Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2020.01.002
Biotechnology Research and Innovation Journal
Review Section Review article

Plant NLR receptor proteins and their potential in the development of durable genetic resistance to biotic stresses

Amanda Cristina de Araújo, Fernando Campos De Assis Fonseca, Michelle Guitton Cotta, Gabriel Sergio Costa Alves, Robert Neil Gerard Miller

Downloads: 2
Views: 685

Abstract

In order to meet global food security demands in the next decades, considerable changes are required for sustainable agriculture in the context of plant disease, with sufficient food production depending on the development of durable genetically disease resistant crops. For this, further advances are required in our understanding of the plant innate immune system and how plants respond to invading pathogenic micro-organisms. Over the past 20 years, considerable research has been conducted into the characterization and cloning of plant nucleotide-binding, leucine-rich repeat (NLR) immune receptors. These intracellular receptors can recognize directly or indirectly pathogen effector proteins, resulting in effector-triggered immunity (ETI). Elucidation, however, of the diversity of NLR resistance gene families and the molecular basis of NLR-driven effector recognition and defense signaling is incomplete. Here, we present a summary of the understanding of NLR structure, function, genomic organization and diversity in plants. Recent advances in target enrichment approaches for NLR characterization and function validation are highlighted in the context of NLR engineering possibilities for accelerated durable genetic resistance to biotic stresses.

Keywords

Innate immunity,  NLR resistance genes,  RenSeq

References

Aarts et al., 1998
M.G.M. Aarts, B.T.L. Hekkert, E.B. Holub, J.L. Beynon, W.J. Stiekema, A. Pereira
Identification of R-gene homologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana
Molecular Plant-Microbe Interactions, 11 (4) (1998), pp. 251-258

Adachi et al., 2019
H. Adachi, M. Contreras, A. Harant, C.H. Wu, L. Derevnina, T. Sakai, et al.
An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species
Elife, 8 (2019), p. e49956

Adachi, Derevnina et al., 2019
H. Adachi, L. Derevnina, S. Kamoun
NLR singletons, pairs, and networks: Evolution, assembly, and regulation of the intracellular immunoreceptor circuitry of plants
Current Opinion in Plant Biology, 50 (2019), pp. 121-131

Ade et al., 2007
J. Ade, B.J. DeYoung, C. Golstein, R.W. Innes
Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease
Proceedings of the National Academy of Sciences of the United States of America, 104 (7) (2007), pp. 2531-2536

Altschul et al., 1997
S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, et al.
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
Nucleic Acids Research, 25 (17) (1997), pp. 3389-3402

Ameline-Torregrosa et al., 2008
C. Ameline-Torregrosa, B.B. Wang, M.S. O’Bleness, S. Deshpande, H. Zhu, B. Roe, et al.
Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula
Plant Physiology, 146 (1) (2008), pp. 5-21

Andolfo et al., 2019
G. Andolfo, A. Di Donato, P. Chiaiese, A. De Natale, A. Pollio, J.D.G. Jones, et al.
Alien domains shaped the modular structure of plant NLR proteins
Genome Biology and Evolution, 11 (12) (2019), pp. 3466-3477

Andolfo et al., 2014
G. Andolfo, F. Jupe, K. Witek, G.J. Etherington, M.R. Ercolano, J.D.G. Jones
Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq
BMC Plant Biology, 14 (1) (2014), pp. 1-12

Arora et al., 2019
S. Arora, B. Steuernagel, K. Gaurav, S. Chandramohan, Y. Long, O. Matny, et al.
Resistance gene cloning from a wild crop relative by sequence capture and association genetics
Nature Biotechnology, 37 (2) (2019), pp. 139-143

Ashikawa et al., 2008
I. Ashikawa, N. Hayashi, H. Yamane, H. Kanamori, J. Wu, T. Matsumoto, et al.
Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance
Genetics, 180 (4) (2008), pp. 2267-2276

Azhar and Heslop-Harrison, 2008
M. Azhar, J.S. Heslop-Harrison
Genomes, diversity and resistance gene analogues in Musa species
Cytogenetic and Genome Research, 121 (1) (2008), pp. 59-66

Baggs et al., 2017
E. Baggs, G. Dagdas, K.V. Krasileva
NLR diversity, helpers and integrated domains: Making sense of the NLR IDentity
Current Opinion in Plant Biology, 38 (2017), pp. 59-67

Bailey et al., 2009
T.L. Bailey, M. Boden, F.A. Buske, M. Frith, C.E. Grant, L. Clementi, et al.
MEME SUITE: Tools for motif discovery and searching
Nucleic Acids Research, 37 (suppl_2) (2009), pp. W202-W208

Baldi et al., 2004
P. Baldi, A. Patocchi, E. Zini, C. Toller, R. Velasco, M. Komjanc
Cloning and linkage mapping of resistance gene homologues in apple
Theoretical and Applied Genetics, 109 (1) (2004), pp. 231-239

Bao et al., 2015
W. Bao, K.K. Kojima, O. Kohany
Repbase Update, a database of repetitive elements in eukaryotic genomes
Mobile DNA, 6 (1) (2015), p. 11

Barbey et al., 2019
C.R. Barbey, S. Lee, S. Verma, K.A. Bird, A.E. Yocca, P.P. Edger, et al.
Disease resistance genetics and genomics in octoploid strawberry
G3 (Bethesda, Md), 9 (10) (2019), pp. 3315-3332

Bashiardes et al., 2005
S. Bashiardes, R. Veile, C. Helms, E.R. Mardis, A.M. Bowcock, M. Lovett
Direct genomic selection
Nature Methods, 2 (1) (2005), p. 63

Baurens et al., 2010
F.C. Baurens, S. Bocs, M. Rouard, T. Matsumoto, R.N.G. Miller, M. Rodier-Goud, et al.
Mechanisms of haplotype divergence at the RGA08 nucleotide-binding leucine-rich repeat gene locus in wild banana (Musa balbisiana)
BMC Plant Biology, 10 (1) (2010), p. 149

Bayer et al., 2018
P.E. Bayer, D. Edwards, J. Batley
Bias in resistance gene prediction due to repeat masking
Nature Plants, 4 (2018), pp. 762-765

Bella et al., 2008
J. Bella, K.L. Hindle, P.A. McEwan, S.C. Lovell
The leucine-rich repeat structure
Cellular and Molecular Life Sciences, 65 (2008), pp. 2307-2333

Bent et al., 1994
A.F. Bent, B.N. Kunkel, D. Dahlbeck, K.L. Brown, R. Schmidt, J. Giraudat, et al.
RPS2 of Arabidopsis thaliana: A leucine-rich repeat class of plant disease resistance genes
Science, 265 (5180) (1994), pp. 1856-1860

Bentham et al., 2017
A. Bentham, H. Burdett, P.A. Anderson, S.J. Williams, B. Kobe
Animal NLRs provide structural insights into plant NLR function
Annals of Botany, 119 (2017), pp. 689-702

Bernoux et al., 2016
M. Bernoux, H. Burdett, S.J. Williams, X. Zhang, C. Chen, K. Newell, et al.
Comparative analysis of the flax immune receptors L6 and L7 suggests an equilibrium-based switch activation model
The Plant Cell, 28 (1) (2016), pp. 146-159

Bertioli et al., 2003
D.J. Bertioli, S.C.M. Leal-Bertioli, M.B. Lion, V.L. Santos, G. Pappas, S.B. Cannon, et al.
A large scale analysis of resistance gene homologues in Arachis
Molecular Genetics and Genomics, 270 (1) (2003), pp. 34-45

Bolger et al., 2014
A. Bolger, F. Scossa, M.E. Bolger, C. Lanz, F. Maumus, T. Tohge, et al.
The genome of the stress-tolerant wild tomato species Solanum pennellii
Nature Genetics, 46 (9) (2014), pp. 1034-1038

Boller and Felix, 2009
T. Boller, G. Felix
A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors
Annual Review of Plant Biology, 60 (1) (2009), pp. 379-406

Bonardi et al., 2011
V. Bonardi, S. Tang, A. Stallmann, M. Roberts, K. Cherkis, J.L. Dangl
Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
Proceedings of the National Academy of Sciences of the United States of America, 108 (39) (2011), pp. 16463-16468

Borrelli et al., 2018
G.M. Borrelli, E. Mazzucotelli, D. Marone, C. Crosatti, V. Michelotti, G. Valè, et al.
Regulation and evolution of NLR genes: A close interconnection for plant immunity
International Journal of Molecular Sciences, 19 (6) (2018), p. 1662

Boutrot and Zipfel, 2017
F. Boutrot, C. Zipfel
Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance
Annual Review of Phytopathology, 55 (1) (2017), pp. 257-286

Bozkurt et al., 2007
O. Bozkurt, E.E. Hakki, M.S. Akkaya
Isolation and sequence analysis of wheat NBS-LRR type disease resistance gene analogs using degenerate PCR primers
Biochemical Genetics, 45 (5–6) (2007), pp. 469-486

Cannon et al., 2002
S.B. Cannon, H. Zhu, A.M. Baumgarten, R. Spangler, G. May, D.R. Cook, et al.
Diversity, distribution, and ancient taxonomic relationships within the TIR and Non-TIR NBS-LRR resistance gene subfamilies
Journal of Molecular Evolution, 54 (4) (2002), pp. 548-562

Cao et al., 2011
J. Cao, K. Schneeberger, S. Ossowski, T. Günther, S. Bender, J. Fitz, et al.
Whole-genome sequencing of multiple Arabidopsis thaliana populations
Nature Genetics, 43 (10) (2011), pp. 956-965

Cesari et al., 2014
S. Cesari, M. Bernoux, P. Moncuquet, T. Kroj, P.N. Dodds
A novel conserved mechanism for plant NLR protein pairs: The “integrated decoy” hypothesis
Frontiers in Plant Science, 5 (2014), p. 606

Cesari et al., 2013
S. Cesari, G. Thilliez, C. Ribot, V. Chalvon, C. Michel, A. Jauneau, et al.
The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding
The Plant Cell, 25 (4) (2013), pp. 1463-1481

Chen et al., 2010
Q. Chen, Z. Han, H. Jiang, D. Tian, S. Yang
Strong positive selection drives rapid diversification of R-Genes in Arabidopsis relatives
Journal of Molecular Evolution, 70 (2) (2010), pp. 137-148

Chisholm et al., 2006
S.T. Chisholm, G. Coaker, B. Day, B.J. Staskawicz
Host-microbe interactions: Shaping the evolution of the plant immune response
Cell, 124 (2006), pp. 803-814

Collier et al., 2011
S.M. Collier, L.P. Hamel, P. Moffett
Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein
Molecular Plant-Microbe Interactions, 24 (8) (2011), pp. 918-931

Collins et al., 1998
N.C. Collins, C.A. Webb, S. Seah, J.G. Ellis, S.H. Hulbert, A. Pryor
The isolation and mapping of disease resistance gene analogs in maize
Molecular Plant-Microbe Interactions, 11 (10) (1998), pp. 968-978

Creelman and Mullet, 1995
R.A. Creelman, J.E. Mullet
Jasmonic acid distribution and action in plants: Regulation during development and response to biotic and abiotic stress
Proceedings of the National Academy of Sciences of the United States of America, 92 (10) (1995), pp. 4114-4119

D’hont et al., 2012
A. D’hont, F. Denoeud, J.M. Aury, F.C. Baurens, F. Carreel, O. Garsmeur, et al.
The banana (Musa acuminata) genome and the evolution of monocotyledonous plants
Nature, 488 (7410) (2012), pp. 213-217

Dangl, 1994
J.L. Dangl
The enigmatic avirulence genes of phytopathogenic bacteria
Current Topics in Microbiology and Immunology, 192 (1994), pp. 99-118

Dangl and Jones, 2001
J.L. Dangl, J.D.G. Jones
Plant pathogens and integrated defence responses to infection
Nature, 411 (6839) (2001), pp. 826-833

Dangl et al., 2013
J.L. Dangl, D.M. Horvath, B.J. Staskawicz
Pivoting the plant immune system from dissection to deployment
Science, 341 (6147) (2013), pp. 746-751

De La Concepcion et al., 2019
J.C. De La Concepcion, M. Franceschetti, D. MacLean, R. Terauchi, S. Kamoun, M.J. Banfield
Protein engineering expands the effector recognition profile of a rice NLR immune receptor
eLife, 8 (2019), p. e47713

Delorenzi and Speed, 2002
M. Delorenzi, T. Speed
An HMM model for coiled-coil domains and a comparison with PSSM-based predictions
Bioinformatics, 18 (4) (2002), pp. 617-625

DeYoung and Innes, 2006
B.J. DeYoung, R.W. Innes
Plant NBS-LRR proteins in pathogen sensing and host defense
Nature Immunology, 7 (2006), pp. 1243-1249

Dodds and Rathjen, 2010
P.N. Dodds, J.P. Rathjen
Plant immunity: Towards an integrated view of plant–Pathogen interactions
Nature Reviews Genetics, 11 (2010), pp. 539-548, 10.1038/nrg2812

Dodds et al., 2006
P.N. Dodds, G.J. Lawrence, A.M. Catanzariti, T. Teh, C.I.A. Wang, M.A. Ayliffe, et al.
Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes
Proceedings of the National Academy of Sciences of the United States of America, 103 (23) (2006), pp. 8888-8893

Dong, 2001
X. Dong
Genetic dissection of systemic acquired resistance
Current Opinion in Plant Biology, 4 (2001), pp. 309-314

Dubey and Singh, 2018
N. Dubey, K. Singh
Role of NBS-LRR proteins in plant defense
Molecular aspects of Plant-Pathogen interaction (2018), pp. 115-138

Eddy and Wheeler, 2007
S.R. Eddy, T. Wheeler
HMMER-biosequence analysis using profile hidden Markov models
URL Http://Hmmer. Janelia. Org
(2007)

Edger et al., 2019
P.P. Edger, T.J. Poorten, R. VanBuren, M.A. Hardigan, M. Colle, M.R. McKain, et al.
Origin and evolution of the octoploid strawberry genome
Nature Genetics, 51 (3) (2019), pp. 541-547

Ellis and Jones, 1998
J. Ellis, D. Jones
Structure and function of proteins controlling strain-specific pathogen resistance in plants
Current Opinion in Plant Biology, 1 (4) (1998), pp. 288-293

Ellis et al., 1999
J.G. Ellis, G.J. Lawrence, J.E. Luck, P.N. Dodds
Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity
The Plant Cell, 11 (3) (1999), pp. 495-506

Ellis et al., 2000
J. Ellis, P. Dodds, T. Pryor
Structure, function and evolution of plant disease resistance genes
Current Opinion in Plant Biology, 3 (4) (2000), pp. 278-284

Ellur et al., 2016
R.K. Ellur, A. Khanna, A. Yadav, S. Pathania, H. Rajashekara, V.K. Singh, et al.
Improvement of Basmati rice varieties for resistance to blast and bacterial blight diseases using marker assisted backcross breeding
Plant Science, 242 (2016), pp. 330-341

Farnham and Baulcombe, 2006
G. Farnham, D.C. Baulcombe
Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato
Proceedings of the National Academy of Sciences, 103 (49) (2006), pp. 18828-18833

Faustin et al., 2007
B. Faustin, L. Lartigue, J.M. Bruey, F. Luciano, E. Sergienko, B. Bailly-Maitre, et al.
Reconstituted NALP1 inflammasome reveals two-step mechanism of Caspase-1 activation
Molecular Cell, 25 (5) (2007), pp. 713-724

Felix et al., 1999
G. Felix, J.D. Duran, S. Volko, T. Boller
Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
The Plant Journal, 18 (3) (1999), pp. 265-276

Flor, 1942
H.H. Flor
Inheritance of pathogenicity in Melampsora lini
Phytopathology, 32 (1942), pp. 653-669

Gaj et al., 2013
T. Gaj, C.A. Gersbach, C.F. Barbas
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
Trends in Biotechnology, 31 (7) (2013), pp. 397-405

Gao et al., 2018
Y. Gao, W. Wang, T. Zhang, Z. Gong, H. Zhao, G.Z. Han
Out of water: The origin and early diversification of plant R-genes
Plant Physiology, 177 (1) (2018), pp. 82-89

Giannakopoulou et al., 2015
A. Giannakopoulou, J.F.C. Steele, M.E. Segretin, T.O. Bozkurt, J. Zhou, S. Robatzek, et al.
Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestansin Addition to the Fungus Fusarium oxysporum
Molecular Plant-Microbe Interactions, 28 (12) (2015), pp. 1316-1329

Giolai et al., 2016
M. Giolai, P. Paajanen, W. Verweij, L. Percival-Alwyn, D. Baker, K. Witek, et al.
Targeted capture and sequencing of gene-sized DNA molecules
BioTechniques, 61 (6) (2016), pp. 315-322

Goodstein et al., 2011
D.M. Goodstein, S. Shu, R. Howson, R. Neupane, R.D. Hayes, J. Fazo, et al.
Phytozome: A comparative platform for green plant genomics
Nucleic Acids Research, 40 (D1) (2011), pp. D1178-D1186

Gu et al., 2015
L. Gu, W. Si, L. Zhao, S. Yang, X. Zhang
Dynamic evolution of NBS–LRR genes in bread wheat and its progenitors
Molecular Genetics and Genomics, 290 (2) (2015), pp. 727-738

Guo et al., 2011
Y.L. Guo, J. Fitz, K. Schneeberger, S. Ossowski, J. Cao, D. Weigel
Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis
Plant Physiology, 157 (2) (2011), pp. 757-769

Gururani et al., 2012
M.A. Gururani, J. Venkatesh, C.P. Upadhyaya, A. Nookaraju, S.K. Pandey, S.W. Park
Plant disease resistance genes: Current status and future directions
Physiological and Molecular Plant Pathology, 78 (2012), pp. 51-65

Hammond-Kosack and Jones, 1996
K.E. Hammond-Kosack, J.D. Jones
Resistance gene-dependent plant defense responses
The Plant Cell, 8 (10) (1996), pp. 1773-1791

He et al., 2004
X. He, J.C. Anderson, O. Del Pozo, Y.Q. Gu, X. Tang, G.B. Martin
Silencing of subfamily I of protein phosphatase 2A catalytic subunits results in activation of plant defense responses and localized cell death
The Plant Journal, 38 (4) (2004), pp. 563-577

Heath, 2000
M.C. Heath
Hypersensitive response-related death
Plant Molecular Biology, 44 (3) (2000), pp. 321-334

Hirakawa et al., 2014
H. Hirakawa, K. Shirasawa, S. Kosugi, K. Tashiro, S. Nakayama, M. Yamada, et al.
Dissection of the octoploid strawberry genome by deep sequencing of the genomes of Fragaria species
DNA Research, 21 (2) (2014), pp. 169-181

Horvath and Barrangou, 2010
P. Horvath, R. Barrangou
CRISPR/Cas, the immune system of bacteria and archaea
Science, 327 (5962) (2010), pp. 167-170

Hulbert et al., 2001
S.H. Hulbert, C.A. Webb, S.M. Smith, Q. Sun
Resistance gene complexes: Evolution and utilization
Annual Review of Phytopathology, 39 (1) (2001), pp. 285-312

Jia et al., 2000
Y. Jia, S.A. McAdams, G.T. Bryan, H.P. Hershey, B. Valent
Direct interaction of resistance gene and avirulence gene products confers rice blast resistance
The EMBO Journal, 19 (15) (2000), pp. 4004-4014

Jones and Dangl, 2006
J.D.G. Jones, J.L. Dangl
The plant immune system
Nature, 444 (7117) (2006), pp. 323-329

Jones and Jones, 1997
D.A. Jones, J.D.G. Jones
The role of leucine-rich repeat proteins in plant defences
Advances in Botanical Research, 24 (1997), pp. 89-167

Jupe et al., 2012
F. Jupe, L. Pritchard, G.J. Etherington, K. MacKenzie, P.J.A. Cock, F. Wright, et al.
Identification and localisation of the NB-LRR gene family within the potato genome
BMC Genomics, 13 (1) (2012), p. 75

Jupe et al., 2013
F. Jupe, K. Witek, W. Verweij, J. Śliwka, L. Pritchard, G.J. Etherington, et al.
Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations
The Plant Journal, 76 (3) (2013), pp. 530-544

Kajava, 1998
A.V. Kajava
Structural diversity of leucine-rich repeat proteins
Journal of Molecular Biology, 277 (1998), pp. 519-527

Käll et al., 2004
L. Käll, A. Krogh, E.L.L. Sonnhammer
A combined transmembrane topology and signal peptide prediction method
Journal of Molecular Biology, 338 (5) (2004), pp. 1027-1036

Kanazin et al., 1996
V. Kanazin, L.F. Marek, R.C. Shoemaker
Resistance gene analogs are conserved and clustered in soybean
Proceedings of the National Academy of Sciences of the United States of America, 93 (21) (1996)

Kim et al., 2012
J. Kim, C.J. Lim, B.W. Lee, J.P. Choi, S.K. Oh, R. Ahmad, et al.
A genome-wide comparison of NB-LRR type of resistance gene analogs (RGA) in the plant Kingdom
Molecules and Cells, 33 (4) (2012), pp. 385-392

Kim et al., 2017
S. Kim, J. Park, S.I. Yeom, Y.M. Kim, E. Seo, K.T. Kim, et al.
New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication
Genome Biology, 18 (1) (2017), p. 210

Kobe and Deisenhofer, 1994
B. Kobe, J. Deisenhofer
The leucine-rich repeat: A versatile binding motif
Trends in Biochemical Sciences, 19 (1994), pp. 415-421

Kourelis and van der Hoorn, 2018
J. Kourelis, R.A.L. van der Hoorn
Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for r protein function
The Plant Cell, 30 (2018), pp. 285-299

Krasileva et al., 2010
K.V. Krasileva, D. Dahlbeck, B.J. Staskawicz
Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector
The Plant Cell, 22 (7) (2010), pp. 2444-2458

Krogh et al., 2001
A. Krogh, B. Larsson, G. Von Heijne, E.L.L. Sonnhammer
Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
Journal of Molecular Biology, 305 (3) (2001), pp. 567-580

Kroj et al., 2016
T. Kroj, E. Chanclud, C. Michel-Romiti, X. Grand, J.B. Morel
Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread
The New Phytologist, 210 (2) (2016), pp. 618-626

Kunze et al., 2004
G. Kunze, C. Zipfel, S. Robatzek, K. Niehaus, T. Boller, G. Felix
The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
The Plant Cell, 16 (12) (2004), pp. 3496-3507

Langmead and Salzberg, 2012
B. Langmead, S.L. Salzberg
Fast gapped-read alignment with Bowtie 2
Nature Methods, 9 (4) (2012), p. 357

Lees et al., 2016
J.A. Lees, M. Vehkala, N. Välimäki, S.R. Harris, C. Chewapreecha, N.J. Croucher, et al.
Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes
Nature Communications, 7 (2016), p. 12797

Leister and Katagiri, 2000
R.T. Leister, F. Katagiri
A resistance gene product of the nucleotide binding site - Leucine rich repeats class can form a complex with bacterial avirulence proteins in vivo
The Plant Journal, 22 (4) (2000), pp. 345-354

Leister et al., 1996
D. Leister, A. Ballvora, F. Salamini, C. Gebhardt
A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants
Nature Genetics, 14 (4) (1996), pp. 421-429

Leister et al., 1998
D. Leister, J. Kurth, D.A. Laurie, M. Yano, T. Sasaki, K. Devos, et al.
Rapid reorganization of resistance gene homologues in cereal genomes
Proceedings of the National Academy of Sciences of the United States of America, 95 (1) (1998), pp. 370-375

Lozano-Torres et al., 2012
J.L. Lozano-Torres, R.H.P. Wilbers, P. Gawronski, J.C. Boshoven, A. Finkers-Tomczak, J.H.G. Cordewener, et al.
Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode
Proceedings of the National Academy of Sciences of the United States of America, 109 (25) (2012), pp. 10119-10124

Lu et al., 2016
X. Lu, B. Kracher, I.M.L. Saur, S. Bauer, S.R. Ellwood, R. Wise, et al.
Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen
Proceedings of the National Academy of Sciences, 113 (42) (2016), pp. E6486-E6495

Lucas et al., 2015
J.A. Lucas, N.J. Hawkins, B.A. Fraaije
The evolution of fungicide resistance
Advances in Applied Microbiology, 90 (2015), pp. 29-92

Lupas et al., 1991
A. Lupas, M. Van Dyke, J. Stock
Predicting coiled coils from protein sequences
Science, 252 (5009) (1991), pp. 1162-1164

Maekawa et al., 2011
T. Maekawa, T.A. Kufer, P. Schulze-Lefert
NLR functions in plant and animal immune systems: So far and yet so close
Nature Immunology, 12 (2011), pp. 818-826

Mago et al., 1999
R. Mago, S. Nair, M. Mohan
Resistance gene analogues from rice: Cloning, sequencing and mapping
Theoretical and Applied Genetics, 99 (1–2) (1999), pp. 50-57

Maqbool et al., 2015
A. Maqbool, H. Saitoh, M. Franceschetti, C.E.M. Stevenson, A. Uemura, H. Kanzaki, et al.
Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor
Elife, 4 (2015), p. e08709

Marone et al., 2013
D. Marone, M.A. Russo, G. Laidò, A.M. De Leonardis, A.M. Mastrangelo
Plant nucleotide binding site–Leucine-rich repeat (NBS-LRR) genes: Active guardians in host defense responses
International Journal of Molecular Sciences, 14 (4) (2013), pp. 7302-7326

McDonnell et al., 2005
A.V McDonnell, T. Jiang, A.E. Keating, B. Berger
Paircoil2: Improved prediction of coiled coils from sequence
Bioinformatics, 22 (3) (2005), pp. 356-358

Meyers et al., 1999
B.C. Meyers, A.W. Dickerman, R.W. Michelmore, S. Sivaramakrishnan, B.W. Sobral, N.D. Young
Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily
The Plant Journal, 20 (3) (1999), pp. 317-332

Meyers et al., 2003
B.C. Meyers, A. Kozik, A. Griego, H. Kuang, R.W. Michelmore
Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis
The Plant Cell, 15 (4) (2003), pp. 809-834

Meyers et al., 2002
B.C. Meyers, M. Morgante, R.W. Michelmore
TIR-X and TIR-NBS proteins: Two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genomes
The Plant Journal, 32 (1) (2002), pp. 77-92

Michelmore and Meyers, 1998
R.W. Michelmore, B.C. Meyers
Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process
Genome Research, 8 (11) (1998), pp. 1113-1130

Miller et al., 2008
R.N.G. Miller, D.J. Bertioli, F.C. Baurens, C. Santos, P.C. Alves, N.F. Martins, et al.
Analysis of non-TIR NBS-LRR resistance gene analogs in Musa acuminata Colla: Isolation, RFLP marker development, and physical mapping
BMC Plant Biology, 15 (2008), pp. 1-15

Miller et al., 2017
R.N.G. Miller, G.S.C. Alves, M.A. Van Sluys
Plant immunity: Unravelling the complexity of plant responses to biotic stresses
Annals of Botany, 119 (5) (2017), pp. 681-687

Milligan et al., 1998
S.B. Milligan, J. Bodeau, J. Yaghoobi, I. Kaloshian, P. Zabel, V.M. Williamson
The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes
The Plant Cell, 10 (8) (1998), pp. 1307-1319

Moffett et al., 2002
P. Moffett, G. Farnham, J. Peart, D.C. Baulcombe
Interaction between domains of a plant NBS–LRR protein in disease resistance-related cell death
The EMBO Journal, 21 (17) (2002), pp. 4511-4519

Monaghan and Zipfel, 2012
J. Monaghan, C. Zipfel
Plant pattern recognition receptor complexes at the plasma membrane
Current Opinion in Plant Biology, 15 (2012), pp. 349-357

Monteiro and Nishimura, 2018
F. Monteiro, M.T. Nishimura
Structural, functional, and genomic diversity of plant NLR proteins: An evolved resource for rational engineering of plant immunity
Annual Review of Phytopathology, 56 (1) (2018), pp. 243-267

Nishimura et al., 2015
M.T. Nishimura, F. Monteiro, J.L. Dangl
Treasure your exceptions: Unusual domains in immune receptors reveal host virulence targets
Cell, 161 (2015), pp. 957-960

Peñuela et al., 2002
S. Peñuela, D. Danesh, N.D. Young
Targeted isolation, sequence analysis, and physical mapping of nonTIR NBS-LRR genes in soybean
Theoretical and Applied Genetics, 104 (2–3) (2002), pp. 261-272

Porter et al., 2009
B.W. Porter, M. Paidi, R. Ming, M. Alam, W.T. Nishijima, Y.J. Zhu
Genome-wide analysis of Carica papaya reveals a small NBS resistance gene family
Molecular Genetics and Genomics, 281 (6) (2009), pp. 609-626

Puchta, 2017
H. Puchta
Applying CRISPR/Cas for genome engineering in plants: The best is yet to come
Current Opinion in Plant Biology, 36 (2017), pp. 1-8

Rairdan and Moffett, 2006
G.J. Rairdan, P. Moffett
Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation
The Plant Cell, 18 (8) (2006), pp. 2082-2093

Ravensdale et al., 2012
M. Ravensdale, M. Bernoux, T. Ve, B. Kobe, P.H. Thrall, J.G. Ellis, et al.
Intramolecular interaction influences binding of the Flax L5 and L6 resistance proteins to their AvrL567 ligands
PLoS Pathogens, 8 (11) (2012), p. e1003004

Richter and Ronald, 2000
T.E. Richter, P.C. Ronald
The evolution of disease resistance genes
Plant Molecular Biology, 42 (1) (2000), pp. 195-204

Sanseverino et al., 2009
W. Sanseverino, G. Roma, M. De Simone, L. Faino, S. Melito, E. Stupka, et al.
PRGdb: A bioinformatics platform for plant resistance gene analysis
Nucleic Acids Research, 38 (suppl.1) (2009), pp. D814-D821

Sarris et al., 2016
P.F. Sarris, V. Cevik, G. Dagdas, J.D.G. Jones, K.V. Krasileva
Comparative analysis of plant immune receptor architectures uncovers host proteins likely targeted by pathogens
BMC Biology, 14 (1) (2016)

Saucet et al., 2015
S.B. Saucet, Y. Ma, P.F. Sarris, O.J. Furzer, K.H. Sohn, J.D.G. Jones
Two linked pairs of Arabidopsis TNL resistance genes independently confer recognition of bacterial effector AvrRps4
Nature Communications, 6 (2015), p. 6338

Segretin et al., 2014
M.E. Segretin, M. Pais, M. Franceschetti, A. Chaparro-Garcia, J.I. Bos, M.J. Banfield, et al.
Single amino acid mutations in the potato A, immune receptor R3a expand response to Phytophthora effectors
Molecular Plant-Microbe Interactions, 27 (2014), pp. 624-637

Sekhwal et al., 2015
M.K. Sekhwal, P. Li, I. Lam, X. Wang, S. Cloutier, F.M. You
Disease resistance gene analogs (RGAs) in plants
International Journal of Molecular Sciences, 16 (2015), pp. 19248-19290

Shao et al., 2016
Z.Q. Shao, J.Y. Xue, P. Wu, Y.M. Zhang, Y. Wu, Y.Y. Hang, et al.
Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns
Plant Physiology, 170 (4) (2016), pp. 2095-2109

Sharma et al., 2009
T.R. Sharma, A. Das, S.P. Kumar, M.L. Lodha
Resistance gene analogues as a tool for rapid identification and cloning of disease resistance genes in plants - A review
Journal of Plant Biochemistry and Biotechnology, 18 (2009), pp. 01-11

Shen et al., 2003
Q.H. Shen, F. Zhou, S. Bieri, T. Haizel, K. Shirasu, P. Schulze-Lefert
Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus
The Plant Cell, 15 (3) (2003), pp. 732-744

Speulman et al., 1998
E. Speulman, D. Bouchez, E.B. Holub, J.L. Beynon
Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana
The Plant Journal, 14 (4) (1998), pp. 467-474

Spoel and Dong, 2012
S.H. Spoel, X. Dong
How do plants achieve immunity? Defence without specialized immune cells
Nature Reviews Immunology, 12 (2012), pp. 89-100

Stam et al., 2016
R. Stam, D. Scheikl, A. Tellier
Pooled enrichment sequencing identifies diversity and evolutionary pressures at NLR resistance genes within a wild tomato population
Genome Biology and Evolution, 8 (5) (2016), pp. 1501-1515

Stange et al., 2008
C. Stange, J.T. Matus, C. Domínguez, T. Perez-Acle, P. Arce-Johnson
The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants
Journal of Molecular Graphics & Modelling, 26 (5) (2008), pp. 850-860

Steele et al., 2019
J.F.C. Steele, R.K. Hughes, M.J. Banfield
Structural and biochemical studies of an NB-ARC domain from a plant NLR immune receptor
PloS One, 14 (8) (2019), p. e0221226

Stein et al., 2018
J.C. Stein, Y. Yu, D. Copetti, D.J. Zwickl, L. Zhang, C. Zhang, et al.
Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza
Nature Genetics, 50 (2) (2018), pp. 285-296

Steuernagel et al., 2015
B. Steuernagel, F. Jupe, K. Witek, J.D.G. Jones, B.B.H. Wulff
NLR-parser: Rapid annotation of plant NLR complements
Bioinformatics, 31 (10) (2015), pp. 1665-1667

Steuernagel et al., 2016
B. Steuernagel, S.K. Periyannan, I. Hernández-Pinzón, K. Witek, M.N. Rouse, G. Yu, et al.
Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture
Nature Biotechnology, 34 (6) (2016), pp. 652-655

Steuernagel et al., 2018
B. Steuernagel, K. Witek, S.G. Krattinger, R.H. Ramirez-Gonzalez, H. Schoonbeek, G. Yu, et al.
Physical and transcriptional organisation of the bread wheat intracellular immune receptor repertoire
BioRxiv (2018), p. 339424

Sueldo et al., 2015
D.J. Sueldo, M. Shimels, L.N. Spiridon, O. Caldararu, A. Petrescu, M.H.A.J. Joosten, et al.
Random mutagenesis of the nucleotide-binding domain of NRC 1 (NB-LRR required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket
The New Phytologist, 208 (1) (2015), pp. 210-223

Swiderski and Innes, 2001
M.R. Swiderski, R.W. Innes
The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily
The Plant Journal, 26 (1) (2001), pp. 101-112

Tai et al., 1999
T.H. Tai, D. Dahlbeck, E.T. Clark, P. Gajiwala, R. Pasion, M.C. Whalen, et al.
Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato
Proceedings of the National Academy of Sciences, 96 (24) (1999), pp. 14153-14158

Takken and Goverse, 2012
F.L.W. Takken, A. Goverse
How to build a pathogen detector: Structural basis of NB-LRR function
Current Opinion in Plant Biology, 15 (4) (2012), pp. 375-384

Takken and Tameling, 2009
F.L.W. Takken, W.I.L. Tameling
To nibble at plant resistance proteins
Science, 324 (2009), pp. 744-746

Takken et al., 2006
F.L. Takken, M. Albrecht, W.I.L. Tameling
Resistance proteins: Molecular switches of plant defence
Current Opinion in Plant Biology, 9 (2006), pp. 383-390

Tameling et al., 2002
W.I.L. Tameling, S.D.J. Elzinga, P.S. Darmin, J.H. Vossen, F.L.W. Takken, M.A. Haring, et al.
The tomato R gene products i-2 and Mi-1 are functional ATP binding proteins with ATPase activity
The Plant Cell, 14 (11) (2002), pp. 2929-2939

Thomma et al., 2011
B.P.H.J. Thomma, T. Nürnberger, M.H.A.J. Joosten
Of PAMPs and effectors: The blurred PTI-ETI dichotomy
The Plant Cell, 23 (1) (2011), pp. 4-15

Van De Weyer et al., 2019
A.L. Van De Weyer, F. Monteiro, O.J. Furzer, M.T. Nishimura, V. Cevik, K Witek, et al.
A species-wide inventory of NLR genes and alleles in Arabidopsis thaliana
Cell, 178 (5) (2019), pp. 1260-1272

Van Der Biezen and Jones, 1998a
E.A. Van Der Biezen, J.D.G. Jones
The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals
Current Biology, 8 (7) (1998), pp. R226-R228

Van Der Biezen and Jones, 1998b
E.A. Van Der Biezen, J.D.G. Jones
Plant disease-resistance proteins and the gene-for-gene concept
Trends in Biochemical Sciences, 23 (12) (1998), pp. 454-456

Van Der Hoorn and Kamoun, 2008
R.A.L. Van Der Hoorn, S. Kamoun
From guard to decoy: A new model for perception of plant pathogen effectors
The Plant Cell, 20 (8) (2008), pp. 2009-2017

Van Der Vossen et al., 2000
E.A. Van Der Vossen, J.N. Van Der Voort, K. Kanyuka, A. Bendahmane, H. Sandbrink, D.C. Baulcombe, et al.
Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: A virus and a nematode
The Plant Journal, 23 (5) (2000), pp. 567-576

Van Esse et al., 2008
H.P. Van Esse, J.W. Van’t Klooster, M.D. Bolton, K.A. Yadeta, P. Van Baarlen, S. Boeren, et al.
The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense
The Plant Cell, 20 (7) (2008), pp. 1948-1963

Van Ghelder et al., 2019
C. Van Ghelder, G.J. Parent, P. Rigault, J. Prunier, I. Giguère, S. Caron, et al.
The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs
Scientific Reports, 9 (1) (2019), p. 11614

Van Ooijen et al., 2008
G. Van Ooijen, G. Mayr, M.M.A. Kasiem, M. Albrecht, B.J.C. Cornelissen, F.L.W. Takken
Structure–function analysis of the NB-ARC domain of plant disease resistance proteins
Journal of Experimental Botany, 59 (6) (2008), pp. 1383-1397

Van Weymers et al., 2016
P.S.M. Van Weymers, K. Baker, X. Chen, B. Harrower, D.E.L. Cooke, E.M. Gilroy, et al.
Utilizing “Omic” technologies to identify and prioritize novel sources of resistance to the oomycete pathogen Phytophthora infestans in potato germplasm collections
Frontiers in Plant Science, 7 (2016), p. 672

Ve et al., 2015
T. Ve, S.J. Williams, B. Kobe
Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains
Apoptosis, 20 (2) (2015), pp. 250-261

Wan et al., 2019
L. Wan, K. Essuman, R.G. Anderson, Y. Sasaki, F. Monteiro, E.H. Chung, et al.
TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death
Science, 365 (2019), pp. 799-803

Wang et al., 2007
C.I.A. Wang, G. Gunčar, J.K. Forwood, T. Teh, A.M. Catanzariti, G.J. Lawrence, et al.
Crystal structures of flax rust avirulence proteins AvrL567-A and -D reveal details of the structural basis for flax disease resistance specificity
The Plant Cell, 19 (9) (2007), pp. 2898-2912

Wang et al., 2019
J. Wang, M. Hu, J. Wang, J. Qi, Z. Han, G. Wang, et al.
Reconstitution and structure of a plant NLR resistosome conferring immunity
Science, 364 (6435) (2019), p. eaav5870

Weaver et al., 2006
L.M. Weaver, M.R. Swiderski, Y. Li, J.D. Jones
The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defence by truncated alleles in tobacco and Arabidopsis
The Plant Journal, 47 (6) (2006), pp. 829-840

Whitham et al., 1994
S. Whitham, S.P. Dinesh-Kumar, D. Choi, R. Hehl, C. Corr, B. Baker
The product of the tobacco mosaic virus resistance gene N: Similarity to toll and the interleukin-1 receptor
Cell, 78 (6) (1994), pp. 1101-1115

Williams et al., 2011
S.J. Williams, P. Sornaraj, E. De Courcy-Ireland, R. Ian Menz, B. Kobe, J.G. Ellis, et al.
An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP
Molecular Plant-Microbe Interactions, 24 (8) (2011), pp. 897-906

Witek et al., 2016
K. Witek, F. Jupe, A.I. Witek, D. Baker, M.D. Clark, J.D.G. Jones
Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing
Nature Biotechnology, 34 (6) (2016), pp. 656-660

Wolf et al., 1997
E. Wolf, P.S. Kim, B. Berger
MultiCoil: A program for predicting two‐and three‐stranded coiled coils
Protein Science, 6 (6) (1997), pp. 1179-1189

Wu et al., 2018
C.H. Wu, L. Derevnina, S. Kamoun
Receptor networks underpin plant immunity
Science, 360 (6395) (2018), pp. 1300-1301

Wu et al., 2017
C.H. Wu, A. Abd-El-Haliem, T.O. Bozkurt, K. Belhaj, R. Terauchi, J.H. Vossen, et al.
NLR network mediates immunity to diverse plant pathogens
Proceedings of the National Academy of Sciences of the United States of America, 114 (30) (2017), pp. 8113-8118

Xu et al., 2011
X. Xu, S. Pan, S. Cheng, B. Zhang, D. Mu, P. Ni, et al.
Genome sequence and analysis of the tuber crop potato
Nature, 475 (7355) (2011), pp. 189-195

Yandell and Ence, 2012
M. Yandell, D. Ence
A beginner’s guide to eukaryotic genome annotation
Nature Reviews Genetics, 13 (5) (2012), pp. 329-342

Yue et al., 2012
J. Yue, B.C. Meyers, J. Chen, D. Tian, S. Yang
Tracing the origin and evolutionary history of plant nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes
The New Phytologist, 193 (4) (2012), pp. 1049-1063

Zhang et al., 2017
Y. Zhang, Y. Wang, J. Liu, Y. Ding, S. Wang, X. Zhang, et al.
Temperature-dependent autoimmunity mediated by chs1 requires its neighboring TNL gene SOC3
The New Phytologist, 213 (3) (2017), pp. 1330-1345

Zhang et al., 2016
Y.M. Zhang, Z.Q. Shao, Q. Wang, Y.Y. Hang, J.Y. Xue, B. Wang, et al.
Uncovering the dynamic evolution of nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes in Brassicaceae
Journal of Integrative Plant Biology, 58 (2) (2016), pp. 165-177

Zhang, Dodds et al., 2017
X. Zhang, P.N. Dodds, M. Bernoux
What Do We Know About NOD-Like Receptors in Plant Immunity?
Annual Review of Phytopathology, 55 (1) (2017), pp. 205-229

Zhao et al., 2005
H. Zhao, C.C. Li, J. Pardo, P.C. Chu, C.X. Liao, J. Huang, et al.
A novel E3 ubiquitin ligase TRAC-1 positively regulates T cell activation
The Journal of Immunology, 174 (9) (2005), pp. 5288-5297

Zhong and Cheng, 2016
Y. Zhong, Z.M. Cheng
A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication
Scientific Reports, 6 (2016), p. 32923

Zhong et al., 2018
Y. Zhong, X. Zhang, Z.M. Cheng
Lineage-specific duplications of NBS-LRR genes occurring before the divergence of six Fragaria species
BMC Genomics, 19 (1) (2018), p. 128

Zhu et al., 2012
S. Zhu, Y. Li, J.H. Vossen, R.G.F. Visser, E. Jacobsen
Functional stacking of three resistance genes against Phytophthora infestans in potato
Transgenic Research, 21 (1) (2012), pp. 89-99

Zipfel, 2014
C. Zipfel
Plant pattern-recognition receptors
Trends in Immunology, 35 (2014), pp. 345-351

Zong et al., 2008
N. Zong, T. Xiang, Y. Zou, J. Chai, J.M. Zhou
Blocking and triggering of plant immunity by Pseudomonas syringae effector AvrPto
Plant Signaling & Behavior, 3 (8) (2008), pp. 583-585
 

608afd0fa953951f072ad3a2 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections