Unveiling the role of xanthan gum in agriculture: a scientometric exploration of its progress and sustainable potential
Deborah Lizama Boettcher; Débora Bohrer de Lima; Andreia Anschau; Paula Fernandes Montanher; Débora Gonçalves Bortolini; Patricia Manuitt-Brito; Nédia de Castilhos Ghisi; Gustavo Henrique Couto; Maria Giovana Binder Pagnoncelli
Abstract
Agricultural intensification has led to severe environmental impacts, including soil degradation, biodiversity loss, water pollution, and increased greenhouse gas emissions. The intensive use of agrochemicals contributed to a significant ecological imbalance, which encouraged the search for natural and more environmentally safe alternatives. Synthetic compounds, including polymers used in agriculture, are widely applied as physical and chemical modifiers. They acted by improving moisture retention, controlling the release of nutrients, and enhancing the adherence of pesticides to plants. However, these compounds posed environmental challenges. In this context, the transition to natural alternatives becomes essential, A promising option is xanthan gum, a microbial polysaccharide produced by Xanthomonas spp., which improves the flowability of fertilizers and pesticides, increases soil water retention, optimizes seed coating, and contributes to the biological control of pests. Its production from agro-industrial residues reduces environmental impacts and promotes the reuse of by-products. This study conducted a scientometric analysis to investigate the potential of xanthan gum derived from agro-industrial waste in agriculture. Documents were selected based on specific inclusion criteria: only studies addressing xanthan gum in agriculture and sustainability, including its production from agro-industrial residues or its environmental impact, were considered. A double review by the authors ensured the accuracy of the selection. Data was collected from the Web of Science™ database tableusing combinations of keywords related to xanthan gum, sustainability, and agro-industrial waste. Publications from 1995 to 2024, comprising a total of 193 papers, were analyzed to provide a comprehensive overview of the research evolution and the significant expansion in studies on xanthan gum and sustainability in agriculture, spanning nearly three decades. CiteSpace and Microsoft Excel software were used to map trends, authors, and countries that are most productive in the field. Additionally, a complementary patent search was conducted in the Derwent Innovations Index using the keywords xanthan gum and agriculture. After applying refinement and exclusion criteria, 447 patents were selected and analyzed according to year, country, and application area of xanthan gum. The results indicate significant growth in research on agricultural applications of xanthan gum, with notable contributions from Brazil, China, and India. Keyword analysis reveal an evolution in the research focus from production optimization to sustainable applications, such as water recovery and waste utilization. The findings highlight xanthan gum as a viable alternative for making agriculture more productive and sustainable, standing out as an innovative biopolymer for the sector’s future. This growing scientific interest is also reflecte in technological innovations, with China leading the way and other countries presenting complementary profiles tailored to their specific agricultural needs.
Keywords
References
Assis, D., Costa, L. A., Campos, M. I., Souza, C. O. D., Druzian, J. I., Nunes, I., & Padilha, F. F. (2014). Influência da natureza do rejeito agroindustrial fermentado por Xanthomonas axonopodis pv. Manihotis nas propriedades das gomas xantana resultantes. Polímeros, 24(2), 176-183. http://doi.org/10.4322/polimeros.2014.064.
Bajaj, K., Kumar, A., Gill, P. P. S., Jawandha, S. K., & Kaur, N. (2024). Xanthan gum coatings augmented with lemongrass oil preserve postharvest quality and antioxidant defence system of Kinnow fruit under low-temperature storage. International Journal of Biological Macromolecules, 262(Pt 1), 129776. http://doi.org/10.1016/j.ijbiomac.2024.129776. PMid:38281532.
Berninger, T., Dietz, N., & González López, Ó. (2021). Water‐soluble polymers in agriculture: Xanthan gum as eco‐friendly alternative to synthetics. Microbial Biotechnology, 14(5), 1881-1896. http://doi.org/10.1111/1751-7915.13867. PMid:34196103.
Bhat, I. M., Wani, S. M., Mir, S. A., & Masoodi, F. A. (2022). Advances in xanthan gum production, modifications and its applications. Biocatalysis and Agricultural Biotechnology, 42, 102328. http://doi.org/10.1016/j.bcab.2022.102328.
Chen, C. (2006). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377. http://doi.org/10.1002/asi.20317.
Chen, C. (2016). CiteSpace: A practical guide for mapping scientific literature. New York: Nova Science Publishers.
Chen, C., Ibekwe‐SanJuan, F., & Hou, J. (2010). The structure and dynamics of cocitation clusters: A multiple‐perspective cocitation analysis. Journal of the American Society for Information Science and Technology, 61(7), 1386-1409. http://doi.org/10.1002/ asi.21309.
CiteSpace. CiteSpace. Betweenness Centrality. 2024. Available on: https://citespace.podia.com/glossary-betweenness_centrality.
Clarivate. (2024). Panorama das mudanças na pesquisa no Brasil. https://www.clarivate.com
Diniz, D. D. M., Druzian, J. I., & Audibert, S. (2012). Produção de goma xantana por cepas nativas de Xanthomonas campestris a partir de casca de cacau ou soro de leite. Polímeros, 22(3), 278-281. http://doi.org/10.1590/S0104-14282012005000032.
Druzian, J. I., & Pagliarini, A. P. (2007). Produção de goma xantana por fermentação do resíduo de suco de maçã. Food Science and Technology, 27(1), 26-31. http://doi.org/10.1590/S0101- 20612007000100005.
Food and Agriculture Organization. (2023). The state of food and agriculture 2023. Rome: FAO.
Gautam, A., Gill, P. P. S., Singh, N., Jawandha, S. K., Arora, R., Singh, A., & Ajay, (2024). Composite coating of xanthan gum with sodium nitroprusside alleviates the quality deterioration in strawberry fruit. Food Hydrocolloids, 155, 110208. http://doi.org/10.1016/j.foodhyd.2024.110208.
Gomes, G. V. P., Assis, D. D. J., Silva, J. B. A., Santos-Ebinuma, V. D. C., Costa, L. A. S., & Druzianl, J. I. (2015). Obtaining xanthan gum impregnated with cellulose microfibrils derived from sugarcane bagasse. Materials Today: Proceedings, 2(1), 389-398. http://doi.org/10.1016/j.matpr.2015.04.042.
Hassanisaadi, M., Saberi Riseh, R., Rabiei, A., Varma, R. S., & Kennedy, J. F. (2023). Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. International Journal of Biological Macromolecules, 246, 125763. http://doi.org/10.1016/j.ijbiomac.2023.125763. PMid:37429338.
Jesus, M., Mata, F., Batista, R. A., Ruzene, D. S., Albuquerque-Júnior, R., Cardoso, J. C., Vaz-Velho, M., Pires, P., Padilha, F. F., & Silva, D. P. (2023). Corncob as carbon source in the production of xanthan gum in different strains Xanthomonas sp. Sustainability, 15(3), 2287. http://doi.org/10.3390/su15032287.
Kashaudhan, K., Pande, P. P., Sharma, J., Shankar, R., Nath, A., Chaurasiya, A., & Kushwaha, N. (2025). Synthesis and characterization of Xanthan Gum Xanthates and their application for toxic metal ion removal from synthetic wastewater. Journal of Dispersion Science and Technology, 46(12), 1954-1968. http://doi.org/10.1080/01932691.2024.2373932.
Katzen, F., Ferreiro, D. U., Oddo, C. G., Ielmini, M. V., Becker, A., Pühler, A., & Ielpi, L. (1998). Xanthomonas campestris pv. campestris gum mutants: Effects on xanthan biosynthesis and plant virulence. Journal of Bacteriology, 180(7), 1607-1617. http://doi.org/10.1128/JB.180.7.1607-1617.1998. PMid:9537354.
Kaur, A., & Sud, D. (2024). Facile removal of emerging pollutants using mesoporous TiO2 nanoparticles synthesized via xanthan gum templated greener protocol. International Journal of Environmental Science and Technology, 21(5), 5127-5148. http://doi.org/10.1007/s13762-023-05358-x.
Li, Z.-X., Chen, J.-Y., Wu, Y., Huang, Z.-Y., Wu, S.-T., Chen, Y., Gao, J., Hu, Y., & Huang, C. (2022). Effect of downstream processing on the structure and rheological properties of xanthan gum generated by fermentation of Melaleuca alternifolia residue hydrolysate. Food Hydrocolloids, 132, 107838. http://doi.org/10.1016/j.foodhyd.2022.107838.
Liakopoulou‐Kyriakides, M., Tzanakakis, E. S., Kiparissidis, C., Ekaterianiadou, L. V., & Kyriakidis, D. A. (1997). Kinetics of xanthan gum production from whey by constructed strains of Xanthomonas campestris in batch fermentations. Chemical Engineering & Technology, 20(5), 354-360. http://doi.org/10.1002/ ceat.270200513.
Liu, Z., Yin, Y., Liu, W., & Dunford, M. (2015). Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics, 103(1), 135-158. http://doi.org/10.1007/s11192-014-1517-y.
Mansoor, Z., Tchuenbou-Magaia, F., Kowalczuk, M., Adamus, G., Manning, G., Parati, M., Radecka, I., & Khan, H. (2022). Polymers use as mulch films in agriculture: A review of history, problems and current trends. Polymers, 14(23), 5062. http://doi.org/10.3390/ polym14235062. PMid:36501456.
Mesomo, M., Silva, M. F., Boni, G., Padilha, F. F., Mazutti, M., Mossi, A., De Oliveira, D., Cansian, R. L., Di Luccio, M., & Treichel, H. (2009). Xanthan gum produced by Xanthomonas campestris from cheese whey: Production optimisation and rheological characterisation. Journal of the Science of Food and Agriculture, 89(14), 2440-2445. http://doi.org/10.1002/jsfa.3743.
NanGong, Z., Li, T., Zhang, W., Song, P., & Wang, Q. (2021). Capsule-C: An improved Steinernema carpocapsae capsule formulation for controlling Agrotis ipsilon Hufnagel (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 31(1), 148. http://doi.org/10.1186/s41938-021-00492-5.
Nasrabadi, T., Ruegner, H., Sirdari, Z. Z., Schwientek, M., & Grathwohl, P. (2016). Using Total Suspended Solids (TSS) and Turbidity as proxies for evaluation of metal transport in river water. Applied Geochemistry, 68, 1-9. http://doi.org/10.1016/j.apgeochem.2016.03.003.
Nery, T. B. R., Brandão, L. V., Esperidião, M. C. A., & Druzian, J. I. (2008). Biossíntese de goma xantana a partir da fermentação de soro de leite: Rendimento e viscosidade. Química Nova, 31(8), 1937-1941. http://doi.org/10.1590/S0100-40422008000800004.
Nicholson, C. C., Knapp, J., Kiljanek, T., Albrecht, M., Chauzat, M.-P., Costa, C., De La Rúa, P., Klein, A.-M., Mänd, M., Potts, S. G., Schweiger, O., Bottero, I., Cini, E., De Miranda, J. R., Di Prisco, G., Dominik, C., Hodge, S., Kaunath, V., Knauer, A., Laurent, M., Martínez-López, V., Medrzycki, P., Pereira-Peixoto, M. H., Raimets, R., Schwarz, J. M., Senapathi, D., Tamburini, G., Brown, M. J. F., Stout, J. C., & Rundlöf, M. (2024). Pesticide use negatively affects bumble bees across European landscapes. Nature, 628(8007), 355-358. http://doi.org/10.1038/s41586-023- 06773-3. PMid:38030722.
Nobre, C., Cerqueira, M. Â., Rodrigues, L. R., Vicente, A. A., & Teixeira, J. A. (2015). Production and extraction of polysaccharides and oligosaccharides and their use as new food additives. In A. Pandey, R. Höfer, M. Taherzadeh, K. Madhavan Nampoothiri & C. Larroche (Eds.), Industrial biorefineries & white biotechnology (pp. 653-679). Amsterdam: Elsevier. http://doi.org/10.1016/ B978-0-444-63453-5.00021-5.
Rosalam, S., & England, R. (2006). Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzyme and Microbial Technology, 39(2), 197-207. http://doi.org/10.1016/j.enzmictec.2005.10.019.
Roser, M., Ritchie, H., & Rosado, P. (2023). Food supply. https://ourworldindata.org/food-supply
Santos, F. P., Oliveira Junior, A. M., Nunes, T. P., Silva, C. E. F., & Abud, A. K. S. (2016). Bioconversion of agro-industrial wastes into xanthan gum. Chemical Engineering Transactions, 49, 145-150. http://doi.org/10.3303/CET1649025.
Silva, J. A., Cardoso, L. G., Assis, D. J., Gomes, G. V. P., Oliveira, M. B. P. P., Souza, C. O., & Druzian, J. I. (2018). Xanthan gum production by Xanthomonas campestris pv. Campestris IBSBF 1866 and 1867 from lignocellulosic agroindustrial wastes. Applied Biochemistry and Biotechnology, 186(3), 750-763. http://doi.org/10.1007/ s12010-018-2765-8. PMid:29728963.
Silva, M. F., Fornari, R. C. G., Mazutti, M. A., De Oliveira, D., Padilha, F. F., Cichoski, A. J., Cansian, R. L., Di Luccio, M., & Treichel, H. (2009). Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. Journal of Food Engineering, 90(1), 119-123. http://doi.org/10.1016/j.jfoodeng.2008.06.010.
Sofo, A., Nicoletta Mininni, A., & Ricciuti, P. (2020). Comparing the effects of soil fauna on litter decomposition and organic matter turnover in sustainably and conventionally managed olive orchards. Geoderma, 372, 114393. http://doi.org/10.1016/j.geoderma.2020.114393.
Soppelsa, S., Van Hemelrijck, W., Bylemans, D., & Andreotti, C. (2023). Essential oils and chitosan applications to protect apples against postharvest diseases and to extend shelf life. Agronomy, 13(3), 822. http://doi.org/10.3390/agronomy13030822.
Sorze, A., Valentini, F., Smolar, J., Logar, J., Pegoretti, A., & Dorigato, A. (2023). Effect of different cellulose fillers on the properties of xanthan-based composites for soil conditioning applications. Materials, 16(23), 7285. http://doi.org/10.3390/ma16237285. PMid:38068029.
Steffens, J., Preci, D., Nunes, M. B., Fernandes, I. A., Seguenka, B., Valduga, E., & Steffens, C. (2020). Hidrólise de soro de leite ovino difiltrado pela enzima corolase h-ph e avaliação da geração de peptídeos bioativos. Revista Tecnológica, 29(1), 168-183. http://doi.org/10.4025/revtecnol.v29i1.51138.
Swaminathan, J., Van Koten, C., Henderson, H. V., Jackson, T. A., & Wilson, M. J. (2016). Formulations for delivering Trichoderma atroviridae spores as seed coatings, effects of temperature and relative humidity on storage stability. Journal of Applied Microbiology, 120(2), 425-431. http://doi.org/10.1111/ jam.13006. PMid:26600429.
Trivunović, Z., Mitrović, I., Puškaš, V., Bajić, B., Miljić, U., & Dodić, J. (2022). Utilization of wastewaters from red wine technology for xanthan production in laboratory bioreactor. Journal of Food Processing and Preservation, 46(10). http://doi.org/10.1111/ jfpp.15849.
Trivunović, Z., Zahović, I., Vlajkov, V., Grahovac, M., Grahovac, J., & Dodić, J. (2024). Xanthan production using wastewaters from rose wine Industry: Screening of Xanthomonas euvesicatoria Isolates. Periodica Polytechnica. Chemical Engineering, 68(3), 428-436. http://doi.org/10.3311/PPch.23907.
United Nations. (2022). World population prospects 2022: Summary of results. New York.
Vandenberghe, L. P. S., Valladares-Diestra, K. K., Bittencourt, G. A., Zevallos Torres, L. A., Vieira, S., Karp, S. G., Sydney, E. B., Carvalho, J. C., Thomaz Soccol, V., & Soccol, C. R. (2022). Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil. Renewable & Sustainable Energy Reviews, 167, 112721. http://doi.org/10.1016/j.rser.2022.112721.
Vandermeulen, G. W. M., Boarino, A., & Klok, H. (2022). Biodegradation of water‐soluble and water‐dispersible polymers for agricultural, consumer, and industrial applications: Challenges and opportunities for sustainable materials solutions. Journal of Polymer Science, 60(12), 1797-1813. http://doi.org/10.1002/ pol.20210922.
Veshapidze, S., Otinashvili, R., Gvarutsidze, A., Abuselidze, G., & Zoidze, G. (2022). Modern technologies to overcome the challenges of globalization. Entrepreneurship, 10(2), 22-32. http://doi.org/10.37708/ep.swu.v10i2.2.
Vijayalakshmi, V., Sathish, S., & Umarani, R. (2024). Effect of Xanthan gum seed coating on seed germination and seedling vigour of finger millet (Eleusine coracana L.). Environment Conservation Journal, 25(1), 206-210. http://doi.org/10.36953/ECJ.24342669.
Wani, S. M., Mir, S. A., Khanday, F. A., & Masoodi, F. A. (2021). Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. Innovative Food Science & Emerging Technologies, 74, 102846. http://doi.org/10.1016/j.ifset.2021.102846.
Willis Chan, D. S., Prosser, R. S., Rodríguez-Gil, J. L., & Raine, N. E. (2019). Assessment of risk to hoary squash bees (Peponapis pruinosa) and other ground-nesting bees from systemic insecticides in agricultural soil. Scientific Reports, 9(1), 11870. http://doi.org/10.1038/s41598-019-47805-1. PMid:31413274.
Xie, P. (2015). Study of international anticancer research trends via co-word and document cocitation visualization analysis. Scientometrics, 105(1), 611-622. http://doi.org/10.1007/ s11192-015-1689-0.
Zhang, S., Bao, Z., Wu, Y., Wang, Y., Liu, R., Gao, Y., Zhao, X., Zhang, C., & Du, F. (2023). Enhancing the stability and effectivity of multiple pesticide formulation mixtures by adding an eco-friendly adjuvant. ACS Sustainable Chemistry & Engineering, 11(42), 15385-15396. http://doi.org/10.1021/acssuschemeng.3c04446.
Zhang, P., Pan, T., Ma, L., Liu, B., Tian, S., & Chen, X. (2024). Enhancing stability and odor control of water-based foam for pesticide site restoration using xanthan gum. Process Safety and Environmental Protection, 185, 660-669. http://doi.org/10.1016/j.psep.2024.03.038.
Submitted date:
07/11/2025
Accepted date:
10/07/2025
