Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00032024
Biotechnology Research and Innovation Journal
Research paper

Viral diagnosis and effectiveness of shoot tip culture for virus eradication in passion fruit (Passiflora edulis Sims) matrices used for hybrid seed production

Elias da Cruz Ribeiro; Emanuel Felipe Medeiros Abreu; Inaê Mariê de Araújo Silva-Cardoso; Andreza Henrique Vidal; Simone da Graça Ribeiro; André Luís Xavier de Souza; Jonny Everson Scherwinski-Pereira

Downloads: 3
Views: 242

Abstract

The passion fruit crop is of significant importance in Brazil. However, fruit production nationwide has been declining due to viral infections. This study aimed to conduct a viral diagnosis and evaluate shoot tip culture for virus eradication in passion fruit (Passiflora edulis Sims) matrices used for hybrid seed production. Initially, branches from the CPMSC1, CPGA1, MR1, CPMGA2, and CPF1SSBR genotypes were collected in a greenhouse. RNA and DNA were extracted from the leaves for viral detection using RT-PCR and PCR with primers targeting genomic regions of cowpea aphid-borne mosaic virus (CABMV), lettuce chlorosis virus (LCV), and begomovirus. For viral diagnosis, it was observed that CABMV was detected in 100% of the samples from all tested matrices. Additionally, CPGA1 (17%) and CPMSC (11%) samples tested positive for begomovirus infection, while none of the samples were positive for LCV. For virus eradication, shoot tips (0.1 - 0.3 mm) with up to two primordial leaves were isolated and inoculated in an MS medium supplemented with 0.05 µM NAA, 0.44 µM BA, and 0.28 µM GA3 to evaluate the effectiveness of shoot tip culture in eliminating CABMV from the previously diagnosed matrices. After shoot tip regeneration, the explants were transferred to an MS medium containing 4.43 µM BA to stimulate bud proliferation and multiplication. Bud clusters obtained from the shoot tip culture were used for CABMV indexing by RT-PCR to confirm whether virus eradication had occurred. Viral eradication was only observed in one sample of the CPGA1 genotype. Subsequently, a multiplication protocol was established to increase the material upon regeneration, and using MS medium supplemented with 4.43 µM BA, shoot development of at least 6 mm was obtained after 30 days of cultivation. The material from the regenerated shoots was then used for subsequent multiplication, elongation, and rooting experiments. It was concluded that the culture of shoot tips is capable of providing virus eradication, although it requires optimization of the steps. Combining complementary techniques, such as thermotherapy, can enhance this eradication. Finally, the regenerated material from in vitro culture was used for the subsequent multiplication, elongation, and rooting experiments.

Keywords

Meristem culture; CABMV; LCV; Begomovirus; Detection; Virus-free plant

References

Agüero, J., Vives, M. C., Velázquez, K., Ruiz-Ruiz, S., Juárez, J., Navarro, L., Moreno, P., & Guerri, J. (2013). Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus. Molecular Plant Pathology, 14(6), 610-616. http://doi. org/10.1111/mpp.12031. PMid:23560714.

Anand, S. P., Jayakumar, E., Jeyachandran, R., Nandagobalan, V., & Doss, A. (2012). Direct organogenesis of Passiflora foetida L. through nodal explants. Plant Tissue Culture & Biotechnology, 22(1), 87-91. http://doi.org/10.3329/ptcb.v22i1.11266.

Apio, H. B., Alicai, T., & Ogwok, E. (2021). Efficient conditions for in vitro establishment and regeneration of disease-free Ugandan farmer-preferred cassava genotypes. African Journal of Biotechnology, 20(9), 369-382. http://doi.org/10.5897/ AJB2021.17361.

Azad, M., Khatun, Z., Eaton, T. E.-J., Hossen, M. I., Haque, M. K., & Soren, E. B. (2020). Generation of virus free potato plantlets through meristem culture and their field evaluation. American Journal of Plant Sciences, 11(11), 1827-1846. http://doi. org/10.4236/ajps.2020.1111131.

Bernacci, L. C., Nunes, T. S., Mezzonato, A. C., Milward-de-Azevedo, M. A., Imig, D. C., & Cervi, A. C. (2020). Passiflora L. Flora do Brasil 2020. Rio de Janeiro Botanical Garden. https://floradobrasil2020. jbrj.gov.br/FB12506

Bettoni, J. C., Souza, J. A., Volk, G. M., Dalla, C. M., Silva, F. N., & Kretzschmar, A. A. (2019). Eradication of latent viruses from apple cultivar ‘Monalisa’ shoot tips using droplet-vitrification cryotherapy. Scientia Horticulturae, 250, 12-18. http://doi. org/10.1016/j.scienta.2019.02.033.

Biricolti, S., & Chiari, A. (1994). Meristem culture and micrografting of Passiflora edulis f. edulis. Advances in Horticultural Science, 8(3), 171-175.

Cerqueira-Silva, C. B. M., Conceição, L. D. H. C. S., Souza, A. P., & Corrêa, R. X. (2014). A history of passion fruit woodiness disease with emphasis on the current situation in Brazil and prospects for Brazilian passion fruit cultivation. European Journal of Plant Pathology, 139(2), 261-270. http://doi.org/10.1007/s10658- 014-0391-z.

Das, M. C., Nongsiang, A., & Sanglyne, M. W. (2023). Detection methods and in vitro elimination techniques for orchid viruses: A review. South African Journal of Botany, 153, 227-235. http:// doi.org/10.1016/j.sajb.2022.12.003.

Dornelas, M. C., & Vieira, M. L. C. (1994). Tissue culture studies on species of Passiflora. Plant Cell, Tissue and Organ Culture, 36(2), 211-217. http://doi.org/10.1007/BF00037722.

Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus (San Francisco, Calif.), 12(1), 13-15.

Driver, J., & Kuniyuki, A. (1984). In vitro propagation of Paradox walnut rootstock. HortScience, 19(4), 507-509. http://doi. org/10.21273/HORTSCI.19.4.507.

Embrapa Cerrados. (2019, January 28). Maracujá azedo BRS Rubi do Cerrado (BRS RC). Embrapa Cerrados. https://www.embrapa. br/en/busca-de-solucoes-tecnologicas/-/produto-servico/1040/ maracuja-azedo-brs-rubi-do-cerrado-brs-rc

Embrapa Cerrados. (2020, August 20). Maracujá azedo BRS Rubi do Cerrado (BRS RC). Embrapa Cerrados. https://www.embrapa. br/en/busca-de-solucoes-tecnologicas/-/produto-servico/1040/ maracuja-azedo-brs-rubi-do-cerrado-brs-rc

Faria, G. A., Costa, M. A. P. C., Ledo, C. A. S., Junghans, T. G., Souza, A. S., & Cunha, M. A. P. (2007). Meio de cultura e tipo de explante no estabelecimento in vitro de espécies de maracujazeiro [Culture medium and type of explant in the in vitro establishment of passion fruit species]. Bragantia, 66(4), 535-543. http://doi. org/10.1590/S0006-87052007000400002.

Favara, G. M., Camelo-García, V. M., Spadotti, D. M. A., Silva, J. M. F., Nagata, T., Kitajima, E. W., & Rezende, J. A. M. (2020). First report of lettuce chlorosis virus infecting periwinkle in Brazil. Plant Disease, 104(4), 8-11. http://doi.org/10.1094/ PDIS-08-19-1789-PDN.

Feng, C., Wang, R., Li, J., Wang, B., Yin, Z., Cui, Z., Li, B., Bi, W., Zhang, Z., Li, M., & Wang, Q. (2013). Production of pathogen-free horticultural crops by cryotherapy of in vitro grown shoot tips. Methods in Molecular Biology (Clifton, N.J.), 11013, 463-482. http://doi.org/10.1007/978-1-62703-074-8_35. PMid:23179720.

Fonseca, A. M. A., Geraldi, M. V., Junior, M. R. M., Silvestre, A. J. D., & Rocha, S. M. (2022). Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Research International, 160(8), 111665. http://doi.org/10.1016/j. foodres.2022.111665. PMid:36076381.

Fontenele, R. S., Abreu, R. A., Lamas, N. S., Alves-Freitas, D. M. T., Vidal, A. H., Poppiel, R. R., Melo, F. L., Lacorte, C., Martin, D. P., Campos, M. A., Varsani, A., & Ribeiro, S. G. (2018). Passion fruit chlorotic mottle virus: Molecular character-ization of a new divergent geminivirus in Brazil. Viruses, 10(4), 169. http://doi. org/10.3390/v10040169. PMid:29614801.

Fortes, G. R. L., & Scherwinski-Pereira, J. E. (2003). Batata-semente pré-básica: Cultura de Tecidos [Pre-Basic Seed Potatoes: Tissue Culture]. In A.S. Pereira, & Daniels, J. (Eds.), O cultivo da batata na região sul do Brasil (pp. 421-433). Embrapa Clima Temperado. Embrapa Informação Tecnológica. https://livimagens.sct. embrapa.br/amostras/00072570.pdf

Fresnillo, P., Jover-Gill, S., Samach, A., & Candela, H. (2022). Complete genome sequence of an isolate of Passiflora chlorosis virus from passion fruit (Passiflora edulis Sims). Plants, 11(14), 1838. http://doi.org/10.3390/plants11141838. PMid:35890472.

Gomes, F. R., Silva, D. F. P., Rodrigues, C. D. R., Salazar, A. H., Assunção, H. F., & Cruz, S. C. S. (2022). Evaluation of production and fruit quality of a yellow passion fruit cultivar infected with the cowpea aphid-borne mosaic virus. Revista Brasileira de Fruticultura, 44(3), e-259. http://doi.org/10.1590/0100-29452022259.

Gonçalves, Z. S., Lima, L. K. S., Soares, T. L., Abreu, E. F. M., Barbosa, C. J., CerqueiraSilva, C. B. M., Jesus, O. N., & Oliveira, E. J. (2018). Identification of Passiflora spp. genotypes resistant to Cowpea aphid-borne mosaic virus and leaf anatomical response under controlled conditions. Scientia Horticulturae, 231, 166-178. http://doi.org/10.1016/j.scienta.2017.12.008.

Goyal, A.K., Pradhan, S. Basistha, B.C., & Sen, A., (2015) Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech, 5(4), 473-482. http://dx.doi.org/10.1007/ s13205-014-0244-7.

Gupta, P., Singh, A., Singh, N., Ali, F., Tyagi, A., & Shanmugam, S. K. (2022). Healing Potential of Propolis Extract–Passiflora edulis Seed Oil Emulgel Against Excisional Wound: Biochemical, Histopathological, and Cytokines Level Evidence. Assay and Drug Development Technologies, 20(7), 300-316. http://doi. org/10.1089/adt.2022.075. PMid:36269233.

Hariharan, G., & Prasannath, K. (2021). Recent advances in molecular diagnostics of fungal plant pathogens: A mini review. Frontiers in Cellular and Infection Microbiology, 10, 600234. http://doi. org/10.3389/fcimb.2020.600234. PMid:33505921.

Instituto Brasileiro de Geografia e Estatística. (2023). Produção de maracujá [Passion fruit production]. IBGE. https://www.ibge. gov.br/explica/producao-agropecuaria/maracuja/br

Isutsa, D. K. (2004). Rapid micropropagation of passion fruit (Passiflora edulis Sims.) varieties. Scientia Horticulturae, 99(3- 4), 395-400. http://doi.org/10.1016/j.scienta.2003.08.002.

Ita, E. E., Uyoh, E. A., Nakamura, I., & Ntui, V. O. (2020). Efficient elimination of Yam mosaic virus (YMV) from white yam (Dioscorea rotundata Poir.) by cryotherapy of axillary buds. South African Journal of Botany, 130, 123-129. http://doi.org/10.1016/j. sajb.2019.12.022. PMid:32565604.

Junghans, T. G., Andrade, S. R. M., Simões, K. S., Caldas, C. S., Souza, A. S., & Ledo, C. A. S. (2014). In vitro culture of shoot apices from juvenile and adult yellow passion fruit plants. Agrária, 9(3), 353-358. http://doi.org/10.5039/agraria.v9i3a3584.

Jusuf, N. K., Putra, I. B., & Dewi, N. K. (2020). Antibacterial Activity of passion fruit purple variant (Passiflora edulis Sims var. edulis) seeds extract against Propionibacterium acnes. Clinical, Cosmetic and Investigational Dermatology, 13, 99-104. http://doi. org/10.2147/CCID.S229743. PMid:32099437.

Kawata, K., Ushida, C., Kawai, F., Kanamori, M., & Kuriyama, A. (1995). Micropropagation of passion fruit from subcultured multiple shoot primordia. Journal of Plant Physiology, 147(2), 281-284. http://doi.org/10.1016/S0176-1617(11)81520-8.

Kazemi, N., Zaare Nahandi, F., Habashi, A. A., & Masoomi-Aladizgeh, F. (2020). Comparing the efficiency of conventional and novel methods of virus elimination using molecular techniques. European Journal of Plant Pathology, 157(4), 887-897. http:// doi.org/10.1007/s10658-020-02048-z.

Kraus, J., Cleveland, S., Putnam, M. L., Keller, K. E., Martin, R. R., & Tzanetakis, I. E. (2010). A new Potyvirus sp. infects Verbena exhibiting leaf mottling symptoms. Plant Disease, 94(9), 1132- 1136. http://doi.org/10.1094/PDIS-94-9-1132. PMid:30743723.

Lau, H. Y., & Botella, J. R. (2017). Advanced DNA-based point-ofcare diagnostic methods for plant diseases detection. Frontiers in Plant Science, 8, 2016. http://doi.org/10.3389/fpls.2017.02016. PMid:29375588.

Lou, H., Liu, Z., & Xu, Q. (2023). Detection and elimination of shallot latent virus and onion yellow dwarf virus for potato onion (Allium cepa L. var. aggregatum Don). Annals of Applied Biology, 182(1), 112-120. http://doi.org/10.1111/aab.12801.

Maciel, S. C., Nakano, D. H., Rezende, J. A. M., & Vieira, M. L. C. (2009). Screening of Passiflora species for reaction to Cowpea aphid-borne mosaic virus reveals an immune wild species. Scientia Agrícola, 66(3), 414-418. http://doi.org/10.1590/S0103- 90162009000300018.

Meletti, L.M.M., (2011). Avanços na cultura do maracujá no Brasil. Revista Brasileira de Fruticultura, 33(spe1), 83-91. https://doi. org/10.1590/S0100-29452011000500012.

Melo, J. R. F., Figueira, A. R., Moreira, C. C. N., & Oliveira, A. C. (2015). Recent characterization of cowpea aphid-borne mosaic virus (CABMV) in Bahia State, Brazil, suggests potential regional isolation. African Journal of Biotechnology, 14(9), 735-744. http://doi.org/10.5897/AJB2015.14409.

Mink, G. I., Vetten, H. J., Ward, C. W., Berger, P. H., Morales, F. J., Myers, J. M., Silbernagel, M. J., & Barnett, O. W. (1994). Taxonomy and classification of legume-infecting potyviruses. Archives of Virology, 139(1-2), 231-235. http://doi.org/10.1007/ BF01309468. PMid:7826213.

Mukhopadhyay, S. (2010). Management: Strategies and tactics. In S. Mukhopadhyay. Plant virus, vector: Epidemiology and management (1st ed., pp. 252-260). Science Publishers.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Plant Physiology, 15(3), 473-497. http://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Nascimento, A. V. S., Santana, E. N., Braz, A. S. K., Alfenas, P. F., Pio-Ribeiro, G., Andrade, G. P., Carvalho, M. G., & Zerbini, F. M. (2006). Cowpea aphid-borne mosaic virus (CABMV) is widespread in passionfruit in Brazil and causes passionfruit woodiness disease.

Archives of Virology, 151(9), 1797-1809. http://doi.org/10.1007/ s00705-006-0755-6. PMid:16596328.

Nascimento, A. V. S., Souza, A. R. R., Alfenas, P. F., Andrade, G. P., Carvalho, M. G., Pio-Ribeiro, G., & Zerbini, F. M. (2004). Análise filogenética de potyvírus causando endurecimento dos frutos do maracujazeiro no Nordeste do Brasil. Fitopatologia Brasileira, 29(4), 378-383. http://doi.org/10.1590/S0100- 41582004000400003.

Nerway, Z. A. A., Duhoky, M. M. S., & Kassim, N. A. (2020). In vitro elimination of dahlia mosaic virus by using meristem culture, electrotherapy and chemotherapy. Iraqi Journal of Agricultural Sciences, 51(2), 665-674. http://doi.org/10.36103/ijas.v51i2.994.

Oliveira, J. C., & Ruggiero, C. (2005). Espécies de maracujá com potencial agronômico [Passion fruit species with agronomic potential]. In F. G. Faleiro, N. T. V. Junqueira, & M. F. Braga (Eds.), Maracujá: Germoplasma e melhoramento genético (pp. 143-158). Embrapa Cerrados. https://www.embrapa.br/buscade-publicacoes/-/publicacao/569573/maracuja-germoplasmae-melhoramento-genetico

Oliveira, J. P., Costa, F. H. S., & Scherwinski-Pereira, J. E. (2008). Micropropagación y estimativa de producción de mudas de bananos para la Amazonia Occidental [Micropropagation and estimation of banana seedling production for the Western Amazon]. Pesquisa Agropecuária Brasileira, 43(10), 1429-1432. http://doi. org/10.1590/S0100-204X2008001000023.

Otipa, M. J., Amata, R. L., Waiganjo, M., Mureithi, J. G., Wasilwa, L. A., Ateka, E. M., Mamati, E., Miano, D., Kinoti, J., Kyamanywa, S., Erbaugh, M., & Miller, S. (2011). Challenges facing passion fruit smallholder farmers in North Rift region of Kenya. Acta Horticulturae, 911(37), 323-329. http://doi.org/10.17660/ ActaHortic.2011.911.37.

Pallás, V., Sánchez-Navarro, J. A., & James, D. (2018). Recent advances on the multiplex molecular detection of plant viruses and viroids. Frontiers in Microbiology, 9, 2087. http://doi. org/10.3389/fmicb.2018.02087. PMid:30250456.

Prammanee, S., Thumjamras, S., Chiemsombat, P., & Pipattanawong, N. (2011). Efficient shoot regeneration from direct apical meristem tissue to produce virus-free purple passion fruit plants. Crop Protection (Guildford, Surrey), 30(11), 1425-1429. http://doi. org/10.1016/j.cropro.2011.07.008.

Preisigke, S. C., Viana, A. P., Santos, E. A., Santos, P. R., Cavalcante, N. R., Ambrósio, M., Freitas, J. C. O., & Rodrigues, R. (2021). Backcrossing in passionfruit: Generation advance and selection of genotypes resistant to cowpea aphid-borne mosaic virus. Genetics and Molecular Research, 20(1), GMR18668. http://doi. org/10.4238/gmr18668.

Ramgareeb, S., Snyman, S. J., Van Antwerpen, T., & Rutherford, R. S. (2010). Elimination of virus and rapid propagation of diseasefree sugarcane (Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell, Tissue and Organ Culture, 100(2), 175-181. http://doi.org/10.1007/s11240-009-9634-7.

Retheesh, S. T., & Bhat, A. I. (2010). Simultaneous elimination of cucumber mosaic virus and cymbidium mosaic virus infecting Vanilla planifolia through meristem culture. Crop Protection (Guildford, Surrey), 29(10), 1214-1217. http://doi.org/10.1016/j. cropro.2010.05.017.

Riska, S., Sato, Y., Inudo, K., Nakamura, M., Fukumoto, T., Takushi, T., Fuji, S., & Iwai, H. (2019). East Asian Passiflora distortion virus: A novel potyvirus species causing deformation of passionfruits in Japan. Journal of General Plant Pathology, 85(3), 221-231. http://doi.org/10.1007/s10327-019-00842-0.

Rochow, W. F., & Ross, A. F. (1955). Virus multiplication in plants doubly infected by potato viruses X and Y. Virology, 1(1), 10-27. http://doi.org/10.1016/0042-6822(55)90003-9. PMid:13267974. Rojas, M. R. (1993). Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Disease, 77(4), 340-347. http://doi.org/10.1094/PD-77-0340.

Sampaio, A. C., Scudeller, N., Fumis, T. F., Almeida, A. M., Pinotti, R. N., Garcia, M. J. M., & Pallamin, M. L. (2008). Manejo cultural do maracujazeiro-amarelo em ciclo anual visando à convivência com o vírus do endurecimento dos frutos: Um estudo de caso. Revista Brasileira de Fruticultura, 30(2), 343-347. http://doi. org/10.1590/S0100-29452008000200013.

Santos, F. A. R., Xavier, J. A., da Silva, F. C., Merlin, J. P. J., Goulart, M. O. F., & Rupasinghe, H. P. V. (2022). Antidiabetic, antiglycation, and antioxidant activities of ethanolic seed extract of Passiflora edulis and piceatannol in vitro. Molecules (Basel, Switzerland), 27(13), 4064. http://doi.org/10.3390/molecules27134064. PMid:35807309.

Santos-Jiménez, J. L., Montebianco, C. B., Vidal, A. H., & Ribeiro, S. G., Barreto-Bergter, E., & Vaslin, M. F. S., (2022). A fungal glycoprotein mitigates passion fruit woodiness disease caused by cowpea aphidborne mosaic virus (CABMV) in Passiflora edulis. BioControl, 67, 75-87. https://doi.org/10.1007/s10526-021-10114-6.

Sasi, B., & Bhat, A. I. (2018). In vitro elimination of Piper yellow mottle virus from infected black pepper through somatic embryogenesis and meristem-tip culture. Crop Protection (Guildford, Surrey), 103, 39-45. http://doi.org/10.1016/j.cropro.2017.09.004.

Scherwinski-Pereira, J. E., & Fortes, G. R. L. (2004). Organogênese de ápices meristemáticos de batata em meios de isolamento e multiplicação in vitro. Horticultura Brasileira, 22(2), 197-201. http://doi.org/10.1590/S0102-05362004000200007.

Severin, C., Bueno, M., Santín, F., & Giubileo, M. G. (2011). Respuesta in vitro de diferentes biotipos y explantos de Passiflora caerulea L. Revista Colombiana de Biotecnologia, 13(1), 73-79.

Shekhawat, M. S., Manokari, M., & Ravindran, C. P. (2015). An improved micropropagation protocol by ex vitro rooting of Passiflora edulis Sims. f. flavicarpa Deg. through nodal segment culture. Scientifica, 2015, 578676. http://doi. org/10.1155/2015/578676. PMid:26273489.

Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews. Microbiology, 21(10), 640-656. http://doi.org/10.1038/s41579- 023-00900-7. PMid:37131070.

Soares, W. S., Rêgo, M. M., Rêgo, E. R., Barroso, P. A., Nascimento, K. S., & Ferreira, K. T. (2012). Estabelecimento in vitro e micropropagação de maracujá silvestre (Passiflora foetida L.). Revista Brasileira de Plantas Medicinais, 14(spe), 138-142. http:// doi.org/10.1590/S1516-05722012000500002.

Srinivasan, R., & Alvarez, J. M. (2007). Effect of mixed viral infections (Potato Virus Y–Potato Leafroll Virus) on biology and preference of vectors Myzus persicae and Macrosiphum euphorbiae (Hemiptera: Aphididae). Journal of Economic Entomology, 100(3), 646-655. http://doi.org/10.1603/0022-0493(2007)100[646:EOMVIP]2.0. CO;2. PMid:17598521.

Taiwo, M. A., Kareem, K. T., Nsa, I. Y., & D’a Hughes, J. (2007). Cowpea viruses: Effect of single and mixed infections on symptomatology and virus concentration. Virology Journal, 4(1), 95. http://doi. org/10.1186/1743-422X-4-95. PMid:17900355.

Tchatchambe, N. B. J., Ibanda, N., Adheka, G., Onautshu, O., Swennen, R., & Dhed’a, D. (2020). Production of banana bunchy top virus (BBTV)-free plantain plants by in vitro culture. African Journal of Agricultural Research, 15(3), 361-366. http://doi. org/10.5897/AJAR2019.14522.

Tiwari, A. K., Tripathi, S., Lal, M., Sharma, M. L., & Chiemsombat, P. (2011). Elimination of sugarcane grassy shoot disease through apical meristem culture. Archiv für Phytopathologie und Pflanzenschutz, 44(20), 1942-1948. http://doi.org/10.1080/03 235408.2010.544446.

Vaca-Vaca, J. C., Carrasco-Lozano, E. C., Rodríguez-Rodríguez, M., Betancur-Perez, J. F., & Lopez-Lopez, K. (2016). Primer reporte de un begomovirus presente en maracuyá amarillo [Passiflora edulis f. flavicarpa (Degener)] en Valle del Cauca, Colombia [First report of a begomovirus present in yellow passion fruit [Passiflora edulis f. flavicarpa (Degener)] in Valle del Cauca, Colombia]. Revista Colombiana de Biotecnologia, 18(2), 56-65. http://doi. org/10.15446/rev.colomb.biote.v18n2.52904.

Venkataravanappa, V., Lakshminarayana Reddy, C. N., Hiremath, S., Muralidhara, B. M., Suryanarayana, V., Baranwal, V. K., & Krishna Reddy, M. (2022). First record of a novel begomovirus and satellites associated with leaf curl disease of passion fruit from India. Journal of Plant Protection Research, 62(1), 78-92. http://doi.org/10.24425/jppr.2022.140303.

Viana, C. A. S., Pires, M. C., Peixoto, J. R., Junqueira, N. T. V., & Blum, L. E. B. (2014). Resistência parcial de genótipos de maracujáazedo à virose do endurecimento do fruto (Cowpea aphid-borne mosaic virus - CABMV) [Partial resistance of maracujá-azedo genotypes to fruit hardening virus (Cowpea aphid-borne mosaic virus - CABMV)]. Bioscience Journal, 30(1), 338-345. https:// seer.ufu.br/index.php/biosciencejournal/article/view/18155

Vidal, A. H., Felix, G. P., Abreu, E. F. M., Nogueira, I., Alves-Freitas, D. M. T., Faleiro, F. G., Fontenele, R. S., Peixoto, J. R., Lacorte, C., Rosa, R. C. C., Jesus, O. N., Resende, R. O., Varsani, A., & Ribeiro, S. G. (2021). Occurrence of lettuce chlorosis virus in Passiflora spp. in Brazil. Journal of Plant Pathology, 103(7), 443-447. http://doi.org/10.1007/s42161-021-00813-5.

Vidal, A. H., Sanches, M. M., Alves-Freitas, D. M. T., Abreu, E. F. M., Lacorte, C., Pinheiro-Lima, B., Rosa, R. C. C., Jesus, O. N., Campos, M. A., Varsani, A., & Ribeiro, S. G. (2018). First world report of cucurbit aphid-borne yellows virus infecting Passion fruit. Plant Disease, 102(12), 2665. http://doi.org/10.1094/ PDIS-04-18-0694-PDN.

Vieira, L. M., Rocha, D. I., Taquetti, M. F., Silva, L. C., Campos, J. M. S., Viccini, L. F., & Otoni, W. C. (2014). In vitro plant regeneration of Passiflora setacea D.C. (Passifloraceae): The influence of explant type, growth regulators, and incubation conditions. In Vitro Cellular & Developmental Biology. Plant, 50(6), 738-745. http://doi.org/10.1007/s11627-014-9650-0.

Vivek, M., & Modgil, M. (2018). Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II.’. Virusdisease, 29(1), 75-82. http://doi.org/10.1007/ s13337-018-0437-5. PMid:29607362.

Wang, M.-R., Cui, Z.-H., Li, J.-W., Hao, X.-Y., Zhao, L., & Wang, Q.- C. (2018a). In vitro thermotherapy-based methods for plant virus eradication. Plant Methods, 14(87), 87. http://doi.org/10.1186/ s13007-018-0355-y. PMid:30323856.

Wang, M.-R., Chen, L., Zhang, Z., Blystad, D.-R., & Wang, Q.-C. (2018b). Cryotherapy: a novel method for virus eradication in economically important plant species. In V. Loyola-Vargas & N. Ochoa-Alejo (Eds.), Plant cell culture protocols. Methods in molecular biology (pp. 257-268). Humana Press. http://doi. org/10.1007/978-1-4939-8594-4_17

Wisler, G. C., Duffus, J. E., & Gerik, J. S. (2007). First report of lettuce chlorosis virus naturally infecting sugar beets in California. Plant Disease, 81(5), 550-550. http://doi.org/10.1094/ PDIS.1997.81.5.550D. PMid:30861943.

Yao, S. C., Jiang, Y. Y., Ni, S., Wang, L., Feng, J., Yang, R. W., Yang, L. X., Len, Q. Y., & Zhang, L. (2022). Development of a highly efficient virus-free regeneration system of Salvia miltiorrhiza from Sichuan using apical meristem as explants. Plant Methods, 18(1), 50. http://doi.org/10.1186/s13007-022-00872-4. PMid:35436933.

Ye, T., Zheng, G. H., Guo, Y., & Ming, Y.-L. (2022). First report of Euphorbia leaf curl virus infecting Passiflora edulis in Fujian province, China. Journal of Plant Pathology, 104(12), 807. http:// doi.org/10.1007/s42161-021-00941-y.

Zhang, S. B., Zhang, D. Y., Liu, Y., Luo, X. W., Liu, M. Y., Du, J., & Wang, M. C. (2017). First report of lettuce chlorosis virus infecting tomato in China. Plant Disease, 101(5), 846-846. http://doi. org/10.1094/PDIS-09-16-1315-PDN.


Submitted date:
02/21/2024

Accepted date:
07/19/2024

672e4e80a9539524e206c334 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections