Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2020.03.001
Biotechnology Research and Innovation Journal
Plant Biotechnology Research article

Evaluation of Setaria viridis physiological and gene expression responses to distinct water-deficit conditions

Tamires de Souza Rodrigues, João Travassos Lins, Marcus Vinicius Cattem, Vinicius Carvalho Jardim, Marcos Silveira Buckeridge, Maria Fátima Grossi-de-Sá, Fernanda Reinert, Márcio Alves-Ferreira

Downloads: 0
Views: 346

Abstract

Setaria viridis, a C4 monocot, was proposed as a model plant for studies on the response to stress conditions. Water-deficit ranks among the top three most devastating stresses and its importance will likely increase in the scenario of climate change. The aim of this work was to evaluate physiological and molecular water-deficit responses of S. viridis subjected to different conditions. Principal component analysis highlighted the physiological differences between vegetative and reproductive stages of S. viridis, as well as the differences between two methods of water-deficit induction: polyethylene glycol and air-drying. Network interactions were observed in distinct developmental stages and water-deficit induction methods tested, allowing classification of root and shoot fresh weight and non-photochemical quenching as the best physiological parameters to group the networks. Variations in the gene expression patterns of delta 1-pyrroline-5-carboxylate synthase 2 (SvP5CS2), Dehydrin 1 (SvDHN1) and the transcription factors WRKY DNA-binding domain 1 (SvWRKY1), dehydration-responsive element-binding protein 1 class C (SvDREB1C) and NAC protein 6 (SvNAC6) were observed. Among these genes, it was observed two expression patterns predominant during water-deficit: inducible (SvDHN1 and SvNAC6) and repressed (SvP5CS2SvWRKY1 and SvDREB1C) genes. SvDHN1 showed the highest expression level in all the conditions tested. PEG treatment during the reproductive stage promoted the upregulation of the five marker genes in roots. The discriminative analysis suggested that the physiological and molecular responses in S. viridis adjusted according to the evaluated water-deficit conditions, especially after PEG treatments, indicating that the PEG method of water-deficit may better replicate field conditions.

Keywords

Green foxtail Drought Water-deficit stress

References

Abdi and Williams, 2010
H. Abdi, L.J. Williams
Principal component analysis
Wiley Interdisciplinary Reviews: Computational Statistics, 2 (4) (2010), pp. 433-459, 10.1002/wics.101

Alpert, 2000
P. Alpert
The discovery, scope, and puzzle of desiccation tolerance in plants
Plant Ecology, 151 (1) (2000), pp. 5-17

Amini et al., 2015
S. Amini, C. Ghobadi, A. Yamchi
Proline accumulation and osmotic stress: An overview of P5CS gene in plants
Journal of Plant Molecular Breeding, 3 (August) (2015), pp. 44-55

Andersen et al., 2004
C.L. Andersen, J.L. Jensen, T.F. Orntoft
NormFinder: Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets
Cancer Research, 64 (15) (2004), pp. 5245-5250
Retrieved from http://www.mdl.dk/publicationsnormfinder.htm

Ashraf et al., 2013
M. Ashraf, Q. Ali, M.A. Ashraf
Assessment of variation in drought tolerance using some key physiological criteria in potential wheat (Triticum aestivum L.) cultivars of different geographic origins
Archives of Agronomy and Soil Science, 59 (11) (2013), pp. 1503-1516, 10.1080/03650340.2012.727401

Banerjee and Roychoudhury, 2015
A. Banerjee, A. Roychoudhury
WRKY proteins: Signaling and regulation of expression during abiotic stress responses
(2015), 10.1155/2015/807560

Bencke-Malato et al., 2019
M. Bencke-Malato, A.P. De Souza, M. Ribeiro-Alves, J.F. Schmitz, M.S. Buckeridge, M. Alves-Ferreira
Short-term responses of soybean roots to individual and combinatorial effects of elevated [CO2] and water deficit
Plant Science, 280 (2019), pp. 283-296, 10.1016/j.plantsci.2018.12.021

Brutnell et al., 2010
T.P. Brutnell, L. Wang, K. Swartwood, A. Goldschmidt, D. Jackson, X.-G. Zhu, et al.
Setaria viridis: A model for C4 photosynthesis
The Plant Cell, 22 (8) (2010), pp. 2537-2544, 10.1105/tpc.110.075309

Conforte et al., 2017
A.J. Conforte, F. Guimarães-dias, A.C. Neves-borges, D. Felix-whipps, M. Alves-Ferreira
Isolation and characterization of a promoter responsive to salt, osmotic and dehydration stresses in soybean
Genetics and Molecular Biology, 1 (2017), pp. 226-237

Csardi and Nepusz, 2006
G. Csardi, T. Nepusz
The igraph software package for complex network research
InterJournal, Complex Systems, 1695 (2006), pp. 1-9

Demidchik et al., 2014
V. Demidchik, D. Straltsova, S.S. Medvedev, G.A. Pozhvanov, A. Sokolik, V. Yurin
Stress-induced electrolyte leakage: The role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment
Journal of Experimental Botany, 65 (5) (2014), pp. 1259-1270, 10.1093/jxb/eru004

Diaz-Espejo et al., 2012
A. Diaz-Espejo, T.N. Buckley, J.S. Sperry, M.V. Cuevas, A. de Cires, S. Elsayed-Farag, et al.
Steps toward an improvement in process-based models of water use by fruit trees: A case study in olive
Agricultural Water Management, 114 (2012), pp. 37-49, 10.1016/j.agwat.2012.06.027

Ehleringer et al., 1997
J.R. Ehleringer, T.E. Cerling, B.R. Helliker
C4 photosynthesis, atmospheric CO2 and climate
Oecologia, 112 (3) (1997), pp. 285-299, 10.1007/s004420050311

Fang and Xiong, 2015
Y. Fang, L. Xiong
General mechanisms of drought response and their application in drought resistance improvement in plants
Cellular and Molecular Life Sciences, 72 (4) (2015), pp. 673-689, 10.1007/s00018-014-1767-0

Fang et al., 2008
Y. Fang, J. You, K. Xie, W. Xie, L. Xiong
Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice
Molecular Genetics and Genomics, 280 (6) (2008), pp. 547-563, 10.1007/s00438-008-0386-6

González-Aguilera et al., 2016
K.L. González-Aguilera, C.F. Saad, R.A. Chávez Montes, M. Alves-Ferreira, S. de Folter
Selection of reference genes for quantitative real-time RT-PCR studies in tomato fruit of the genotype MT-Rg1
Frontiers in Plant Science, 7 (2016), 10.3389/fpls.2016.01386

Gorbe and Calatayud, 2012
E. Gorbe, A. Calatayud
Applications of chlorophyll fluorescence imaging technique in horticultural research: A review
Scientia Horticulturae, 138 (2012), pp. 24-35, 10.1016/j.scienta.2012.02.002

Graether and Boddington, 2014
S.P. Graether, K.F. Boddington
Disorder and function: A review of the dehydrin protein family
Frontiers in Plant Science, 5 (October) (2014), p. 576, 10.3389/fpls.2014.00576

Guimarães-Dias et al., 2016
F. Guimarães-Dias, A.C. Neves-Borges, A.J. Conforte, L. Giovanella-Kampmann, A.V.J. Ferreira, R.M.S. Amorim, et al.
Differential impact of acclimation and acute water deprivation in the expression of key transcription factors in soybean roots
Plant Molecular Biology Reporter, 34 (6) (2016), pp. 1167-1180, 10.1007/s11105-016-0993-z

Hellemans et al., 2007
J. Hellemans, G. Mortier, A. De Paepe, F. Speleman, J. Vandesompele
qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data
Genome Biology, 8 (2) (2007), p. R19, 10.1186/gb-2007-8-2-r19

Husson et al., 2007
F. Husson, J. Josse, S. Le, J. Mazet
Factor analysis and data mining with R
The FactoMineR Package (2007)

Iskandar et al., 2014
H.M. Iskandar, D. Widyaningrum, S. Suhandono
Cloning and characterization of P5CS1 and P5CS2 genes from Saccharum officinarum L. under drought stress
Journal of Tropical Crop Science, 1 (1) (2014), pp. 23-30, 10.29244/jtcs.1.1.23-30

Jiang et al., 2012
Y. Jiang, Y. Yao, Y. Wang
Physiological response, cell wall components, and gene expression of switchgrass under short-term drought stress and recovery
Crop Science, 52 (6) (2012), pp. 2718-2727, 10.2135/cropsci2012.03.0198

Kocheva et al., 2013
K. Kocheva, P. Petrov, G. Georgiev
Physiological and anatomical responses of wheat to induced dehydration and rehydration
Open Life Sciences, 8 (5) (2013), 10.2478/s11535-013-0153-x

Kumar et al., 2016
S. Kumar, G. Stecher, K. Tamura
MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets
Molecular Biology and Evolution, 33 (7) (2016), pp. 1870-1874, 10.1093/molbev/msw054

Kumar et al., 2015
V. Kumar, A. Singh, S.V.A. Mithra, S.L. Krishnamurthy, S.K. Parida, S. Jain, et al.
Genome-wide association mapping of salinity tolerance in rice (Oryza sativa)
DNA Research, 22 (January) (2015), pp. 1-13, 10.1093/dnares/dsu046

Lambret-Frotté et al., 2015
J. Lambret-Frotté, L.C.S. De Almeida, S.M. De Moura, F.L.F. Souza, F.S. Linhares, M. Alves-Ferreira
Validating internal control genes for the accurate normalization of qPCR expression analysis of the novel model plant Setaria viridis
PLOS ONE, 10 (8) (2015), pp. 1-22, 10.1371/journal.pone.0135006

Leung, 2015
D.W.M. Leung
Relationship between changes in contents of nitric oxide and amino acids particularly proline in plants under abiotic stress
Reactive oxygen species and oxidative damage in plants under stress, Springer International Publishing, Cham (2015), pp. 341-352, 10.1007/978-3-319-20421-5_14

Li et al., 2015
R. Li, Y. Zeng, J. Xu, Q. Wang, F. Wu, M. Cao, et al.
Genetic variation for maize root architecture in response to drought stress at the seedling stage
Breeding Science, 65 (4) (2015), pp. 298-307, 10.1270/jsbbs.65.298

Li et al., 2016
S. Li, W. Yue, M. Wang, W. Qiu, L. Zhou, H. Shou
Mutation of OsGIGANTEA leads to enhanced tolerance to polyethylene glycol-generated osmotic stress in rice
Frontiers in Plant Science, 7 (2016), 10.3389/fpls.2016.00465

Liu et al., 2014
C. Liu, B. Mao, S. Ou, W. Wang, L. Liu, Y. Wu, et al.
OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice
Plant Molecular Biology, 84 (1–2) (2014), pp. 19-36, 10.1007/s11103-013-0115-3

Liu et al., 2015a
S. Liu, Z. Hao, J. Weng, M. Li, D. Zhang, G. Pan, et al.
Identification of two functional markers associated with drought resistance in maize
Molecular Breeding, 35 (1) (2015), 10.1007/s11032-015-0231-7

Liu et al., 2015b
Y. Liu, X. Zhang, H. Tran, L. Shan, J. Kim, K. Childs, et al.
Assessment of drought tolerance of 49 switchgrass (Panicum virgatum) genotypes using physiological and morphological parameters
Biotechnology for Biofuels (2015), pp. 1-18, 10.1186/s13068-015-0342-8

Lu et al., 2015
M. Lu, Q.P. Sun, D.F. Zhang, T.Y. Wang, J.B. Pan
Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes
Biochemical and Biophysical Research Communications, 462 (2) (2015), pp. 144-150, 10.1016/j.bbrc.2015.04.113

Maksup et al., 2013
S. Maksup, K. Supaibulwatana, G. Selvaraj
High-quality reference genes for quantifying the transcriptional responses of Oryza sativa L. (ssp. indica and japonica) to abiotic stress conditions
Chinese Science Bulletin, 58 (16) (2013), pp. 1919-1930, 10.1007/s11434-013-5726-1

Manoli et al., 2012
A. Manoli, A. Sturaro, S. Trevisan, S. Quaggiotti, A. Nonis
Evaluation of candidate reference genes for qPCR in maize
Journal of Plant Physiology, 169 (8) (2012), pp. 807-815, 10.1016/j.jplph.2012.01.019

Mao et al., 2014
X. Mao, S. Chen, A. Li, C. Zhai, R. Jing
Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis
PLOS ONE, 9 (1) (2014), 10.1371/journal.pone.0084359

Martins et al., 2016
P.K. Martins, V. Mafra, W.R. de Souza, A.P. Ribeiro, F. Vinecky, M.F. Basso, et al.
Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis
Scientific Reports, 6 (May) (2016), p. 28348, 10.1038/srep28348

Minh-Thu et al., 2013
P.-T. Minh-Thu, D.-J. Hwang, J.-S. Jeon, B.H. Nahm, Y.-K. Kim
Transcriptome analysis of leaf and root of rice seedling to acute dehydration
Rice (New York, N.Y.), 6 (1) (2013), p. 38, 10.1186/1939-8433-6-38

Nakashima et al., 2014
K. Nakashima, K. Yamaguchi-Shinozaki, K. Shinozaki
The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat
Frontiers in Plant Science, 5 (May) (2014), p. 170, 10.3389/fpls.2014.00170

Nardeli et al., 2017
S.M. Nardeli, B.P. Matta, C.F. Saad, F. Reinert, R.S. Peixoto, M. Alves-Ferreira
Early heat shock protein response and selection of reference genes in Arabidopsis thaliana seedlings subjected to marine fuel contamination
Water, Air & Soil Pollution, 228 (3) (2017), p. 101, 10.1007/s11270-017-3251-6

Novák and Lipiec, 2012
V. Novák, J. Lipiec
Water extraction by roots under environmental stresses
R.L.P.J. Halasi-Kun, V. Stekauerová, I. Fodor, V. Nagy, B. Sinóros-Szabó (Eds.), Pollution and water resources, Columbia University seminar proceedings: Impact of anthropogenic activity and climate changes on the environment of central Europe and USA (151st ed.), Slovak Academy of Sciences – Hungarian Academy of Sciences – Columbia University, Columbia (2012)

O’Donnell et al., 2013
N.H. O’Donnell, B.L. Møller, A.D. Neale, J.D. Hamill, C.K. Blomstedt, R.M. Gleadow
Effects of PEG-induced osmotic stress on growth and dhurrin levels of forage sorghum
Plant Physiology and Biochemistry, 73 (2013), pp. 83-92, 10.1016/j.plaphy.2013.09.001

Oh et al., 2005
S. Oh, S.I. Song, Y.S. Kim, H. Jang, S.Y. Kim, M. Kim, et al.
Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth
Plant Physiology, 138 (May) (2005), pp. 341-351, 10.1104/pp.104.059147.1

Osakabe et al., 2014
Y. Osakabe, K. Osakabe, K. Shinozaki, L.-S.P. Tran
Response of plants to water stress
Frontiers in Plant Science, 5 (March) (2014), p. 86, 10.3389/fpls.2014.00086

Pfaffl, 2001
M.W. Pfaffl
A new mathematical model for relative quantification in real-time RT-PCR
Nucleic Acids Research, 29 (9) (2001), 10.1093/nar/29.9.e45
e45

Pushpavalli et al., 2015
R. Pushpavalli, M. Zaman-Allah, N.C. Turner, R. Baddam, M.V. Rao, V. Vadez
Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea
Functional Plant Biology, 42 (2) (2015), p. 162, 10.1071/FP14135

Qi et al., 2013
X. Qi, S. Xie, Y. Liu, F. Yi, J. Yu
Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing
Plant Molecular Biology, 83 (4–5) (2013), pp. 459-473, 10.1007/s11103-013-0104-6

Qiao et al., 2016
Z. Qiao, C.L. Li, W. Zhang
WRKY1 regulates stomatal movement in drought-stressed Arabidopsis thaliana
Plant Molecular Biology, 91 (1–2) (2016), pp. 53-65, 10.1007/s11103-016-0441-3

R Development Core Team, 2011
R Development Core Team
Vienna foundation for statistical computing
(2011)

Rachmat et al., 2014
A. Rachmat, S. Nugroho, D. Sukma, H. Aswidinnoor, Sudarsono
Overexpression of OsNAC6 transcription factor from Indonesia rice cultivar enhances drought and salt tolerance
Emirates Journal of Food and Agriculture, 26 (6) (2014), pp. 519-527, 10.9755/ejfa.v26i6.17672

Sage and Zhu, 2011
R.F. Sage, X.-G. Zhu
Exploiting the engine of C4 photosynthesis
Journal of Experimental Botany, 62 (9) (2011), pp. 2989-3000, 10.1093/jxb/err179

Saha and Blumwald, 2016
P. Saha, E. Blumwald
Spike-dip transformation of Setaria viridis
Plant Journal, 86 (1) (2016), pp. 89-101, 10.1111/tpj.13148

Saha et al., 2016
P. Saha, N. Sade, A. Arzani, M. Rubio Wilhelmi, M. del, K.M. Coe, et al.
Effects of abiotic stress on physiological plasticity and water use of Setaria viridis (L.)
Plant Science, 251 (2016), pp. 128-138, 10.1016/j.plantsci.2016.06.011

Saibi et al., 2015
W. Saibi, K. Feki, R. Ben Mahmoud, F. Brini
Durum wheat dehydrin (DHN-5) confers salinity tolerance to transgenic Arabidopsis plants through the regulation of proline metabolism and ROS scavenging system
Planta, 242 (5) (2015), pp. 1187-1194, 10.1007/s00425-015-2351-z

Salvatori et al., 2014
E. Salvatori, L. Fusaro, E. Gottardini, M. Pollastrini, V. Goltsev, R.J. Strasser, et al.
Plant stress analysis: Application of prompt, delayed chlorophyll fluorescence and 820 nm modulated reflectance. Insights from independent experiments
Plant Physiology and Biochemistry, 85 (2014), pp. 105-113, 10.1016/j.plaphy.2014.11.002

Sebastian et al., 2014
J. Sebastian, M.K. Wong, E. Tang, J.R. Dinneny
Methods to promote germination of dormant Setaria viridis seeds
PLOS ONE, 9 (4) (2014), pp. 1-7, 10.1371/journal.pone.0095109

Sebastian et al., 2016
J. Sebastian, M.-C. Yee, W. Goudinho Viana, R. Rellán-Álvarez, M. Feldman, H.D. Priest, et al.
Grasses suppress shoot-borne roots to conserve water during drought
Proceedings of the National Academy of Sciences (14) (2016), p. 201604021, 10.1073/pnas.1604021113

Shan et al., 2013
X. Shan, Y. Li, Y. Jiang, Z. Jiang, W. Hao, Y. Yuan
Transcriptome profile analysis of maize seedlings in response to high-salinity. Drought and cold stresses by deep sequencing
Plant Molecular Biology Reporter, 31 (6) (2013), pp. 1485-1491, 10.1007/s11105-013-0622-z

Shapiro and Wilk, 1965
S.S. Shapiro, M.B. Wilk
An analysis of variance test for normality (complete samples)
Biometrika, 52 (3/4) (1965), p. 591, 10.2307/2333709

Silveira et al., 2016
N.M. Silveira, L. Frungillo, F.C.C. Marcos, M.T. Pelegrino, M.T. Miranda, A.B. Seabra, et al.
Exogenous nitric oxide improves sugarcane growth and photosynthesis under water deficit
Planta, 244 (1) (2016), pp. 181-190, 10.1007/s00425-016-2501-y

Simonsen et al., 2008
M. Simonsen, T. Mailund, C.N.S. Pedersen
Rapid neighbour-joining
Algorithms in bioinformatics, Springer Berlin Heidelberg, Berlin, Heidelberg (2008), pp. 113-122, 10.1007/978-3-540-87361-7_10

Singh and Laxmi, 2015
D. Singh, A. Laxmi
Transcriptional regulation of drought response: A tortuous network of transcriptional factors
Frontiers in Plant Science, 6 (October) (2015), p. 895, 10.3389/fpls.2015.00895

Taiz and Zeiger, 2010
L. Taiz, E. Zeiger
Plant physiology
(50th ed.), Sinauer Associates, New York (2010)

Trachsel et al., 2010
S. Trachsel, P. Stamp, A. Hund
Growth of axile and lateral roots of maize: Response to desiccation stress induced by polyethylene glycol 8000
Maydica, 55 (2) (2010), pp. 101-109

Vandesompele et al., 2002
J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, et al.
Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes
Genome Biology, 3 (7) (2002), 10.1186/gb-2002-3-7-research0034

Wang et al., 2014
G. Wang, J. Zhang, G. Wang, X. Fan, X. Sun, H. Qin, et al.
Proline responding1 plays a critical role in regulating general protein synthesis and the cell cycle in maize
The Plant Cell, 26 (6) (2014), pp. 2582-2600, 10.1105/tpc.114.125559

Wei et al., 2012b
K.F. Wei, J. Chen, Y.F. Chen, L.J. Wu, D.X. Xie
Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize
DNA Research, 19 (2) (2012), pp. 153-164, 10.1093/dnares/dsr048

Yang and Zhang, 2006
J. Yang, J. Zhang
Grain filling of cereals under soil drying
New Phytologist, 169 (2) (2006), pp. 223-236, 10.1111/j.1469-8137.2005.01597.x

Yang et al., 2016
Y. Yang, P. Sornaraj, N. Borisjuk, N. Kovalchuk, S.M. Haefele
Transcriptional network involved in drought response and adaptation in cereals
Abiotic and Biotic Stress in Plants – Recent Advances and Future Perspectives (2016), pp. 3-30, 10.5772/62336

Yoo et al., 2014
S.Y. Yoo, J.Y. Park, D.W. Lee, S. Woo, T.S. Ko, T.W. Kim
Chlorophyll a fluorescence imaging analysis in air-drying stressed sorghum (Sorghum bicolor L.)
Leaf, 2 (1) (2014), pp. 58-66

Yooyongwech et al., 2012
S. Yooyongwech, S. Cha-um, K. Supaibulwatana
Proline related genes expression and physiological changes in indica rice response to water-deficit stress
Plant OMICS, 5 (6) (2012), pp. 597-603

Zhao and Fernald, 2005
S. Zhao, R.D. Fernald
Comprehensive algorithm for quantitative real-time polymerase chain reaction
Journal of Computational Biology, 12 (8) (2005), pp. 1047-1064, 10.1089/cmb.2005.12.1047.Comprehensive

Zhou et al., 2007
J. Zhou, X. Wang, Y. Jiao, Y. Qin, X. Liu, K. He, et al.
Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle
Plant Molecular Biology, 63 (5) (2007), pp. 591-608, 10.1007/s11103-006-9111-1

Zivcak et al., 2013
M. Zivcak, M. Brestic, Z. Balatova, P. Drevenakova, K. Olsovska, H.M. Kalaji, et al.
Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress
Photosynthesis Research, 117 (1–3) (2013), pp. 529-546, 10.1007/s11120-013-9885-3
 

608afb70a95395118d0f5fd9 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections