation by sRNAs. Microbiology Spectrum, 6(2), 6.2.06. http://dx.doi.org/10.1128/microbiolspec.RWR-0010-2017. PMid:29573257.

Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B., & Chang, J. (2021). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. Journal of Hazardous Materials, 404(Pt A), 124125. http://dx.doi.org/10.1016/j.jhazmat.2020.124125. PMid:33049629.

Cooper, A. J. L. (1983). Biochemistry of sulfur-containing amino acids. Annual Review of Biochemistry, 52(1), 187-222. http:// dx.doi.org/10.1146/annurev.bi.52.070183.001155. PMid:6351723.

Craw, D., & Rufaut, C. (2017). Geochemical and mineralogical controls on mine tailings rehabilitation and vegetation, Otago Schist, New Zealand. New Zealand Journal of Geology and Geophysics, 60(3), 176-187. http://dx.doi.org/10.1080/00288306.2017.1323765.

Dai, Z., Guo, X., Yin, H., Liang, Y., Cong, J., & Liu, X. (2014). Identification of nitrogen-fixing genes and gene clusters from metagenomic library of acid mine drainage. PLoS One, 9(2), e87976. http://dx.doi.org/10.1371/journal.pone.0087976. PMid:24498417.

Dantas, J. M., Brausemann, A., Einsle, O., & Salgueiro, C. A. (2017). NMR studies of the interaction between inner membraneassociated and periplasmic cytochromes from Geobacter sulfurreducens. FEBS Letters, 591(12), 1657-1666. http://dx.doi. org/10.1002/1873-3468.12695. PMid:28542725.

Das, A., Mishra, A. K., & Roy, P. (1992). Anaerobic growth on elemental sulfur using dissimilar iron reduction by autotrophic Thiobacillus ferrooxidans. FEMS Microbiology Letters, 97(1–2), 167-172. http:// dx.doi.org/10.1111/j.1574-6968.1992.tb05457.x.

Deplancke, B., Hristova, K. R., Oakley, H. A., McCracken, V. J., Aminov, R., Mackie, R. I., & Gaskins, H. R. (2000). Molecular ecological analysis of the succession and diversity of sulfatereducing bacteria in the mouse gastrointestinal tract. Applied and Environmental Microbiology, 66(5), 2166-2174. http:// dx.doi.org/10.1128/AE M.66.5.2166-2174.2000. PMid:10788396.

Deppenmeier, U., & Müller, V. (2008). Life close to the thermodynamic limit: How methanogenic archaea conserve energy. Results and Problems in Cell Differentiation, 45, 123-152. http://dx.doi. org/10.1007/400_2006_026. PMid:17713742.

Dobrinski, K. P., Longo, D. L., & Scott, K. M. (2005). The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotroph Thiomicrospira crunogena. Journal of Bacteriology, 187(16), 5761-5766. http://dx.doi.org/10.1128/ JB.187.16.5761-5766.2005. PMid:16077123.

Dong, L., Tong, X., Li, X., Zhou, J., Wang, S., & Liu, B. (2019). Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines. Journal of Cleaner Production, 210, 1562-1578. http://dx.doi.org/10.1016/j. jclepro.2018.10.291.

Duzs, Á., Tóth, A., Németh, B., Balogh, T., Kós, P. B., & Rákhely, G. (2018). A novel enzyme of type VI sulfide:quinone oxidoreductases in purple sulfur photosynthetic bacteria. Applied Microbiology and Biotechnology, 102(12), 5133-5147. http://dx.doi.org/10.1007/ s00253-018-8973-x. PMid:29680900.

Emerson, D., Fleming, E. J., & McBeth, J. M. (2010). Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology, 64(1), 561-583. http://dx.doi. org/10.1146/annurev.micro.112408.134208. PMid:20565252.

Falagán, C., Sánchez-España, J., & Johnson, D. B. (2014). New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiology Ecology, 87(1), 231-243. http://dx.doi.org/10.1111/1574-6941.12218. PMid:24102574.

Fike, D. A., Bradley, A. S., & Rose, C. V. (2015). Rethinking the Ancient Sulfur Cycle. Annual Review of Earth and Planetary Sciences, 43(1), 593-622. http://dx.doi.org/10.1146/annurevearth- 060313-054802.

Fillat, M. F. (2014). The FUR (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. Archives of Biochemistry and Biophysics, 546, 41-52. http://dx.doi. org/10.1016/j.abb.2014.01.029. PMid:24513162.

Finster, K. W., Kjeldsen, K. U., Kube, M., Reinhardt, R., Mussmann, M., Amann, R., & Schreiber, L. (2013). Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds. Standards in Genomic Sciences, 8(1), 58-68. http://dx.doi. org/10.4056/sigs.3777412 PMid:23961312.

Franks, D. M., Boger, D. V., Côte, C. M., & Mulligan, D. R. (2011). Sustainable development principles for the disposal of mining and mineral processing wastes. Resources Policy, 36(2), 114-122. http://dx.doi.org/10.1016/j.resourpol.2010.12.001.

Friedrich, C. G., Bardischewsky, F., Rother, D., Quentmeier, A., & Fischer, J. (2005). Prokaryotic sulfur oxidation. Current Opinion in Microbiology, 8(3), 253-259. http://dx.doi.org/10.1016/j. mib.2005.04.005. PMid:15939347.

Friedrich, C. G., Rother, D., Bardischewsky, F., Quentmeier, A., & Fischer, J. (2001). Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? Applied and Environmental Microbiology, 67(7), 2873-2882. http://dx.doi. org/10.1128/AEM.67.7.2873-2882.2001 PMid:11425697.

Goltsman, D. S. A., Denef, V. J., Singer, S. W., VerBerkmoes, N. C., Lefsrud, M., Mueller, R. S., Dick, G. J., Sun, C. L., Wheeler, K. E., Zemla, A., Baker, B. J., Hauser, L., Land, M., Shah, M. B., Thelen, M. P., Hettich, R. L., & Banfield, J. F. (2009). Community genomic and proteomic analyses of chemoautotrophic ironoxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) bacteria in acid mine drainage biofilms. Applied and Environmental Microbiology, 75(13), 4599- 4615. http://dx.doi.org/10.1128/AEM.02943-08. PMid:19429552.

Gordon, E. H. J., Pike, A. D., Hill, A. E., Cuthbertson, P. M., Chapman, S. K., & Reid, G. A. (2000). Identification and characterization of a novel cytochrome c3 from Shewanella frigidimarina that is involved in Fe(III) respiration. The Biochemical Journal, 349(1), 153-158. http://dx.doi.org/10.1042/bj3490153. PMid:10861223.

Grimm, F., Franz, B., & Dahl, C. (2011). Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum. Frontiers in Microbiology, 2(MAR), 51. http://dx.doi. org/10.3389/fmicb.2011.00051. PMid:21927612.

Haese, R. R. (2006). The biogeochemistry of iron. In H. D. Schulz & M. Zabel (Eds.), Marine geochemistry (pp. 241-270). Springer. http://dx.doi.org/10.1007/3-540-32144-6_7. Hedrich, S., Schlömann, M., & Johnson, D. B. (2011). The ironoxidizing proteobacteria. Microbiology, 157(6), 1551-1564. http:// dx.doi.org/10.1099/mic.0.045344-0. PMid:21511765.

Hsiao, J. C., McGrath, A. P., Kielmann, L., Kalimuthu, P., Darain, F., Bernhardt, P. V., Harmer, J., Lee, M., Meyers, K., Maher, M. J., & Kappler, U. (2018). The central active site arginine in sulfite oxidizing enzymes alters kinetic properties by controlling electron transfer and redox interactions. Bioenergetics, 1859(1), 19-27. http://dx.doi.org/10.1016/j.bbabio.2017.10.001. PMid:28986298.

Hudson-Edwards, K. A., Jamieson, H. E., & Lottermoser, B. G. (2011). Mine wastes: past, present, future. Elements, 7(6), 375-380. http://dx.doi.org/10.2113/gselements.7.6.375.

Hügler, M., & Sievert, S. M. (2011). Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Science, 3(1), 261-289. http://dx.doi.org/10.1146/ annurev-marine-120709-142712. PMid:21329206.

Ilbert, M., & Bonnefoy, V. (2013). Insight into the evolution of the iron oxidation pathways. Bioenergetics, 1827(2), 161-175. http:// dx.doi.org/10.1016/j.bbabio.2012.10.001. PMid:23044392.

Jenner, L. P., Kurth, J. M., Van Helmont, S., Sokol, K. P., Reisner, E., Dahl, C., Bradley, J. M., Butt, J. N., & Cheesman, M. R. (2019). Heme ligation and redox chemistry in two bacterial thiosulfate dehydrogenase (TsdA) enzymes. The Journal of Biological Chemistry, 294(47), 18002-18014. http://dx.doi.org/10.1074/ jbc.RA119.010084. PMid:31467084.

Jiang, Q. Q., & Bakken, L. R. (1999). Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiology Ecology, 30(2), 171-186. http://dx.doi.org/10.1111/j.1574-6941.1999. tb00646.x. PMid:10508942.

Johnson, D. B., Hallberg, K. B., & Hedrich, S. (2014). Uncovering a microbial enigma: isolation and characterization of the streamergenerating, iron-oxidizing, acidophilic bacterium “Ferrovum myxofaciens.”. Applied and Environmental Microbiology, 80(2), 672-680. http://dx.doi.org/10.1128/AEM.03230-13. PMid:24242243.

Kappler, U. (2011). Bacterial sulfite-oxidizing enzymes-. Bioenergetics, 1807(1), 1-10. http://dx.doi.org/10.1016/j.bbabio.2010.09.004. PMid:20851097.

Kawano, Y., Onishi, F., Shiroyama, M., Miura, M., Tanaka, N., Oshiro, S., Nonaka, G., Nakanishi, T., & Ohtsu, I. (2017). Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli. Applied Microbiology and Biotechnology, 101(18), 6879-6889. http://dx.doi.org/10.1007/s00253-017-8420-4. PMid:28756590.

Kern, M., Klotz, M. G., & Simon, J. (2011). The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system. Molecular Microbiology, 82(6), 1515- 1530. http://dx.doi.org/10.1111/j.1365-2958.2011.07906.x. PMid:22040142.

Kertesz, M. A. (2001). Bacterial transporters for sulfate and organosulfur compounds. Research in Microbiology, 152(3–4), 279-290. http://dx.doi.org/10.1016/S0923-2508(01)01199-8. PMid:11421275.

Koch, T., & Dahl, C. (2018). A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. The ISME Journal, 12(10), 2479-2491. http:// dx.doi.org/10.1038/s41396-018-0209-7 PMid:29930335.

Konhauser, K. (1998). Diversity of bacterial iron mineralization. Earth- Science Reviews, 43(3–4), 91-121. http://dx.doi.org/10.1016/ S0012-8252(97)00036-6.

Konhauser, K. (2007). Introduction to geomicrobiology. Blackwell Publishing Ltd. https://doi.org/10.1346/cms-wls-14.1

Krewulak, K. D., & Vogel, H. J. (2008). Structural biology of bacterial iron uptake. Biomembranes, 1778(9), 1781-1804. http://dx.doi. org/10.1016/j.bbamem.2007.07.026. PMid:17916327.

Larson, L. N., Sánchez-España, J., Kaley, B., Sheng, Y., Bibby, K., & Burgos, W. D. (2014). Thermodynamic controls on the kinetics of microbial low-pH Fe(II) oxidation. Environmental Science & Technology, 48(16), 9246-9254. http://dx.doi.org/10.1021/ es501322d. PMid:25072394.

Levicán, G., Ugalde, J. A., Ehrenfeld, N., Maass, A., & Parada, P. (2008). Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: Predictions and validations. BMC Genomics, 9(1), 581. http:// dx.doi.org/10.1186/1471-2164-9-581. PMid:19055775.

Liamleam, W., & Annachhatre, A. P. (2007). Electron donors for biological sulfate reduction. Biotechnology Advances, 25(5), 452-463. http://dx.doi.org/10.1016/j.biotechadv.2007.05.002. PMid:17572039.

Lies, D. P., Hernandez, M. E., Kappler, A., Mielke, R. E., Gralnick, J. A., & Newman, D. K. (2005). Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Applied and Environmental Microbiology, 71(8), 4414-4426. http:// dx.doi.org/10.1128/AE M.71.8.4414-4426.2005. PMid:16085832.

Liu, Y., & Whitman, W. B. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125(1), 171-189. http://dx.doi. org/10.1196/annals.1419.019. PMid:18378594.

Liu, Y., Beer, L. L., & Whitman, W. B. (2012). Sulfur metabolism in archaea reveals novel processes. Environmental Microbiology, 14(10), 2632-2644. http://dx.doi.org/10.1111/j.1462- 2920.2012.02783.x. PMid:22626264.

Liu, Y., Fredrickson, J. K., Zachara, J. M., & Shi, L. (2015). Direct involvement of ombB, omaB, and omcB genes in extracellular reduction of Fe(III) by Geobacter sulfurreducens PCA. Frontiers in Microbiology, 6(OCT), 1075. http://dx.doi.org/10.3389/ fmicb.2015.01075. PMid:26483786.

Lovley, D. (2006). Dissimilatory Fe(III)- and Mn(IV)-reducing prokaryotes. The Prokaryotes, 2, 635-658. http://dx.doi. org/10.1007/0-387-30742-7_21.

Lovley, D. R., Holmes, D. E., & Nevin, K. P. (2004). Dissimilatory Fe(III) and Mn(IV) Reduction. Advances in Microbial Physiology, 49, 219-286. http://dx.doi.org/10.1016/S0065-2911(04)49005-5. PMid:15518832.

Lovley, D. R., Stolz, J. F., Nord Junior, G. L., & Phillips, E. J. P. (1987). Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330(6145), 252-254. http:// dx.doi.org/10.1038/330252a0.

Luo, J. F., Lin, W. T., & Guo, Y. (2011). Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Applied Microbiology and Biotechnology, 90(2), 769-778. http://dx.doi.org/10.1007/s00253-010-3061-x. PMid:21212946.

Ma, K., Weiss, R., & Adams, M. W. W. (2000). Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. Journal of Bacteriology, 182(7), 1864-1871. http://dx.doi.org/10.1128/ JB.182.7.1864-1871.2000. PMid:10714990.

Marietou, A., Røy, H., Jørgensen, B. B., & Kjeldsen, K. U. (2018). Sulfate transporters in dissimilatory sulfate reducing microorganisms: A comparative genomics analysis. Frontiers in Microbiology, 9(MAR), 309. http://dx.doi.org/10.3389/ fmicb.2018.00309. PMid:29551997.

Maus, V., Giljum, S., Gutschlhofer, J., da Silva, D. M., Probst, M., Gass, S. L. B., Luckeneder, S., Lieber, M., & McCallum, I. (2020). A global-scale data set of mining areas. Scientific Data, 7(1), 289. http://dx.doi.org/10.1038/s41597-020-00624-w. PMid:32901028.

Méndez-García, C., Peláez, A. I., Mesa, V., Sánchez, J., Golyshina, O. V., & Ferrer, M. (2015). Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 6, 475. PMid:26074887.

Montoya, L., Celis, L. B., Razo-Flores, E., & Alpuche-Solís, Á. G. (2012). Distribution of CO2 fixation and acetate mineralization pathways in microorganisms from extremophilic anaerobic biotopes. Extremophiles, 16(6), 805-817. http://dx.doi. org/10.1007/s00792-012-0487-3. PMid:23065059.

Moreau, J. W., Zierenberg, R. A., & Banfield, J. F. (2010). Diversity of Dissimilatory Sulfite Reductase Genes (dsrAB) in a Salt Marsh Impacted by Long-Term Acid Mine Drainage. Applied and Environmental Microbiology, 76(14), 4819-4828. http://dx.doi. org/10.1128/AEM.03006-09. PMid:20472728.

Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M., & Loy, A. (2015). Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. The ISME Journal, 9(5), 1152- 1165. http://dx.doi.org/10.1038/ismej.2014.208 PMid:25343514.

Newsome, L., & Falagán, C. (2021). The microbiology of metal mine waste: bioremediation applications and implications for planetary health. GeoHealth, 5(10), GH000380. http://dx.doi. org/10.1029/2020GH000380. PMid:34632243. Ohmura, N., Sasaki, K., Matsumoto, N., & Saiki, H. (2002). Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans. Journal of Bacteriology, 184(8), 2081-2087. http://dx.doi.org/10.1128/JB.184.8.2081- 2087.2002. PMid:11914338.

Ong, C. L. Y., Walker, M. J., & McEwan, A. G. (2015). Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes. Scientific Reports, 5(1), 10799. http:// dx.doi.org/10.1038/srep10799 PMid:26028191.

Parro, V., & Moreno-Paz, M. (2003). Gene function analysis in environmental isolates: The nif regulon of the strict iron oxidizing bacterium Leptospirillum ferrooxidans. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7883-7888. http://dx.doi.org/10.1073/pnas.1230487100. PMid:12808145.

Pepper, I. L., & Gentry, T. J. (2015). Microorganisms found in the environment. In In I. L. Pepper, C. P. Gerba & T. J. Gentry (Eds.), Environmental microbiology (pp. 3-36). Academic Press. http:// dx.doi.org/10.1016/B978-0-12-394626-3.00002-8

Price, G. D., Woodger, F. J., Badger, M. R., Howitt, S. M., & Tucker, L. (2004). Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 101(52), 18228-18233. http://dx.doi.org/10.1073/pnas.0405211101. PMid:15596724.

Purwantini, E., Torto-Alalibo, T., Lomax, J., Setubal, J. C., Tyler, B. M., & Mukhopadhyay, B. (2014). Genetic resources for methane production from biomass described with the Gene Ontology. Frontiers in Microbiology, 5(DEC ), 634. http://dx.doi. org/10.3389/fmicb.2014.00634. PMid:25520705.

Ramanathan, B., Boddicker, A. M., Roane, T. M., & Mosier, A. C. (2017). Nitrifier gene abundance and diversity in sediments impacted by acid mine drainage. Frontiers in Microbiology, 8(NOV), 2136. http://dx.doi.org/10.3389/fmicb.2017.02136. PMid:29209281.

Rambabu, K., Banat, F., Pham, Q. M., Ho, S. H., Ren, N. Q., & Show, P. L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. http://dx.doi.org/10.1016/j. ese.2020.100024 PMid:36160925.

Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26-41. http://dx.doi. org/10.1016/j.micres.2015.11.007. PMid:26805616.

Roane, T. M., Pepper, I. L., & Gentry, T. J. (2015). Microorganisms and metal pollutants. In I. L. Pepper, C. P. Gerba & T. J. Gentry (Eds.), Environmental microbiology (pp. 415-439). Academic Press. http://dx.doi.org/10.1016/B978-0-12-394626-3.00018-1.

Roden, E. E., & Wetzel, R. G. (2003). Competition between Fe(III)- reducing and methanogenic bacteria for acetate in iron-rich freshwater sediments. Microbial Ecology, 45(3), 252-258. http:// dx.doi.org/10.1007/s00248-002-1037-9. PMid:12658519.

Sánchez-Andrea, I., Sanz, J. L., Bijmans, M. F. M., & Stams, A. J. M. (2014). Sulfate reduction at low pH to remediate acid mine drainage. Journal of Hazardous Materials, 269, 98-109. http:// dx.doi.org/10.1016/j.jhazmat.2013.12.032. PMid:24444599.

Sandy, M., & Butler, A. (2009). Microbial Iron Acquisition: Marine and Terrestrial Siderophores. Chemical Reviews, 109(10), 4580-4595. http://dx.doi.org/10.1021/cr9002787. PMid:19772347.

Santos, A. A., Venceslau, S. S., Grein, F., Leavitt, W. D., Dahl, C., Johnston, D. T., & Pereira, I. A. C. (2015). A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science, 350(6267), 1541-1545. http://dx.doi.org/10.1126/ science.aad3558. PMid:26680199.

Sanz, J. L., Rodríguez, N., Díaz, E. E., & Amils, R. (2011). Methanogenesis in the sediments of Rio Tinto, an extreme acidic river. Environmental Microbiology, 13(8), 2336-2341. http:// dx.doi.org/10.1111/j.1462-2920.2011.02504.x. PMid:21605308.

Scheffel, A., & Schüler, D. (2006). Magnetosomes in magnetotactic bacteria. In J. M. Shively (Ed.), Complex intracellular structures in prokaryotes (pp. 167–191). Springer. http://dx.doi. org/10.1007/7171_024.

Schwalb, C., Chapman, S. K., & Reid, G. A. (2003). The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry, 42(31), 9491-9497. http://dx.doi.org/10.1021/ bi034456f. PMid:12899636.

Shen, Y., Buick, R., & Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410(6824), 77-81. http://dx.doi.org/10.1038/35065071 PMid:11242044.

Shively, J. M., van Keulen, G., & Meijer, W. G. (1998). Something from almost nothing: Carbon dioxide fixation in chemoautotrophs. Annual Review of Microbiology, 52(1), 191-230. http://dx.doi. org/10.1146/annurev.micro.52.1.191. PMid:9891798.

Simate, G. S., & Ndlovu, S. (2014). Acid mine drainage: challenges and opportunities. Journal of Environmental Chemical Engineering, 2(3), 1785-1803. http://dx.doi.org/10.1016/j.jece.2014.07.021.

Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W., & Hedderich, R. (2008). Methanogenic archaea: Ecologically relevant differences in energy conservation. Nature Reviews. Microbiology, 6(8), 579- 591. http://dx.doi.org/10.1038/nrmicro1931 PMid:18587410.

Thorup, C., Schramm, A., Findlay, A. J., Finster, K. W., & Schreiber, L. (2017). Disguised as a sulfate reducer: growth of the deltaproteobacterium desulfurivibrio alkaliphilus by sulfide oxidation with nitrate. mBio, 8(4), 10-1128. http://dx.doi. org/10.1128/mBio.00671-17 PMid:28720728.

Tjaden, B., Plagens, A., Dörr, C., Siebers, B., & Hensel, R. (2006). Phosphoenolpyruvate synthetase and pyruvate, phosphate dikinase of Thermoproteus tenax: Key pieces in the puzzle of archaeal carbohydrate metabolism. Molecular Microbiology, 60(2), 287- 298. http://dx.doi.org/10.1111/j.1365-2958.2006.05098.x. PMid:16573681.

Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373(1), 1-6. http://dx.doi. org/10.1006/abbi.1999.1518. PMid:10620317.

Tourna, M., Maclean, P., Condron, L., O’Callaghan, M., & Wakelin, S. A. (2014). Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiology Ecology, 88(3), 538- 549. http://dx.doi.org/10.1111/1574-6941.12323. PMid:24646185.

Toyoda, K., Yoshizawa, Y., Arai, H., Ishii, M., & Igarashi, Y. (2005). The role of two CbbRs in the transcriptional regulation of three ribulose- 1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. Microbiology, 151(11), 3615-3625. http:// dx.doi.org/10.1099/mic.0.28056-0. PMid:16272383.

Tripathi, N., Singh, R. S., & Hills, C. D. (2016). Reclamation of mine-impacted land for ecosystem recovery. John Wiley & Sons. http://dx.doi.org/10.1002/9781119057925.

Tsallagov, S. I., Sorokin, D. Y., Tikhonova, T. V., Popov, V. O., & Muyzer, G. (2019). Comparative genomics of Thiohalobacter thiocyanaticus HRh1T and guyparkeriasp. SCN-R1, halophilic chemolithoautotrophic sulfur-oxidizing gammaproteobacteria capable of using thiocyanate as energy source. Frontiers in Microbiology, 10(MAY), 898. http://dx.doi.org/10.3389/ fmicb.2019.00898. PMid:31118923.

Tyson, G. W., Lo, I., Baker, B. J., Allen, E. E., Hugenholtz, P., & Banfield, J. F. (2005). Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Applied and Environmental Microbiology, 71(10), 6319-6324. http://dx.doi.org/10.1128/ AEM.71.10.6319-6324.2005. PMid:16204553.

Valdés, J., Pedroso, I., Quatrini, R., Dodson, R. J., Tettelin, H., Blake 2nd, R., Eisen, J. A., & Holmes, D. S. (2008). Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics, 9(1), 597. http://dx.doi. org/10.1186/1471-2164-9-597. PMid:19077236.

Villegas-Plazas, M., Sanabria, J., & Junca, H. (2019). A composite taxonomical and functional framework of microbiomes under acid mine drainage bioremediation systems. Journal of Environmental Management, 251, 109581. http://dx.doi.org/10.1016/j. jenvman.2019.109581. PMid:31563048.

Von Canstein, H., Ogawa, J., Shimizu, S., & Lloyd, J. R. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology, 74(3), 615-623. http://dx.doi.org/10.1128/ AEM.01387-07. PMid:18065612.

Wu, B., Liu, F., Fang, W., Yang, T., Chen, G. H., He, Z., & Wang, S. (2021). Microbial sulfur metabolism and environmental implications. Science of the Total Environment Journal, 778, 146085. http://dx.doi.org/10.1016/j.scitotenv.2021.146085. PMid:33714092.

Wu, G., Li, N., Mao, Y., Zhou, G., & Gao, H. (2015). Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis. Frontiers in Microbiology, 6(APR), 374. http://dx.doi. org/10.3389/fmicb.2015.00374. PMid:25972854.

Xie, J., He, Z., Liu, X., Liu, X., Van Nostrand, J. D., Deng, Y., Wu, L., Zhou, J., & Qiu, G. (2011). GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Applied and Environmental Microbiology, 77(3), 991-999. http://dx.doi.org/10.1128/ AEM.01798-10. PMid:21097602.

Xu, R., Li, B., Xiao, E., Young, L. Y., Sun, X., Kong, T., Dong, Y., Wang, Q., Yang, Z., Chen, L., & Sun, W. (2020). Uncovering microbial responses to sharp geochemical gradients in a terrace contaminated by acid mine drainage. Environmental Pollution, 261, 114226. http://dx.doi.org/10.1016/j.envpol.2020.114226. PMid:32113110.

Yalcin, S. E., & Malvankar, N. S. (2020). The blind men and the filament: understanding structures and functions of microbial nanowires. Current Opinion in Chemical Biology, 59, 193-201. http://dx.doi.org/10.1016/j.cbpa.2020.08.004. PMid:33070100.

Zhang, S., Yan, L., Li, H., & Liu, H. (2012). Optimal conditions for growth and magnetosome formation of Acidithiobacillus ferrooxidans. African Journal of Microbiological Research, 6(32), 6142-6151. http://dx.doi.org/10.5897/AJMR12.157.

Zou, J., Qiu, Y. Y., Li, H., & Jiang, F. (2023). Sulfur disproportionation realizes an organic-free sulfidogenic process for sustainable treatment of acid mine drainage. Water Research, 232, 119647. http://dx.doi.org/10.1016/j.watres.2023.119647. PMid:36738555.


Submitted date:
02/24/2023

Accepted date:
08/23/2023

653133e6a953952ad9004e5f biori Articles
Links & Downloads

BIORI

Share this page
Page Sections