Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00022025
Biotechnology Research and Innovation Journal
Research paper

Scenedesmus sp. biomass enriched with low-cost polysaccharides to produce hydrogels: a biotechnological approach

Amanda Fonseca Leitzke, Diego Serrasol do Amaral, Cristina Jansen-Alves, Carem Perleberg, Daisa Hakbart Bonemann, Nathalia Stark Pedra, Juliane Torchelsen Saraiva, Francieli da Silva dos Santos, Roselia Spanevello, Elessandra da Rosa Zavareze, Claudio Martin Pereira de Pereira

Downloads: 0
Views: 45

Abstract

Microalgae of the Scenedesmus genus are recognized for their bioactive compounds and rapid biomass production. This study explores the integration of Scenedesmus sp. biomass into hydrogels based on commercial xanthan gum and sodium alginate for controlled release of active substances. Comprehensive characterization revealed a protein content of 4.37%, lipids at 14.4%, and phenolic compounds measuring 0.10 mg GAE/g. Hydrogels demonstrated efficient incorporation and controlled release of bioactive compounds, with release kinetics influenced by the medium. Cytotoxicity assessments showed no adverse effects on L929 fibroblast viability, while reactive oxygen species (ROS) levels were significantly reduced by up to 73.68% for 1% hydrogels. These results highlight the antioxidant potential of the hydrogel for the formulation of bioproducts with controlled release of bioactives, opening new perspectives for innovative applications in cosmetics, nutraceuticals and pharmaceuticals.

Keywords

Hydrogel; Phenolic compounds; Controlled release; Cytotoxicity, Antioxidant

References

Albuquerque, B. R., Heleno, S., Oliveira, M., Barros, L., & Ferreira, I. (2021). Phenolic compounds: Current industrial applications, limitations and future challenges. Food & Function, 12(1), 14-29. http://doi.org/10.1039/D0FO02324H. PMid:33242057.

Ali, S., Lebel, C., & Bondy, S. (1992). Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicol, 13(3), 637-648. PMid:1475065.

Al-Mossawi, M., Warren, H., Molino, P., Calvert, P., & in het Panhuis, M. (2021). Living electrodes based on green algae in hydrogels. Materials Advances, 2(4), 1369-1377. http://doi.org/10.1039/ D0MA00985G.

Amorim, M., Soares, J., Vieira, B., Batista-Silva, W., & Martins, M. (2020). Extração de proteínas da microalga Scenedesmus obliquus BR003 seguida de extração lipídica da biomassa úmida desproteinizada usando hexano e acetato de etila. Bioresource Technology, 307, 123190. http://doi.org/10.1016/j.biortech.2020.123190. PMid:32213445.

Antunes, B. D. F., Otero, D. M., Bonemann, D. H., Ribeiro, A. S., Jacques, A. C., & Zambiazi, R. C. (2021). Evaluation of physicochemical, bioactive composition and profile of fatty acids in leaves of different olive cultivars. Revista Ceres, 68(6), 511- 520. http://doi.org/10.1590/0034-737x202168060002.

AOAC (2005) Official Methods of Analysis of Association of Official Analytical Chemists. 18th Edition, Washington, DC.

Aremu, A., Masondo, N., Molnár, Z., Stirk, W., Ördög, V., & Van Staden, J. (2016). Changes in phytochemical content and pharmacological activities of three Chlorella strains grown in different nitrogen conditions. Journal of Applied Phycology, 28(1), 149-159. http://doi.org/10.1007/s10811-015-0568-7.

Association of Official Agricultural Chemists. (2016). 2016 Official methods of analysis (20th ed.). AOAC International. Belattmania, Z., Kaidi, S., El Atouani, S., Katif, C., Bentiss, F., Jama, C., Reani, A., Sabour, B., & Vasconcelos, V. (2020). Isolation and FTIR-ATR and 1H NMR characterization of alginates from the main alginophyte species of the atlantic coast of Morocco. Molecules, 25(18), 4335. http://doi.org/10.3390/molecules25184335. PMid:32971782.

Berneira, L., Santi, I., Silva, C., Venzke, D., Colepicolo, P., Vaucher, R., Santos, M., & Pereira, C. (2021). Bioactivity and composition of lipophilic metabolites extracted from Antarctic macroalgae. Brazilian Journal of Microbiology, 52(3), 1275-1285. http://doi.org/10.1007/s42770-021-00475-6. PMid:33835420.

Berneira, L., Silva, C., Poletti, T., Ritter, M., dos Santos, M., Colepicolo, P., & de Pereira, C. (2020). Evaluation of the volatile composition and fatty acid profile of seven Antarctic macroalgae. Journal of Applied Phycology, 32(5), 3319-3329. http://doi.org/10.1007/s10811-020-02170-9.

Bligh, E. G., & Dyer, W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. http://doi.org/10.1139/o59-099. PMid:13671378.

Bona, N., Pedra, N., Spohr, L., Santos, F., Saraiva, J., Carvalho, F., Fernandes, M., Fernandes, A., Saraiva, N., Martins, M., Tavares, R., Spanevello, R., Aguiar, M., & Stefanello, F. (2024). Antitumoral Activity of Cecropia Pachystachya Leaves Extract in Vitro and in Vivo Model of Rat Glioma: Brain and Blood Effects. Molecular Neurobiology, 61(10), 8234-8252. http://doi.org/10.1007/ s12035-024-04086-8. PMid:38483655.

Bulut, O., Akın, D., Sönmez, Ç., Öktem, A., Yücel, M., & Öktem, H. (2019). Phenolic compounds, carotenoids, and antioxidant capacities of a thermo-tolerant Scenedesmus sp.(Chlorophyta) extracted with different solvents. Journal of Applied Phycology, 31(3), 1675-1683. http://doi.org/10.1007/s10811-018-1726-5.

Carta, G., Murru, E., Banni, S., & Manca, C. (2017). Palmitic acid: Physiological role, metabolism and nutritional implications. Frontiers in Physiology, 8, 902. http://doi.org/10.3389/ fphys.2017.00902. PMid:29167646.

Chen, H., Guo, Y., Zhang, Z., Mao, W., Shen, C., Xiong, W., Yao, Y., Zhao, X., Hu, Y., Zou, Z., & Wu, J. (2021). Symbiotic algae–bacteria dressing for producing hydrogen to accelerate diabetic wound healing. Nano Letters, 22(1), 229-237. http://doi.org/10.1021/ acs.nanolett.1c03693. PMid:34928162.

Chew, K., Yap, J., Show, P., Suan, N., Juan, J., Ling, T., Lee, D., & Chang, J. (2017). Microalgae biorefinery: High value products perspectives. Bioresource Technology, 229, 53-62. http://doi.org/10.1016/j.biortech.2017.01.006. PMid:28107722.

Ching, S., Bansal, N., & Bhandari, B. (2017). Alginate gel particles–A review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition, 57(6), 1133-1152. http://doi.org/10.1080/10408398.2014.965773. PMid:25976619.

Cho, D., Yun, J., Heo, J., Lee, I., Lee, Y., Bae, S., Yun, B., & Kim, H. (2023). Identification of Loliolide with Anti-Aging Properties from Scenedesmus deserticola JD052. Journal of Microbiology and Biotechnology, 33(9), 1250-1256. http://doi.org/10.4014/ jmb.2304.04044. PMid:37317620.

Custódio, L., Soares, F., Pereira, H., Barreira, L., Vizetto-Duarte, C., Rodrigues, M. J., Rauter, A. P., Alberício, F., & Varela, J. (2014). Fatty acid composition and biological activities of Isochrysis galbana T-ISO, Tetraselmis sp. and Scenedesmus sp.: Possible application in the pharmaceutical and functional food industries. Journal of Applied Phycology, 26(1), 151-161. http://doi.org/10.1007/s10811-013-0098-0.

Dias, G., Hipólito, M., Santos, F., Lourega, R., Mattia, J., Eichler, P., & Alves, J. (2019). Biorremediação de efluentes por meio da aplicação de microalgas – uma revisão. Quimica Nova, 42, 891-899. http://doi.org/10.21577/0100-4042.20170393.

Do-Amaral, C., Pacheco, B., Segatto, N., Paschoal, J., Santos, M., Seixas, F., Pereira, C., Astorga-España, M., Mansilla, A., & Collares, T. (2020). Lipidic profile of subAntarctic seaweed Mazzaella laminarioides (Gigartinales, Rhodophyta) in distinct developmental phases and cell cytotoxicity in bladder cancer. Algal Research, 48, 101936. http://doi.org/10.1016/j.algal.2020.101936.

Dornan, K., Gunenc, A., Oomah, B., & Hosseinian, F. (2021). Odd chain fatty acids and odd chain phenolic lipids (alkylresorcinols) are essential for diet. Journal of the American Oil Chemists’ Society, 98(8), 813-824. http://doi.org/10.1002/aocs.12507.

Faruque, M., Hossain, M., & Razzak, S. (2023). Photoautotrophic cultivation, lipid enhancement, and dry biomass characterization of microalgae scenedesmus dimorphus for bioenergy application. Arabian Journal for Science and Engineering, 48(12), 16263-16280. http://doi.org/10.1007/s13369-023-08187-9.

Fonseca, L. M., Oliveira, J. P., Crizel, R., Silva, F., Zavareze, E., & Borges, C. (2020). Electrospun Starch Fibers Loaded with Pinhão (Araucaria angustifolia) Coat Extract Rich in Phenolic Compounds. Food Biophysics, 15(3), 355-367. http://doi.org/10.1007/s11483- 020-09629-9.

Freitas, F., Alves, V., & Reis, M. (2015). Bacterial polysaccharides: production and applications in cosmetic industry. In K. Ramawat & JM. Mérillon (Eds.), Polysaccharides (pp. 2017-2043). Springer. http://doi.org/10.1007/978-3-319-16298-0_63.

Freitas, S., Berneira, L., dos Santos, M., Poletti, T., Mansilla, A., Astorga-España, M., Garcia, M., Hartwig, D., Hübner, S., & de Pereira, C. (2020). Bioactivity evaluation and composition of extracts from sub-Antarctic macroalgae Mazzaella laminarioides at distinct development phases. Revista Brasileira de Botanica. Brazilian Journal of Botany, 43(4), 689-696. http://doi.org/10.1007/s40415-020-00661-0.

Frigolet, M., & Gutiérrez-Aguilar, R. (2017). The role of the novel lipokine palmitoleic acid in health and disease. Advances in Nutrition, 8(1), 173S-181S. http://doi.org/10.3945/ an.115.011130. PMid:28096141.

Furtado, I., Sydney, E., Rodrigues, S., & Sydney, A. (2022). Xanthan gum: Applications, challenges, and advantages of this asset of biotechnological origin. Biotechnology Research and Innovation Journal, 6(1), e202204. http://doi.org/10.4322/biori.202205.

Gheysen, L., Bernaerts, T., Bruneel, C., Goiris, K., Van Durme, J., Van Loey, A., Cooman, L., & Foubert, I. (2018). Impact of processing on n-3 LC-PUFA in model systems enriched with microalgae. Food Chemistry, 268, 441- 450. http://doi.org/10.1016/j.foodchem.2018.06.112. PMid:30064781.

Goiris, K., Muylaert, K., Fraeye, I., Foubert, I., De Brabanter, J., & De Cooman, L. (2012). Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology, 24(6), 1477-1486. http://doi.org/10.1007/ s10811-012-9804-6.

Guan, S., Zhang, K., Cui, L., Liang, J., Li, J., & Guan, F. (2022). Injectable gelatin/oxidized dextran hydrogel loaded with apocynin for skin tissue regeneration. Biomaterials advances, 133, 112604. http://doi.org/10.1016/j.msec.2021.112604. PMid:35527157.

Guillard, R., & Lorenzen, C. (1972). Yellow-Green Algae with Chlorophyllide C. Journal of Phycology, 8(1), 10-14. http://doi.org/10.1111/j.1529-8817.1972.tb03995.x.

Guiry, M. D. (2014). Scenedesmus meyen, 1829. In M.D. Guiry, & G.M. Guiry, (Eds.), AlgaeBase. National University of Ireland. https://www.algaebase.org

Guo, Y., Bao, Y., Sun, K., Chang, C., & Liu, W. (2021). Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocolloids, 112, 106293. http://doi.org/10.1016/j.foodhyd.2020.106293.

Ibrahim, N., Matloub, A., El-Sayed, A., Aly, H, AbdElsamiae, A. (2021). Phytochemical and biological studies of carotenoids in some microalgae (Dunaliella salina, Scenedesmus obliquus and Spirulina platenses). Egyptian Journal of Chemistry, 64(5), 2343-2353. http://doi.org/10.21608/ejchem.2021.60663.3306.

Ishaq, A., Matias-Peralta, H., & Basr, H. (2016). Bioactive compounds from green microalga-Scenedesmus and its potential applications: a brief review. Pertanika. Journal of Tropical Agricultural Science, 39(1), 1-16.

Javed, F., Aslam, M., Rashid, N., Shamair, Z., Khan, A. L., Yasin, M., Fazal, T., Hafeez, A., Rehman, F., Rehman, M., Khan, Z., Iqbal, J., & Bazmi, A. (2019). Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel, 255, 115826. http://doi.org/10.1016/j.fuel.2019.115826.

Javid, S., Purohit, M., Kumar, H., Ramya, K., Mithuna, N., Salahuddin, M., & Kumar, B. (2021). Semisynthesis of myristic acid derivatives and their biological activities: A critical insight. Journal of Biologically Active Products from Nature, 10(6), 455-472. http://doi.org/10.1080/22311866.2020.1865836.

Karacor, K., & Cam, M. (2015). Effects of oleic acid. Medical Science and Discovery, 2(1), 125-132. http://doi.org/10.36472/ msd.v2i1.53.

Kopač, T., Boček, Ž., van Midden, K. P., Klemenčič, M., & Ručigaj, A. (2023). Encapsulation of living photosynthetic organisms in alginate-gelatin hydrogels for controlled cell growth and oxygen production. Biochemical Engineering Journal, 199, 109070. http://doi.org/10.1016/j.bej.2023.109070.

Leal, D., Matsuhiro, B., Rossi, M., & Caruso, F. (2008). FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydrate Research, 343(2), 308-316. http://doi.org/10.1016/j.carres.2007.10.016. PMid:18048014.

León-Vaz, A., León, R., Vigara, J., & Funk, C. (2023). Exploring Nordic microalgae as a potential novel source of antioxidant and bioactive compounds. New Biotechnology, 73, 1-8. http://doi.org/10.1016/j.nbt.2022.12.001. PMid:36513346.

Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: L. Packer & R. Douce (Eds.), Plant cell membranes (Methods in Enzymology Book Series, Vol. 148, pp. 350-382). Academic Press. http://doi.org/10.1016/0076-6879(87)48036-1.

Liu, Y., Ren, X., Fan, C., Wu, W., Zhang, W., & Wang, Y. (2022). Health benefits, food applications, and sustainability of MicroalgaeDerived N-3 PUFA. Foods, 11(13), 1883. http://doi.org/10.3390/ foods11131883. PMid:35804698.

Lopez, S., Bermudez, B., Paz, S., Jaramillo, S., Varela, L., Ortega-Gomez, A., Abia, R., & Muriana, F. (2014). Membrane Composition and Dynamics: A Target of Bioactive Virgin Olive Oil Constituents. Biochimica et Biophysica Acta, 1838(6), 1638-1656. http://doi.org/10.1016/j.bbamem.2014.01.007. PMid:24440426.

Los, D., Mironov, K., & Allakhverdiev, S. (2013). Regulatory role of membrane fluidity in gene expression and physiological functions. Photosynthesis Research, 116(2-3), 489-509. http://doi.org/10.1007/s11120-013-9823-4. PMid:23605242.

Lucakova, S., Branyikova, I., & Hayes, M. (2022). Microalgal proteins and bioactives for food, feed, and other applications. Applied Sciences (Basel, Switzerland), 12(9), 4402. http://doi.org/10.3390/ app12094402.

Ma, C., Gao, X., Yang, Y., Bian, X., Wang, B., Liu, X., Wang, Y., Su, D., Zhang, G., Qu, L., & Zhang, N. (2024). The three-dimensional culture of L929 and C2C12 cells based on SPI-SA interpenetrating network hydrogel scaffold with excellent mechanical properties. Frontiers in Bioengineering and Biotechnology, 11, 1329183. http://doi.org/10.3389/fbioe.2023.1329183. PMid:38268933.

Makareviciene, V., Andrulevičiūtė, V., Skorupskaitė, V., & Kasperovičienė, J. (2011). Cultivation of microalgae Chlorella sp. and Scenedesmus sp. as a potentional biofuel feedstock. Environmental Research, Engineering and Management, 57(3), 21-27.

Mendonça, H. V., Assemany, P., Abreu, M., Couto, E., Maciel, A. M., Duarte, R. L., Santos, M. G. B., & Reis, A. (2021). Microalgae in a global world: New solutions for old problems? Renewable Energy, 165, 842-862. http://doi.org/10.1016/j.renene.2020.11.014.

Meng, W., Mu, T., & Marco, G. (2022). Seaweeds and microalgal biomass: The future of food and nutraceuticals. Future Foods, 10, 183-201. http://doi.org/10.1016/B978-0-323-91001-9.00014-1.

Mobin, S., & Alam, F. (2017). Some promising microalgal species for commercial applications: A review. Energy Procedia, 110, 510-517. http://doi.org/10.1016/j.egypro.2017.03.177.

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. http://doi.org/10.1016/0022-1759(83)90303-4. PMid:6606682.

Moussa, I., Masmoudi, M., Choura, S., Chamkha, M., & Sayadi, S. (2021). Extraction optimization using response surface methodology and evaluation of the antioxidant and antimicrobial potential of polyphenols in Scenedesmus sp. and Chlorella sp. Biomass Conversion and Biorefinery, 13(8), 7185- 7198. http://doi.org/10.1007/s13399-021-01850-x.

Mu, R., Liu, B., Chen, X., Wang, N., & Yang, J. (2020). Hydrogel adsorbent in industrial wastewater treatment and ecological environment protection. Environmental Technology & Innovation, 20, 101107. http://doi.org/10.1016/j.eti.2020.101107.

Nascimento, T., Cazarin, C., Maróstica Junior, M., Risso, E., AmayaFarfan, J., Grimaldi, R., Mercadante, A., Jacob-Lopes, E., & Zepka, L. (2019). Microalgae biomass intake positively modulates serum lipid profile and antioxidant status. Journal of Functional Foods, 58, 11-20. http://doi.org/10.1016/j.jff.2019.04.047.

Nascimento, T., Pinheiro, P., Fernandes, A., Murador, D., Neves, B., Menezes, C., Rosso, V., Jacob-Lopes, E., & Zepka, L. (2021). Bioaccessibility and intestinal uptake of carotenoids from microalgae Scenedesmus obliquus. Lebensmittel-Wissenschaft + Technologie, 140, 110780. http://doi.org/10.1016/j.lwt.2020.110780.

Naughton, S., Mathai, M., Hryciw, D., & McAinch, A. (2016). Linoleic acid and the pathogenesis of obesity. Prostaglandins & Other Lipid Mediators, 125, 90-99. http://doi.org/10.1016/j.prostaglandins.2016.06.003. PMid:27350414.

Olsen, M., Pedersen, J., Thomsen, S., Martens, H., Petersen, A., & Jensen, P. (2021). Outdoor cultivation of a novel isolate of the microalgae Scenedesmus sp. and the evaluation of its potential as a novel protein crop. Physiologia Plantarum, 173(2), 483-494. http://doi.org/10.1111/ppl.13532. PMid:34427928.

Oreste, E. Q., Jesus, A., Oliveira, R. M., Silva, M. M., Vieira, M. A., & Ribeiro, A. S. (2013). New design of cold finger for sample preparation in open system: Determination of Hg in biological samples by CV-AAS. Microchemical Journal, 109, 5-9. http://doi.org/10.1016/j.microc.2012.05.034.

Pacheco, B., Santos, M., Schultze, E., Martins, R., Lund, R., Seixas, F., Colepicolo, P., Collares, T., Paula, F., & Pereira, C. (2018). Cytotoxic activity of fatty acids from Antarctic macroalgae on the growth of human breast cancer cells. Frontiers in Bioengineering and Biotechnology, 6, 185. http://doi.org/10.3389/fbioe.2018.00185. PMid:30560124.

Papageorgiou, S., Kouvelos, E., Favvas, E., Sapalidis, A., Romanos, G., & Katsaros, F. (2010). Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydrate Research, 345(4), 469-473. http://doi.org/10.1016/j.carres.2009.12.010. PMid:20044077.

Patil, L., & Kaliwal, B. B. (2019). Microalga Scenedesmus bajacalifornicus BBKLP-07, a new source of bioactive compounds with in vitro pharmacological applications. Bioprocess and Biosystems Engineering, 42(6), 979-994. http://doi.org/10.1007/ s00449-019-02099-5. PMid:30847556.

Pauwels, B., Korst, A., de Pooter, C., Pattyn, G., Lambrechts, H., Baay, M., Lardon, F., & Vermorken, J. (2003). Comparison of the sulforhodamine B assay and the clonogenic assay for in vitro chemoradiation studies. Cancer Chemotherapy and Pharmacology, 51(3), 221-226. http://doi.org/10.1007/s00280-002-0557-9. PMid:12655440.

Pawlicka, A., Tavares, F., Dörr, D., Cholant, C., Ely, F., Santos, M., & Avellaneda, C. (2019). Dielectric behavior and FTIR studies of xanthan gum-based solid polymer electrolytes. Electrochimica Acta, 305, 232-239. http://doi.org/10.1016/j.electacta.2019.03.055.

Pedra, N., Bona, N., Aguiar, M., Spohr, L., Alves, F., Santos, F., Saraiva, J., Stefanello, F., Braganhol, E., & Spanevello, R. (2022). Impact of gallic acid on tumor suppression: Modulation of redox homeostasis and purinergic response in in vitro and a preclinical glioblastoma model. The Journal of Nutritional Biochemistry, 110, 109156. http://doi.org/10.1016/j.jnutbio.2022.109156. PMid:36255060.

Pereira, A., Rodrigues, F., Paulino, A., Martins, A., & Fajardo, A. (2021). Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: A review. Journal of Cleaner Production, 284, 124703. http://doi.org/10.1016/j.jclepro.2020.124703.

Picoloto, R., Pereira, R., Costa, V., Hartwig, C., Pereira, C., Colepicolo, P., Duarte, F., & Mesko, M. F. (2017). Investigating essential and toxic elements in Antarctic macroalgae using a green analytical method. Journal of Applied Phycology, 29(2), 741-749. http://doi.org/10.1007/s10811-016-1000-7.

Quadrado, R., Macagnan, K., Moreira, A., & Fajardo, A. (2022). Redox-responsive hydrogels of thiolated pectin as vehicles for the smart release of acetaminophen. Reactive & Functional Polymers , 181 , 105448. http://doi.org/10.1016/j.reactfunctpolym.2022.105448.

Rizwan, M., Mujtaba, G., Memon, S., Lee, K., & Rashid, N. (2018). Exploring the potential of microalgae for new biotechnology applications and beyond: A review. Renewable & Sustainable Energy Reviews, 92, 394-404. http://doi.org/10.1016/j.rser.2018.04.034.

Rodriguez-Amaya, D. B. (2001). A guide to carotenoid analysis in foods (Vol. 71). ILSI press.

Sadeghi, A., Rajabiyan, A., Nabizade, N., Meygolinezhad, N., & Ahmady, A. (2024). Seaweed-derived phenolic compounds as diverse bioactive molecules: A review on identification, application, extraction and purification strategies. International Journal of Biological Macromolecules, 266(Pt 1), 131147. http://doi.org/10.1016/j.ijbiomac.2024.131147. PMid:38537857.

Santa-María, C., López-Enríquez, S., Paz, S., Geniz, I., Reyes-Quiroz, M., Moreno, M., Palomares, F., Sobrino, F., & Alba, G. (2023). Update on anti-inflammatory molecular mechanisms induced by oleic acid. Nutrients, 15(1), 224. http://doi.org/10.3390/ nu15010224. PMid:36615882.

Santi, I., Pacheco, B., Venzke, D., Freitag, R., de Almeida, L., Colepicolo, P., Fujii, M., Dias, D., & Pereira, C. (2021). Sterols in red macroalgae from antarctica: Extraction and quantification by Gas Chromatography–Mass spectrometry. Polar Biology, 44(5), 987-995. http://doi.org/10.1007/s00300-021-02853-0.

Santos, M., Colepicolo, P., Pupo, D., Fujii, M., de Pereira, C., & Mesko, M. (2017). Antarctic red macroalgae: A source of polyunsaturated fatty acids. Journal of Applied Phycology, 29(2), 759-767. http://doi.org/10.1007/s10811-016-1034-x.

Santos, M., Freitas, S., Berneira, L., Mansilla, A., Astorga-España, M., Colepicolo, P., & Pereira, C. (2019). Pigment concentration, photosynthetic performance, and fatty acid profile of subAntarctic brown macroalgae in different phases of development from the Magellan Region, Chile. Journal of Applied Phycology, 31(4), 2629-2642. http://doi.org/10.1007/s10811-019-01777-x.

Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722. http://doi.org/10.1016/j.sjbs.2017.11.003. PMid:31048995.

Shetty, V., & Sibi, G. (2015). Relationship between total phenolics content and antioxidant activities of microalgae under autotrophic, heterotrophic and mixotrophic growth. Journal of Food Resource Science, 4(1), 1-9. http://doi.org/10.3923/ jfrs.2015.1.9.

Singh, R., Yadav, P., Kumar, A., Hashem, A., Al-Arjani, A., Abd Allah, E. F., Rodríguez Dorantes, A., & Gupta, R. K. (2022). Physiological and biochemical responses of bicarbonate supplementation on biomass and lipid content of green algae Scenedesmus sp. BHU1 isolated from wastewater for renewable biofuel feedstock. Frontiers in Microbiology, 13, 839800. http://doi.org/10.3389/ fmicb.2022.839800. PMid:35444634.

Singleton, V., Orthofer, R., & Lamuela-Raventós, R. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Packer (Ed.), Oxidants and Antioxidants Part A (Methods in Enzymology Book Series, Vol. 299, pp. 152-178). Academic Press. http://doi.org/10.1016/ S0076-6879(99)99017-1.

Soltani, N., Latifi, A., Alnajar, N., Dezfulian, M., Shokarvi, S., Heydari, M., & Choopani, A. (2016). Biochemical and physiological characterization of tree microalgae spp. as candidates for food supplement. Journal of Applied Biotechnology Reports, 3(1), 377-381.

Souza, R., Saldanha-Corrêa, F., Gallego, A., & Neto, A. (2020). Semiquantitative determination of ash element content for freezedried, defatted, sulfated and pyrolysed biomass of Scenedesmus sp. Biotechnology for Biofuels, 13(1), 63. http://doi.org/10.1186/ s13068-020-01699-8. PMid:32266009.

Udayan, A., Arumugam, M., & Pandey, A. (2017). Nutraceuticals from algae and cyanobacteria. In: ajesh P. Rastogi, D. Madamwar & A. Pandey (Eds.), Algal green chemistry: Recent progress in biotechnology (pp. 65-89). Elsevier. http://doi.org/10.1016/ B978-0-444-63784-0.00004-7.

Uribe, E., Pardo-Orellana, C., Vega-Gálvez, A., Ah-Hen, K., Pastén, A., García, V., & Aubourg, S. (2019). Effect of drying methods on bioactive compounds, nutritional, antioxidant, and antidiabetic potential of brown alga Durvillaea antarctica. Drying Technology, 38(14), 1915-1928. http://doi.org/10.1080/07373937.2019.16 79830.

van Rooijen, M., & Mensink, R. (2020). Palmitic acid versus stearic acid: Effects of interesterification and intakes on cardiometabolic risk markers: a systematic review. Nutrients, 12(3), 615. http://doi.org/10.3390/nu12030615. PMid:32111040.

Waqar, R., Kaleem, M., Iqbal, J., Minhas, L., Haris, M., Chalgham, W., Ahmad, A., & Mumtaz, A. (2023). Kinetic and equilibrium studies on the adsorption of Lead and Cadmium from aqueous solution using Scenedesmus sp. Sustainability (Basel), 15(7), 6024. http://doi.org/10.3390/su15076024.

Wrzosek, M., Zawadzka, Z., Sawicka, A., Bobrowska-Korczak, B., & Białek, A. (2022). Impact of fatty acids on obesity-associated diseases and radical weight reduction. Obesity Surgery, 32(2), 428. http://doi.org/10.1007/s11695-021-05789-w. PMid:34813039.

Zhang, Y., Kong, X., Wang, Z., Sun, Y., Zhu, S., Li, L., & Lv, P. (2018). Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renewable Energy, 124, 1049-1057. http://doi.org/10.1016/j.renene.2018.01.078.

Zheng, L., Seidi, F., Wu, W., Pan, Y., & Xiao, H. (2023). Dualfunctional lignin-based hydrogels for sustained release of agrochemicals and heavy metal ion complexation. International Journal of Biological Macromolecules, 235, 123701. http://doi.org/10.1016/j.ijbiomac.2023.123701. PMid:36801277.


Submitted date:
04/09/2025

Accepted date:
10/08/2025

69289668a95395578c03f454 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections