Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.4322/biori.00012025
Biotechnology Research and Innovation Journal
Research paper

Rutile/anatase titanium dioxide nanocrystals enhance migration and proliferation of MC3T3-E1 pre-osteoblasts

Loyna Nobile Carvalho, Lucas Correia Peres, Anielle Christine Almeida Silva, Noelio Oliveira Dantas, Letícia de Souza Castro Filice, Vivian Alonso-Goulart

Downloads: 0
Views: 7

Abstract

Alongside the development of biomaterials on a nanoscale, regenerative medicine is one of the most important areas of the 21st century. The combination of cells and nanomaterials can bring benefits such as tissue regeneration. Titanium dioxide is a well-researched metal that has numerous applications due to its unique properties compared to other metals. In this study, titanium dioxide nanocrystals in the anatase, rutile and brookite phases were synthesized and characterized. Viability, proliferation, and migration assays were performed on MC3T3-E1 cells using TiO2 nanocrystals at different concentrations. The results show that the nanocrystals have high purity and different phases depending on the heat treatment at 650 ºC and 800 ºC. The different phases and concentrations of nanocrystals showed no cytotoxicity to the cells (viability above 70% for every condition) and increased cell proliferation (cell numbers almost tripling on day 4 relatively to day 2), with a focus on rutile/anatase TiO2 at 100 µg/mL (RA100), which increased cell migration compared to the control in almost 15%. These findings suggest that rutile/anatase TiO2; NCs may support bone regeneration by promoting pre-osteoblast proliferation and migration. Further studies on osteogenic differentiation and gene expression are warranted.

Keywords

Regenerative medicine; Titanium dioxide; Migration; Cytotoxicity

References

Akakuru, O. U., Iqbal, Z. M., & Wu, A. (2020). TiO2 nanoparticles: Properties and applications. In A. Wu & W. Ren (Eds.), TiO2 nanoparticles (1st ed., pp. 1–66). Wiley. http://doi.org/10.1002/9783527825431. ch1

Alonso-Goulart, V., Carvalho, L. N., Marinho, A. L. G., De Oliveira Souza, B. L., De Aquino Pinto Palis, G., Lage, H. G. D., De Lima, I. L., Guimarães, L. D., Peres, L. C., Silveira, M. M., Lopes, G. H. N. L., Ferreira, L. B., & De Souza Castro-Filice, L. (2021). Biomaterials and adipose-derived mesenchymal stem cells for regenerative medicine: A systematic review. Materials, 14(16), 4641. http://doi.org/10.3390/ma14164641. PMid:34443163.

Babitha, S., & Korrapati, P. S. (2017). Biodegradable zein– polydopamine polymeric scaffold impregnated with TiO2 nanoparticles for skin tissue engineering. Biomedical Materials, 12(5), 055008. http://doi.org/10.1088/1748-605X/aa7d5a. PMid:28944761.

Dar, G. I., Saeed, M., & Wu, A. (2020). Toxicity of TiO2 nanoparticles. In A. Wu & W. Ren (Eds.), TiO2 nanoparticles (1st ed., pp. 67–103). Wiley. http://doi.org/10.1002/9783527825431.ch2

Duarte, C. A., Goulart, L. R., Filice, L. D. S. C., Lima, I. L. D., Campos-Fernández, E., Dantas, N. O., Silva, A. C. A., Soares, M. B. P., Santos, R. R. D., Cardoso, C. M. A., França, L. S. D. A., Rocha, V. P. C., Ribeiro, A. R. L. P., Perez, G., Carvalho, L. N., & Alonso-Goulart, V. (2020). Characterization of crystalline phase of TiO2 nanocrystals, cytotoxicity and cell internalization analysis on human adipose tissue-derived mesenchymal stem cells. Materials, 13(18), 4071. http://doi.org/10.3390/ma13184071. PMid:32937776.

Dzobo, K., Thomford, N. E., Senthebane, D. A., Shipanga, H., Rowe, A., Dandara, C., Pillay, M., & Motaung, K. S. C. M. (2018). Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells International, 2018, 2495848. http://doi.org/10.1155/2018/2495848. PMid:30154861.

Eddy, D. R., Permana, M. D., Sakti, L. K., Sheha, G. A. N., Solihudin, Hidayat, S., Takei, T., Kumada, N., & Rahayu, I. (2023). Heterophase polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for efficient photocatalyst: fabrication and activity. Nanomaterials, 13(4), 704. http://doi.org/10.3390/ nano13040704. PMid:36839072.

Guinier, A., Lorrain, P., Lorrain, D. S.-M., e Gillis, J. (1964). X-Ray Diffraction Em Crystals, Imperfect Crystals, e Amorphous Bodies. Physics Today, 17(4), 70–72. http://doi.org/10.1063/1.3051547

Javed, R., Ain, N. U., Gul, A., Arslan Ahmad, M., Guo, W., Ao, Q., & Tian, S. (2022). Diverse Biotechnological Applications of Multifunctional Titanium Dioxide Nanoparticles: An up‐to‐ date review. IET Nanobiotechnology / IET, 16(5), 171-189. http://doi.org/10.1049/nbt2.12085. PMid:35411585.

Keely, P. J. (2013). Cell migration within three-dimensional matrices. In W. J. Lennarz & M. D. Lane (Eds.), Encyclopedia of biological chemistry (pp. 436–445). Elsevier. http://doi.org/10.1016/B978- 0-12-378630-2.00495-3

Koo, B., Park, J., Kim, Y., Choi, S.-H., Sung, Y.-E., & Hyeon, T. (2006). Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol−gel reaction of syringe pump delivered precursors. The Journal of Physical Chemistry B, 110(48), 24318-24323. http://doi.org/10.1021/jp065372u. PMid:17134182.

Koria, P. (2012). Delivery of growth factors for tissue regeneration and wound healing. BioDrugs, 26(3), 163-175. http://doi.org/10.2165/11631850- 000000000-00000. PMid:22500904.

Landén, N. X., Li, D., & Ståhle, M. (2016). Transition from inflammation to proliferation: A critical step during wound healing. Cellular and Molecular Life Sciences, 73(20), 3861-3885. http://doi.org/10.1007/s00018-016-2268-0. PMid:27180275.

Leyva-Porras, C., Toxqui-Teran, A., Vega-Becerra, O., Miki-Yoshida, M., Rojas-Villalobos, M., García-Guaderrama, M., & Aguilar-Martínez, J. A. (2015). Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. Journal of Alloys and Compounds, 647, 627-636. http:// doi.org/10.1016/j.jallcom.2015.06.041.

Longhin, E. M., El Yamani, N., Rundén-Pran, E., & Dusinska, M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 4, 981701. http://doi.org/10.3389/ftox.2022.981701. PMid:36245792.

Mao, A. S., & Mooney, D. J. (2015). Regenerative medicine: Current therapies and future directions. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14452-14459. http://doi.org/10.1073/pnas.1508520112. PMid:26598661. Mihai, M. M., Dima, M. B., Dima, B., & Holban, A. M. (2019). Nanomaterials for wound healing and infection control. Materials, 12(13), 2176. http://doi.org/10.3390/ma12132176. PMid:31284587.

Mizuno, H., Tobita, M., & Uysal, A. C. (2012). Concise review: Adipose‐derived stem cells as a novel tool for future regenerative medicine. Stem Cells, 30(5), 804-810. http://doi.org/10.1002/ stem.1076. PMid:22415904.

Nikpasand, A., & Parvizi, M. R. (2019). Evaluation of the effect of titatnium dioxide nanoparticles/gelatin composite on infected skin wound healing: An animal model study. Bulletin of Emergency and Trauma, 7(4), 366-372. http://doi.org/10.29252/beat-070405. PMid:31857999.

Prokopiuk, V., Yefimova, S., Onishchenko, A., Kapustnik, V., Myasoedov, V., Maksimchuk, P., Butov, D., Bespalova, I., & Tkachenko, A. (2023). Assessing the cytotoxicity of TiO2−x nanoparticles with a different Ti3+(Ti2+)/Ti4+ ratio. Biological Trace Element Research, 201(6), 3117-3130. http://doi.org/10.1007/s12011-022-03403-3. PMid:36029428.

Racovita, A. D. (2022). Titanium dioxide: Structure, impact, and toxicity. International Journal of Environmental Research and Public Health, 19(9), 5681. http://doi.org/10.3390/ijerph19095681. PMid:35565075.

Rashid, M. M., Forte Tavčer, P., & Tomšič, B. (2021). Influence of titanium dioxide nanoparticles on human health and the environment. Nanomaterials, 11(9), 2354. http://doi.org/10.3390/ nano11092354. PMid:34578667.

Ribeiro, A. R., Gemini-Piperni, S., Travassos, R., Lemgruber, L. C., Silva, R., Rossi, A. L., Farina, M., Anselme, K., Shokuhfar, T., Shahbazian-Yassar, R., Borojevic, R., Rocha, L. A., Werckmann, J., & Granjeiro, J. M. (2016). Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Scientific Reports, 6(1), 23615. http://doi.org/10.1038/ srep23615. PMid:27021687.

Sampogna, G., Guraya, S. Y., & Forgione, A. (2015). Regenerative medicine: Historical roots and potential strategies in modern medicine. Journal of Microscopy and Ultrastructure, 3(3), 101-107. http://doi.org/10.1016/j.jmau.2015.05.002. PMid:30023189.

Santos-Aguilar, P., Bernal-Ramírez, J., Vázquez-Garza, E., VélezEscamilla, L. Y., Lozano, O., García-Rivas, G. D. J., & ContrerasTorres, F. F. (2023). Synthesis and characterization of rutile TiO2 nanoparticles for the toxicological effect on the H9c2 cell line from rats. ACS Omega, 8(21), 19024-19036. http://doi.org/10.1021/ acsomega.3c01771. PMid:37273591.

United Network for Organ Sharing. (2022, December 15). 2022 Organ Transplants again set annual records. https://unos.org/ news/2022-organ-transplants-again-set-annual-records/ Wen, J., Cai, D., Gao, W., He, R., Li, Y., Zhou, Y., Klein, T., Xiao, L., & Xiao, Y. (2023). Osteoimmunomodulatory nanoparticles for bone regeneration. Nanomaterials, 13(4), 692. http://doi.org/10.3390/ nano13040692. PMid:36839060.

Yadav, R., Dubey, A., Tiwari, S. P., Shrivastava, P., & Mandal, S. (2022). Nanotechnology and its applications: A scientific boon for future. International Journal of Drug Delivery Technology, 12(1), 1-8. http://doi.org/10.25258/ijddt.12.1.80.

Yu, J., Yu, J. C., Leung, M. K.-P., Ho, W., Cheng, B., Zhao, X., & Zhao, J. (2003). Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. Journal of Catalysis, 217(1), 69-78. http://doi.org/10.1016/S0021-9517(03)00034-4.

Yu, Q., Wang, H., Peng, Q., Li, Y., Liu, Z., & Li, M. (2017). Different toxicity of anatase and rutile Tio 2 nanoparticles on macrophages: Involvement of difference in affinity to proteins and phospholipids. Journal of Hazardous Materials, 335, 125-134. http://doi.org/10.1016/j.jhazmat.2017.04.026. PMid:28437696.

Zhang, Y., Yu, W., Jiang, X., Lv, K., Sun, S., & Zhang, F. (2011). Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine MC3T3-E1 preosteoblasts. Journal of Materials Science. Materials in Medicine, 22(8), 1933-1945. http://doi.org/10.1007/s10856-011-4375-7. PMid:21681655.


Submitted date:
01/17/2025

Accepted date:
07/21/2025

68e65bd2a953952f032dee07 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections