Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00032023
Biotechnology Research and Innovation Journal
Review Article

Occurrence of fumonisins and strategies for biocontrol in beer production: a systematic review

Adriane Buczynski; Juliana Vitória Messias Bittencourt; Mariana Machado Fidelis do Nascimento; Elisabete Hiromi Hashimoto

Downloads: 0
Views: 118

Abstract

Beer is one of the most consumed alcoholic beverages in the world and is basically made up of water, barley malt, hops and yeast other components that also be added in production such as adjuncts. Corn is among the most used adjuncts and considered a viable and affordable grain to partially replace barley. However, there is a constant concern about the occurrence of mycotoxins and subsequent contamination in beer processing. Corn can be contaminated by a type of mycotoxin called fumonisins, produced by the fungus Fusarium verticillioides. The relationship between the detection of fumonisins and the use of corn-based adjuncts in beer processing has been described for over 25 years. However, the occurrence and effect on beer processing are less reported in the literature when compared to scientific publications on the relationship between the fungus F. graminearum and its mycotoxins. Given this scenario, the objective of this revision was to develop a Methodi Ordinatio systematic literature review on three subjects: fumonisins occurrence in beer, the contamination effect by F. verticillioides and fumonisins on beer processing and viable biocontrol methods to improve this problem. In total, 22 articles on the occurrence of fumonisins in beer were selected, which showed that countries on the African continent are the ones with the highest levels of mycotoxins contamination. In addition, 17 papers were selected to discuss the effect of contamination by F. verticillioides and fumonisins on beer processing. Together, these works verified the presence of fumonisins in the raw material and in the final product after processing, demonstrating that more measures are needed to restrict the development of fumonisin-producing fungi. Finally, 21 papers were selected on viable biocontrol methods to improve beer processing. Specifically, it has been described that conventional food processing methods are not able to eliminate fumonisins, and biological control methods are more effective as they reduce or eliminate them. Such methods involve physicochemical processes such as adsorption and enzymatic biodegradation.

Supplementary material

Keywords

Biological manipulation; Biological control; Corn; Barley; Beers

References

Abia, W. A., Warth, B., Sulyok, M., Krska, R., Tchana, A. N., Njobeh, P. B., Dutton, M. F., & Moundipa, P. F. (2013). Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control, 31(2), 438-453. http://dx.doi. org/10.1016/j.foodcont.2012.10.006.

Adekoya, I., Obadina, A., Adaku, C. C., De Boevre, M., Okoth, S., De Saeger, S., & Njobeh, P. (2018). Mycobiota and co-occurrence of mycotoxins in South African maize-based opaque beer. International Journal of Food Microbiology, 270, 22-30. http:// dx.doi.org/10.1016/j.ijfoodmicro.2018.02.001. PMid:29453120.

Alberts, J. F., Davids, I., Moll, W. D., Schatzmayr, G., Burger, H. M., Shephard, G. S., & Gelderblom, W. C. (2021). Enzymatic detoxification of the fumonisin mycotoxins during dry milling of maize. Food Control, 123, 107726. http://dx.doi.org/10.1016/j. foodcont.2020.107726.

Alberts, J., Schatzmayr, G., Moll, W. D., Davids, I., Rheeder, J., Burger, H. M., Shephard, G., & Gelderblom, W. (2019). Detoxification of the fumonisin mycotoxins in maize: An enzymatic approach. Toxins, 11(9), 523. http://dx.doi.org/10.3390/toxins11090523. PMid:31510008.

Aoyama, K., Nakajima, M., Tabata, S., Ishikuro, E., Tanaka, T., Norizuki, H., Itoh, Y., Fujita, K., Kai, S., Tsutsumi, T., Takahashi, M., Tanaka, H., Iizuka, S., Ogiso, M., Maeda, M., Yamaguchi, S., Sugiyama, K., Sugita-Konishi, Y., & Kumagai, S. (2010). Four-year surveillance for ochratoxin A and fumonisins in retail foods in Japan. Journal of Food Protection, 73(2), 344-352. http://dx.doi. org/10.4315/0362-028X-73.2.344. PMid:20132681.

Armando, M. R., Galvagno, M. A., Dogi, C. A., Cerrutti, P., Dalcero, A. M., & Cavaglieri, L. R. (2013). Statistical optimization of culture conditions for biomass production of probiotic gut‐borne Saccharomyces cerevisiae strain able to reduce fumonisin B1. Journal of Applied Microbiology, 114(5), 1338-1346. http:// dx.doi.org/10.1111/jam.12144. PMid:23347149.

Bampidis, V., Azimonti, G., Bastos, M. L., Christensen, H., Dusemund, B., Kos Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Brozzi, R., Galobart, J., Gregoretti, L., Innocenti, M. L., Sofianidis, K., Vettori, M. V., & López-Gálvez, G., and the EFSA Panel on Additives and Products or Substances used in Animal Feed. (2020). Safety and efficacy of fumonisin esterase from Komagataella phaffii DSM 32159 as a feed additive for all animal species. EFSA Journal, 18(7), e06207. PMid:32699560.

Beltrán, E., Ibáñez, M., Portolés, T., Ripollés, C., Sancho, J. V., Yusà, V., Marín, S., & Hernández, F. (2013). Development of sensitive and rapid analytical methodology for food analysis of 18 mycotoxins included in a total diet study. Analytica Chimica Acta, 783, 39-48. http://dx.doi.org/10.1016/j.aca.2013.04.043. PMid:23726098.

Benedetti, R., Nazzi, F., Locci, R., & Firrao, G. (2006). Degradation of fumonisin B1 by a bacterial strain isolated from soil. Biodegradation, 17(1), 31-38. http://dx.doi.org/10.1007/s10532- 005-2797-y. PMid:16453169.

Bertuzzi, T., Rastelli, S., Mulazzi, A., Donadini, G., & Pietri, A. (2011). Mycotoxin occurrence in beer produced in several European countries. Food Control, 22(12), 2059-2064. http://dx.doi.org/10.1016/j.foodcont.2011.06.002.

Boeira, L. S., Bryce, J. H., Stewart, G. G., & Flannigan, B. (2000). The effect of combinations of Fusarium mycotoxins (deoxynivalenol, zearalenone and fumonisin B1) on growth of brewing yeasts. Journal of Applied Microbiology, 88(3), 388-403. http://dx.doi. org/10.1046/j.1365-2672.2000.00972.x. PMid:10747219.

Bolechová, M., Benešová, K., Běláková, S., Čáslavský, J., Pospíchalová, M., & Mikulíková, R. (2015). Determination of seventeen mycotoxins in barley and malt in the Czech Republic. Food Control, 47, 108-113. http://dx.doi.org/10.1016/j. foodcont.2014.06.045.

Bowers, E. L., & Munkvold, G. P. (2014). Fumonisins in conventional and transgenic, insect-resistant maize intended for fuel ethanol production: Implications for fermentation efficiency and DDGS co-product quality. Toxins, 6(9), 2804-2825. http://dx.doi. org/10.3390/toxins6092804. PMid:25247264.

Bullerman, L. B., & Bianchini, A. (2007). Stability of mycotoxins during food processing. International Journal of Food Microbiology, 119(1-2), 140-146. http://dx.doi.org/10.1016/j. ijfoodmicro.2007.07.035. PMid:17804104.

Bzducha-Wróbel, A., Bryła, M., Gientka, I., Błażejak, S., & Janowicz, M. (2019). Candida utilis ATCC 9950 cell walls and β (1, 3)/(1, 6)-glucan preparations produced using agro-waste as a mycotoxins trap. Toxins, 11(4), 192. http://dx.doi.org/10.3390/ toxins11040192. PMid:30935045.

Campone, L., Rizzo, S., Piccinelli, A. L., Celano, R., Pagano, I., Russo, M., Labra, M., & Rastrelli, L. (2020). Determination of mycotoxins in beer by multi heart-cutting two-dimensional liquid chromatography tandem mass spectrometry method. Food Chemistry, 318, 126496. http://dx.doi.org/10.1016/j. foodchem.2020.126496. PMid:32146309.

Cano-Sancho, G., Marín, S., Sanchis, V., Colom, C., Coronel, M. B., & Ramos, A. J. (2011). Sphinganine and sphingosine levels and ratio in urine and blood samples from a Catalonian population, Spain. Food Additives & Contaminants: Part A, 28(8), 1055-1065. http:// dx.doi.org/10.1080/19440049.2011.576437. PMid:21644119.

Cano-Sancho, G., Ramos, A. J., Marín, S., & Sanchis, V. (2012). Occurrence of fumonisins in Catalonia (Spain) and an exposure assessment of specific population groups. Food Additives & Contaminants: Part A, 29(5), 799-808. http://dx.doi.org/10.10 80/19440049.2011.644813. PMid:22273497.

Chilaka, C. A., De Boevre, M., Atanda, O. O., & De Saeger, S. (2018). Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control, 87, 203-210. http://dx.doi.org/10.1016/j. foodcont.2017.12.028.

D’Avila, R. F., de Mello Luvielmo, M., Mendonça, C. R. B., & Jantzen, M. M. (2012). Adjuntos utilizados para produção de cerveja: Fumonisin biocontrol in beer 9-11 Características e aplicações. Estudos Tecnológicos em Engenharia, 8(2), 60-68. http://dx.doi.org/10.4013/ete.2012.82.03.

Duvick, J., Rood, T., Maddox, J., & Gilliam, J. (1998). Detoxification of mycotoxins in planta as a strategy for improving grain quality and disease resistance: identification of fumonisin-degrading microbes from maize. In Molecular Genetics of Host-Specific Toxins in Plant Disease: Proceedings of the 3rd Tottori International Symposium on Host-Specific Toxins (pp. 369-381). Springer Netherlands. http://dx.doi.org/10.1007/978-94-011-5218-1_41.

Erzetti, M., Marconi, O., Bravi, E., Perretti, G., Montanari, L., & Fantozzi, P. (2009). HACCP in the malting and brewing production chain: Mycotoxin, nitrosamine and biogenic amine risks. Italian Journal of Food Science, 21(2), 211-251.

Gonçalves, S. S., Stchigel, A. M., Cano, J. F., Godoy-Martinez, P. C., Colombo, A. L., & Guarro, J. (2012). Aspergillus novoparasiticus: A new clinical species of the section Flavi. Medical Mycology, 50(2), 152-160. http://dx.doi.org/10.3109/13693786.2011.593 564 PMid:21745163.

Gonzalez Pereyra, M. L., Rosa, C. A. R., Dalcero, A. M., & Cavaglieri, L. R. (2011). Mycobiota and mycotoxins in malted barley and brewer’s spent grain from Argentinean breweries. Letters in Applied Microbiology, 53(6), 649-655. http://dx.doi.org/10.1111/ j.1472-765X.2011.03157.x. PMid:21967240.

Haidukowski, M., Cozzi, G., Dipierro, N., Bavaro, S. L., Logrieco, A. F., & Paciolla, C. (2017). Decontamination of Fumonisin B1 in maize grain by Pleurotos eryngii and antioxidant enzymes. Phytopathologia Mediterranea, 56(1), 134-145.

Hartinger, D., Heinl, S., Schwartz, H. E., Grabherr, R., Schatzmayr, G., Haltrich, D., & Moll, W. D. (2010). Enhancement of solubility in Escherichia coli and purification of an aminotransferase from Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1. Microbial Cell Factories, 9(1), 62. http://dx.doi. org/10.1186/1475-2859-9-62. PMid:20718948.

Hartinger, D., Schwartz, H., Hametner, C., Schatzmayr, G., Haltrich, D., & Moll, W. D. (2011). Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B 1. Applied Microbiology and Biotechnology, 91(3), 757-768. http://dx.doi.org/10.1007/ s00253-011-3248-9. PMid:21503761.

Heinl, S., Hartinger, D., Moll, W. D., Schatzmayr, G., & Grabherr, R. (2009). Identification of a fumonisin B1 degrading gene cluster in Sphingomonas spp. MTA144. New Biotechnology, 25, S61-S62. http://dx.doi.org/10.1016/j.nbt.2009.06.290.

Heinl, S., Hartinger, D., Thamhesl, M., Vekiru, E., Krska, R., Schatzmayr, G., Moll, W. D., & Grabherr, R. (2010). Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology, 145(2), 120-129. http:// dx.doi.org/10.1016/j.jbiotec.2009.11.004. PMid:19922747.

Hlywka, J. J., & Bullerman, L. B. (1999). Occurrence of fumonisin B1 and B2 in beer. Food Additives and Contaminants, 16(8), 319-324. http://dx.doi.org/10.1080/026520399283885. PMid:10645345.

Ivic, D., Kovacevik, B., Vasilj, V., & Idzakovic, N. (2011). Occurrence of potentially toxigenic Fusarium verticillioides and low fumonisin B1 content on barley grain in Bosnia and Herzegovina. Journal of Applied Botany and Food Quality, 84(2), 121-124.

Juan, C., Berrada, H., Mañes, J., & Oueslati, S. (2017). Multimycotoxin determination in barley and derived products from Tunisia and estimation of their dietary intake. Food and Chemical Toxicology, 103, 148-156. http://dx.doi.org/10.1016/j. fct.2017.02.037. PMid:28249780.

Kawashima, L. M., Vieira, A. P., & Soares, L. M. V. (2007). Fumonisin B1 and ochratoxin A in beers made in Brazil. Food Science and Technology (Campinas), 27(2), 317-323. http://dx.doi. org/10.1590/S0101-20612007000200019.

Keller, S. E., & Sullivan, T. M. (1998). Identification of a variant of Fusarium proliferatum that hydrolyzes fumonisin B1. Journal of Agricultural and Food Chemistry, 46(7), 2823-2826. http:// dx.doi.org/10.1021/jf9800312.

Kłosowski, G., & Mikulski, D. (2010). The effect of raw material contamination with mycotoxins on the composition of alcoholic fermentation volatile by-products in raw spirits. Bioresource Technology, 101(24), 9723-9727. http://dx.doi.org/10.1016/j. biortech.2010.07.085. PMid:20709541.

Kłosowski, G., Mikulski, D., Grajewski, J., & Błajet-Kosicka, A. (2010). The influence of raw material contamination with mycotoxins on alcoholic fermentation indicators. Bioresource Technology, 101(9), 3147-3152. http://dx.doi.org/10.1016/j.biortech.2009.12.040. PMid:20074946.

Li, Z., Wang, Y., Liu, Z., Jin, S., Pan, K., Liu, H., Liu, T., Li, X., Zhang, C., Luo, X., Song, Y., Zhao, J., & Zhang, T. (2021). Biological detoxification of fumonisin by a novel carboxylesterase from Sphingomonadales bacterium and its biochemical characterization. International Journal of Biological Macromolecules, 169, 18-27. http://dx.doi.org/10.1016/j.ijbiomac.2020.12.033. PMid:33309671.

Maenetje, P. W., & Dutton, M. F. (2007). The incidence of fungi and mycotoxins in South African barley and barley products. Journal of Environmental Science and Health. Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 42(2), 229-236. http:// dx.doi.org/10.1080/03601230601125644. PMid:17365338.

Martinez Tuppia, C., Atanasova‐Penichon, V., Chéreau, S., Ferrer, N., Marchegay, G., Savoie, J. M., & Richard‐Forget, F. (2017). Yeast and bacteria from ensiled high moisture maize grains as potential mitigation agents of fumonisin B1. Journal of the Science of Food and Agriculture, 97(8), 2443-2452. http://dx.doi.org/10.1002/ jsfa.8058. PMid:27696424.

Matumba, L., Van Poucke, C., Biswick, T., Monjerezi, M., Mwatseteza, J., & De Saeger, S. (2014). A limited survey of mycotoxins in traditional maize based opaque beers in Malawi. Food Control, 36(1), 253-256. http://dx.doi.org/10.1016/j. foodcont.2013.08.032.

Milani, J., & Maleki, G. (2014). Effects of processing on mycotoxin stability in cereals. Journal of the Science of Food and Agriculture, 94(12), 2372-2375. http://dx.doi.org/10.1002/jsfa.6600. PMid:24497303.

Mokoena, M. P., Chelule, P. K., & Gqaleni, N. (2005). Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. Journal of Food Protection, 68(10), 2095-2099. http://dx.doi.org/10.4315/0362-028X-68.10.2095. PMid:16245712.

Niderkorn, V., Morgavi, D. P., Aboab, B., Lemaire, M., & Boudra, H. (2009). Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal of Applied Microbiology, 106(3), 977-985. http://dx.doi. org/10.1111/j.1365-2672.2008.04065.x. PMid:19187153.

Niderkorn, V., Morgavi, D. P., Pujos, E., Tissandier, A., & Boudra, H. (2007). Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Additives and Contaminants, 24(4), 406-415. http://dx.doi. org/10.1080/02652030601101110. PMid:17454114.

Nkwe, D. O., Taylor, J. E., & Siame, B. A. (2005). Fungi, aflatoxins, fumonisin Bl and zearalenone contaminating sorghum-based traditional malt, wort and beer in Botswana. Mycopathologia, 160(2), 177-186. http://dx.doi.org/10.1007/s11046-005-6867-9. PMid:16170615.

Oliveira, N. (2011). Leveduras utilizadas no processo de fabricação da cerveja [Monografia de Bacharelado, Universidade Federal de Minas Gerais].

Pagani, R., Kovaleski, J. L., & Resende, L. M. (2015). Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics, 105(3), 1-27. http://dx.doi.org/10.1007/s11192-015-1744-x.

Pagkali, V., Petrou, P. S., Makarona, E., Peters, J., Haasnoot, W., Jobst, G., Moser, I., Gajos, K., Budkowski, A., Economou, A., Misiakos, K., Raptis, I., & Kakabakos, S. E. (2018). Simultaneous A. Buczynski et al. 10-11 determination of aflatoxin B1, fumonisin B1 and deoxynivalenol in beer samples with a label-free monolithically integrated optoelectronic biosensor. Journal of Hazardous Materials, 359, 445-453. http://dx.doi.org/10.1016/j.jhazmat.2018.07.080. PMid:30059886.

Pascari, X., Rodriguez-Carrasco, Y., Juan, C., Mañes, J., Marin, S., Ramos, A. J., & Sanchis, V. (2019). Transfer of Fusarium mycotoxins from malt to boiled wort. Food Chemistry, 278, 700-710. http://dx.doi.org/10.1016/j.foodchem.2018.11.111. PMid:30583432. Pfliegler, W. P., Pusztahelyi, T., & Pócsi, I. (2015). Mycotoxins– prevention and decontamination by yeasts. Journal of Basic Microbiology, 55(7), 805-818. http://dx.doi.org/10.1002/ jobm.201400833. PMid:25682759.

Piacentini, K. C., Rocha, L. O., Fontes, L. C., Carnielli, L., Reis, T. A., & Corrêa, B. (2017). Mycotoxin analysis of industrial beers from Brazil: The influence of fumonisin B1 and deoxynivalenol in beer quality. Food Chemistry, 218, 64-69. http://dx.doi. org/10.1016/j.foodchem.2016.09.062. PMid:27719958.

Piacentini, K. C., Savi, G. D., Olivo, G., & Scussel, V. M. (2015a). Quality and occurrence of deoxynivalenol and fumonisins in craft beer. Food Control, 50, 925-929. http://dx.doi.org/10.1016/j. foodcont.2014.10.038.

Piacentini, K. C., Savi, G. D., Pereira, M. E., & Scussel, V. M. (2015b). Fungi and the natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). Food Chemistry, 187, 204-209. http://dx.doi.org/10.1016/j.foodchem.2015.04.101. PMid:25977017.

Pietri, A., Bertuzzi, T., Agosti, B., & Donadini, G. (2010). Transfer of aflatoxin B1 and fumonisin B1 from naturally contaminated raw materials to beer during an industrial brewing process. Food Additives and Contaminants, 27(10), 1431-1439. http://dx.doi. org/10.1080/19440049.2010.489912. PMid:20582776.

Pinheiro, R. E., Pereyra, C. M., Neves, J. A. , Calvet, R. M., Santos, J. T. O., Lima, C. E., & Muratori, M. C. S. (2017). Avaliacao in vitro da adsorção de aflatoxina B1 por produtos comerciais utilizados na alimentação animal. Arquivo do Instituto de Biologia, 84(0), e0072015. http://dx.doi.org/10.1590/1808- 1657000072015.

Pizzolitto, R. P., Salvano, M. A., & Dalcero, A. M. (2012). Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. International Journal of Food Microbiology, 156(3), 214-221. http://dx.doi. org/10.1016/j.ijfoodmicro.2012.03.024. PMid:22503712.

Puangkham, S., Poapolathep, A., Jermnak, U., Imsilp, K., Tanhan, P., Chokejaroenrat, C., & Poapolathep, S. (2017). Monitoring and health risk of mycotoxins in imported wines and beers consumed in Thailand. World Mycotoxin Journal, 10(4), 401-409. http:// dx.doi.org/10.3920/WMJ2017.2216.

Roger, D. (2011). Deoxynivanol (DON) and fumonisins B1 (FB1) in artisanal sorghum opaque beer brewed in north Cameroon. African Journal of Microbiological Research, 5(12), 1565-1567. http:// dx.doi.org/10.5897/AJMR10.709.

Rubert, J., Manes, J., James, K. J., & Soler, C. (2011). Application of hybrid linear ion trap-high resolution mass spectrometry to the analysis of mycotoxins in beer. Food Additives & Contaminants Part A, 28(10), 1438-1446. PMid:21777113.

Rubert, J., Soler, C., Marín, R., James, K. J., & Mañes, J. (2013). Mass spectrometry strategies for mycotoxins analysis in European beers. Food Control, 30(1), 122-128. http://dx.doi.org/10.1016/j. foodcont.2012.06.035.

Sadiq, F. A., Yan, B., Tian, F., Zhao, J., Zhang, H., & Chen, W. (2019). Lactic acid bacteria as antifungal and anti‐mycotoxigenic agents: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 18(5), 1403-1436. http://dx.doi.org/10.1111/1541- 4337.12481. PMid:33336904.

Scott, P. M. (1996). Mycotoxins transmitted into beer from contaminated grains during brewing. Journal of AOAC International, 79(4), 875-882. http://dx.doi.org/10.1093/jaoac/79.4.875. PMid:8757446.

Scott, P. M., Kanhere, S. R., Lawrence, G. A., Daley, E. F., & Farber, J. M. (1995). Fermentation of wort containing added ochratoxin A and fumonisins B1 and B2. Food Additives and Contaminants, 12(1), 31-40. http://dx.doi.org/10.1080/02652039509374276. PMid:7758629.

Seo, E., Yoon, Y., Kim, K., Shim, W. B., Kuzmina, N., Oh, K. S., Lee, J. O., Kim, D. S., Suh, J., Lee, S. H., Chung, K. H., & Chung, D. H. (2009). Fumonisins B1 and B2 in agricultural products consumed in South Korea: An exposure assessment. Journal of Food Protection, 72(2), 436-440. http://dx.doi.org/10.4315/0362-028X-72.2.436. PMid:19350995.

Shephard, G. S., van der Westhuizen, L., Gatyeni, P. M., Somdyala, N. I., Burger, H. M., & Marasas, W. F. (2005). Fumonisin mycotoxins in traditional Xhosa maize beer in South Africa. Journal of Agricultural and Food Chemistry, 53(24), 9634-9637. http:// dx.doi.org/10.1021/jf0516080. PMid:16302789.

Sleiman, M., Venturini Filho, W. G., Ducatti, C., & Nojimoto, T. (2010). Determinação do percentual de malte e adjuntos em cervejas comerciais brasileiras através de análise isotópica. Ciência e Agrotecnologia, 34(1), 163-172. http://dx.doi.org/10.1590/ S1413-70542010000100021.

Tamura, M., Uyama, A., & Mochizuki, N. (2011). Development of a multi-mycotoxin analysis in beer-based drinks by a modified QuEChERS method and ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. Analytical Sciences, 27(6), 629-635. http://dx.doi.org/10.2116/ analsci.27.629. PMid:21666361.

Van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523-538. http://dx.doi.org/10.1007/s11192-009-0146-3. PMid:20585380.

Zhao, H., Wang, X., Zhang, J., Zhang, J., & Zhang, B. (2016). The mechanism of Lactobacillus strains for their ability to remove fumonisins B1 and B2. Food and Chemical Toxicology, 97, 40-46. http://dx.doi.org/10.1016/j.fct.2016.08.028. PMid:27575882.

Zhao, Z., Zhang, Y., Gong, A., Liu, N., Chen, S., Zhao, X., Li, X., Chen, L., Zhou, C., & Wang, J. (2019). Biodegradation of mycotoxin fumonisin B1 by a novel bacterial consortium SAAS79. Applied Microbiology and Biotechnology, 103(17), 7129-7140. http://dx.doi.org/10.1007/s00253-019-09979-6. PMid:31230101.


Submitted date:
03/11/2023

Accepted date:
06/25/2023

6536bbfba953951540252943 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections