Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2020.01.001
Biotechnology Research and Innovation Journal
Plant Biotechnology Review article

Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests

Roberto Tarazi, Jose Leonardo Santos Jimenez, Maite F.S. Vaslin

Downloads: 0
Views: 380

Abstract

Cotton (Gossypium spp. L.) is the largest source of natural fibers in the world, with a planted area of more than 33 million hectares in 2019. Biotic stress caused by a variety of pathogens and pests has considerable negative impacts on cotton, and control measures increase global production costs. Among the most important diseases affecting cotton are bacteria and fungi that infect leaves, stems, roots and fruits. In addition, viruses, nematodes, insects and mites cause considerable losses. Here, we summarize the diversity of biotic stresses affecting the cotton crop and highlight present and future biotechnological solutions for disease control, including transgenes, RNAi, gene editing and bioagents. We demonstrate that “Ag Biotech” solutions help keep the cotton industry sustainable in cotton-producing countries.

References

Adrees et al., 2019
H. Adrees, M. Haider, T. Anjum, W. Akram
Inducing systemic resistance in cotton plants against charcoal root rot pathogen using indigenous rhizospheric bacterial strains and chemical elicitors
Crop Protection, 115 (2019), pp. 75-83
https://doi.org/10.1016/j.cropro.2018.09.011

Akbar et al., 2019
W. Akbar, A. Gowda, J.E. Ahrens, J.W. Stelzer, R.S. Brown, S.L. Bollman, et al.
First transgenic trait for control of plant bugs and thrips in cotton
Pest Management Science, 75 (3) (2019), pp. 867-877
https://doi.org/10.1002/ps.5234

Alavanja, 2009
M.C.R. Alavanja
Introduction: Pesticides use and exposure extensive worldwide
Reviews on Environmental Health, 24 (4) (2009), pp. 303-309
https://doi.org/10.1515/REVEH.2009.24.4.303

Ali et al., 2016
Z. Ali, S. Ali, M. Tashkandi, S.S.E.A. Zaidi, M.M. Mahfouz
CRISPR/Cas9-mediated immunity to geminiviruses: Differential interference and evasion
Scientific Reports, 6 (May) (2016)
https://doi.org/10.1038/srep26912

Allen et al., 2018
K.C. Allen, R.G. Luttrell, T.W. Sappington, L.S. Hesler, S.K. Papiernik
Frequency and abundance of selected early-season insect pests of cotton
Journal of Integrated Pest Management, 9 (1) (2018)
https://doi.org/10.1093/jipm/pmy010

Amudha et al., 2011
J. Amudha, G. Balasubramani, V.G. Malathi, D. Monga, K.R. Kranthi
Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1)
Current Science, 101 (3) (2011), pp. 300-307

Ashraf et al., 2018
J. Ashraf, D. Zuo, K. Wang, W. Malik, Y. Zhang, M.A. Abid, et al.
Recent insights into cotton functional genomics: Progress and future perspectives
Plant Biotechnology Journal, 16 (3) (2018), pp. 699-713
https://doi.org/10.1111/pbi.12856

Bravo et al., 2007
A. Bravo, S.S. Gill, M. Soberón
Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control
Toxicon, 49 (4) (2007), pp. 423-435
https://doi.org/10.1016/j.toxicon.2006.11.022

Bu et al., 2014
B. Bu, D. Qiu, H. Zeng
Plant Cell Reports, 33 (2014), p. 461
https://doi.org/10.1007/s00299-013-1546-7

Carroll, 1988
G.C. Carroll
Fungal endophytes in stems and leaves: From latent pathogens to mutualistic symbiont
Ecol, 69 (1988), pp. 2-9
https://doi.org/10.2307/1943154

Chakravarthy et al., 2014
V.S.K. Chakravarthy, T.P. Reddy, V.D. Reddy, K.V. Rao
Current status of genetic engineering in cotton (Gossypium hirsutum L): An assessment
Critical Reviews in Biotechnology, 34 (2) (2014), pp. 144-160
https://doi.org/10.3109/07388551.2012.743502

Chen et al., 2017
X. Chen, X. Lu, N. Shu, S. Wang, J. Wang, D. Wang, et al.
Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system
Scientific Reports, 7 (2017), pp. 1-7
https://doi.org/10.1038/srep44304

Cia et al., 2016
E. Cia, M.G. Fuzatto, J.I. Kondo, L.H. Carvalho, M.F. Ito, F.L.F. Dias, et al.
Response of cotton genotypes to the incidence of Alternaria leaf spot
Summa Phytopathologica, 42 (4) (2016), pp. 357-359
https://doi.org/10.1590/0100-5405/2119

Correa et al., 2005
R.L. Correa, T.F. Silva, J.L. Simões-Araújo, P.A. Barroso, M.S. Vidal, M.F.K. Vaslin
Molecular characterization of a virus from the family Luteoviridae associated with cotton blue disease
Archives of Virology, 150 (7) (2005), pp. 1357-1367
https://doi.org/10.1007/s00705-004-0475-8

Cox et al., 2019
K.L. Cox, K. Babilonia, T. Wheeler, P. He, L. Shan
Return of old foes — Recurrence of bacterial blight and Fusarium wilt of cotton
Current Opinion in Plant Biology, 50 (2019), pp. 95-103
https://doi.org/10.1016/J.PBI.2019.03.012

de Farias et al., 2019
O. de Farias, L.C. de Nascimento, J.M. Lima Cruz, H.A. Oliveira Silva, M. Oliveira, R. Alcântara Bruno, et al.
Biocontrol potential of Trichoderma and Bacillus species on Fusarium oxysporum f. Sp vasinfectum
Journal of Experimental Agriculture International, 34 (1) (2019), pp. 1-11
https://doi.org/10.9734/jeai/2019/v34i130166

Emani et al., 2003
C. Emani, J.M. Garcia, E. Lopata-Finch, M.J. Pozo, P. Uribe, D.-J. Kim, et al.
Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens
Plant Biotechnology Journal, 1 (5) (2003), pp. 321-336
https://doi.org/10.1046/j.1467-7652.2003.00029.x

ETS, 2019
Excellence Through Stewardship
About ETS
(2019)
Accessed 10 September 2019
https://www.excellencethroughstewardship.org/our-organization?lang=pt

Flachs, 2017
A. Flachs
Transgenic cotton: High hopes and farming reality
Nature Plants, 3 (2017), p. 16212
https://doi.org/10.1038/nplants.2016.212

Galbieri et al., 2014
R. Galbieri, D.C.E.B. Araújo, L. Kobayasti, L. Girotto, J.N. Matos, M.S. Marangoni, et al.
CorynesporaLeaf Blight of Cotton in Brazil and Its Management
American Journal of Plant Sciences, 05 (26) (2014), pp. 3805-3811
https://doi.org/10.4236/ajps.2014.526398

Gao et al., 2017
W. Gao, L. Long, X. Tian, F. Xu, J. Liu, P.K. Singh, et al.
Genome editing in cotton with the CRISPR/Cas9 system
Frontiers in Plant Science, 8 (2017), pp. 1-12
https://doi.org/10.3389/fpls.2017.01364

Gerik and Huisman, 1998
J. Gerik, L. Huisman
A specific serological stainig procedure of veeticillum dahliae in cotton root tissue
Phytopathology, 77 (1998), pp. 261-265

Gowda et al., 2016
A. Gowda, T.J. Rydel, A.M. Wollacott, R.S. Brown, W. Akbar, T.L. Clark, et al.
A transgenic approach for controlling Lygus in cotton
Nature Communications, 7 (2016), p. 12213
https://doi.org/10.1038/ncomms12213

Grossi-de-sa et al., 2007
M.F. Grossi-de-sa, M.Q. Magalhães, M.S. De Silva, S. Margareth, B. Silva, S.C. Dias, et al.
Susceptibility of Anthonomus grandis (cotton Boll Weevil) and Spodoptera frugiperda (fall armyworm) to a Cry1Ia-type toxin from a Brazilian Bacillus thuringiensis strain
Journal of Biochemistry and Molecular Biology, 40 (5) (2007), pp. 773-782

Gupta and Dikshit, 2010
S. Gupta, A.K. Dikshit
Biopesticides: An ecofriendly approach for pest control
Journal Biopest, 3 (2010), pp. 186-188
http://doi.org/www.jbiopest.com/users/lw8/efiles/suman_gupta_v31.pdf

Hashem et al., 2016
A. Hashem, E.F. Abd-Allah, A. Alqarawi, S. Wirth, D. Egamberdieva
Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress
Saudi Journal of Biological Sciences, 26 (1) (2016), pp. 38-48
https://doi.org/10.1016/j.sjbs.2016.11.015

He et al., 2014
X. He, Q. Sun, H. Jiang, X. Zhu, J. Mo, L. Long, et al.
Identification of novel microRNAs in the Verticillium wilt-resistant upland cotton variety KV-1 by high-throughput sequencing
The Journal of the Korean Physical Society, 3 (1) (2014), pp. 1-9
https://doi.org/10.1186/2193-1801-3-564

Hu et al., 2019
Y. Hu, J. Chen, L. Fang, Z. Zhang, W. Ma, Y. Niu, et al.
Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton
Nature Genetics, 51 (4) (2019), pp. 739-748
https://doi.org/10.1038/s41588-019-0371-5

ISAAA, 2018
International Service for the Acquisition of Agri-biotech Applications
Brief 54: Global status of commercialized Biotech/GM crops: 2018
(2018)
https://www.isaaa.org/resources/publications/briefs/54/default.asp

Jalloul et al., 2015
A. Jalloul, M. Sayegh, A. Champion, M. Nicole
Bacterial blight of cotton
Phytopathologia Mediterranea, 54 (2) (2015), pp. 241-252
https://doi.org/10.14601/Phytopathol

Jangir et al., 2018
M. Jangir, R. Pathak, S. Sharma, S. Sharma
Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici
Biological Control, 123 (2018), pp. 60-70
https://doi10.1016/j.biocontrol.2018.04.018

Kruger et al., 2003
W.M. Kruger, L.J. Szabo, R.J. Zeyen
Transcription of the defense response genes chitinase IIb PAL and peroxidase is induced by the barley powdery mildew fungus and is only indirectly modulated by R genes
Physiological and Molecular Plant Pathology, 63 (2003), pp. 167-178, 10.1016/j.pmpp.2003.10.006

Li et al., 2019
B. Li, H. Rui, Y. Li, Q. Wang, M. Alariqi, L. Qin, et al.
Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum)
Plant Biotechnology Journal, 17 (10) (2019), pp. 1862-1864
https://doi.org/10.1111/pbi.13147

Li et al., 2017
C. Li, T. Unver, B. Zhang
A high-efficiency CRISPR/Cas9 system for targeted mutagenesis in Cotton (Gossypium hirsutum L.)
Scientific Reports, 7 (2017), pp. 1-10
https://doi.org/10.1038/srep43902

Lord, 2001
J.C. Lord
Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles
J Econom Entomol, 94 (2001), pp. 367-372
https://doi.org/10.1603/0022-0493-94.2.367

Martins et al., 2010
É.S. Martins, R.G. Monnerat, P.R. Queiroz, V.F. Dumas, S.V. Braz, R.W. de Souza Aguiar, et al.
Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis
Insect Biochemistry and Molecular Biology, 40 (2) (2010), pp. 138-145
https://doi.org/10.1016/j.ibmb.2010.01.005

Mehta et al., 2015
Y. Mehta, M.S. Marangoni, C. R Bocatti, H.P. Rodrigues, T.S. Cunha, R. Galbieri
Systemic acquired resistance of cotton, soybean and common bean to rhizoctonia solani and sclerotium rolfsii induced by shale water seed treatment
American Journal of Plant Sciences, 06 (09) (2015), pp. 1493-1500
https://doi.org/10.4236/ajps.2015.69148

Meng et al., 2019
R. Zhang, Z. Meng, M.A. Abid, X. Zhao
Novel pollen magnetofection system for transformation of cotton plant with magnetic nanoparticles as gene carriers
B. Zhang (Ed.), Transgenic cotton. Methods in molecular biology, 1902 (2019), pp. 47-54, 10.1007/978-1-4939-8952-2_4

Mhlongo et al., 2018
M.I. Mhlongo, L.A. Piater, N.E. Madala, N. Labuschagne, I.A. Dubery
The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance
Frontiers in Plant Science, 9 (2018), p. 112
https://doi.org/10.3389/fpls.2018.00112

Miao et al., 2010
W. Miao, X. Wang, M. Li, C. Song, Y. Wang, D. Hu, et al.
Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism
BMC Plant Biology, 10 (2010)
https://doi.org/10.1186/1471-2229-10-67

Mishra et al., 2012
A.K. Mishra, K. Sharma, R.S. Misra
Elicitor recognition, signal transduction and induced resistance in plants
Journal of Plant Interactions, 7 (2012), pp. 95-120, 10.1080/17429145.2011.597517

Montesano et al., 2003
M. Montesano, G. Brader, E.T. Palva
Pathogen derived elicitors: Searching for receptor in plants
Molecular Plant Pathology, 4 (2003), pp. 73-78, 10.1046/j.1364-3703.2003.00150.x

Murray et al., 1999
F. Murray, D. Llewellyn, H. McFadden, D. Last, E.S. Dennis, W.J. Peacock
Expression of the Talaromyces flavus glucose oxidase gene in cotton and tobacco reduces fungal infection, but is also phytotoxic
Molecular Breeding, 5 (3) (1999), pp. 219-232

Naqvi et al., 2019
R.Z. Naqvi, S.S. Zaidi, M. Shahid Mukhtar, I. Amin, B. Mishra, S. Strickler, et al.
Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease
PloS One, 14 (2) (2019), pp. 1-21
https://doi.org/10.1371/journal.pone.0210011

Oliveira et al., 2011
G.R. Oliveira, M.C.M. Silva, W.A. Lucena, E.Y.T. Nakasu, A.A.P. Firmino, M.A. Beneventi, et al.
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)
BMC Biotechnology, 11 (2011)
https://doi.org/10.1186/1472-6750-11-85

Ribeiro et al., 2017
T.P. Ribeiro, F.B.M. Arraes, I.T. Lourenço-Tessutti, M.S. Silva, M.E. Lisei-de-Sá, W.A. Lucena, et al.
Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil
Plant Biotechnology Journal, 15 (8) (2017), pp. 997-1009
https://doi.org/10.1111/pbi.12694

Rothrock et al., 2015
C.S. Rothrock, J.E. Woodward, R.C. Kemerait
Diseases
In: Cotton, 2nd ed., Agron. Monogr. 57. ASA, CSSA, and SSSA, Madison, WI. 465-508. doi:10.2134/agronmonogr57.2014.0071
(2015)

Rybakova et al., 2016
D. Rybakova, T. Cernava, M. Köberl, S. Liebminger, M. Etemadi, G. Berg
Endophytes-assisted biocontrol: Novel insights in ecology and the mode of action of Paenibacillus
J. Plant Soil, 405 (2016), pp. 125-140

Rybakova et al., 2017
D. Rybakova, U. Rack-Wetzlinger, Cernava Tomislav, Schaefer Angelika, M. Schmuck, G. Berg
A volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa
Frontiers in Plant Science, 8 (2017), p. 1294
ISSN=1664-462X
https://doi.org/10.3389/fpls.2017.01294

Saad et al., 2019
M.M.G. Saad, R.Y. Ghareeb, A.A. Saeed
The potential of endophytic fungi as bio-control agents against the cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae)
Egypt J Biol Pest Control, 29 (2019), p. 7, 10.1186/s41938-019-0108-x

Saleem et al., 2010
F. Saleem, A.R. Shakoori, K. Kongsuwan, J. Gough, D. Kemp, A. McDevitt, et al.
Bacterial vegetative insecticidal proteins (vip) from
Applied and Environmental Microbiology, 55 (1) (2010), pp. 1-11
https://doi.org/10.1128/MMBR.00060-15.Address

Salma et al., 2011
M. Salma, C.R. Ratul, C.K. Jogen
A review on the use of biopesticides in insect pest management
Int J Sci Adv Tech, 1 (2011), pp. 169-178

Salustiano et al., 2014
M.E. Salustiano, M.N. Rondon, L.M. Abreu, S. da S. Costa, J. da C. Machado, L.H. Pfenning
The etiological agent of cotton ramulosis represents a single phylogenetic lineage within the Colletotrichum gloeosporioides species complex
Tropical Plant Pathology, 39 (5) (2014), pp. 357-367
https://doi.org/10.1590/S1982-56762014000500002

Schulz et al., 2002
B. Schulz, C. Boyle, S. Draeger, A.-K. Römmert, K. Krohn
Endophytic fungi: A source of novel biologically active secondary metabolites
Mycological Research, 106 (2002), pp. 996-1004
https://doi.org/10.1017/S0953756202006342

Shaban et al., 2018
M. Shaban, Y. Miao, A. Ullah, A.Q. Khan, H. Menghwar, A.H. Khan, et al.
Physiological and molecular mechanism of defense in cotton against Verticillium dahliae
Plant Physiology and Biochemistry, 125 (2018), pp. 193-204
https://doi.org/10.1016/J.PLAPHY.2018.02.011

Sharma et al., 2018
R. Sharma, S. Sindhu, S.S. Sindhu
Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria
Applied Soil Ecology, 129 (2018), pp. 145-150
https://doi.org/10.1016/j.apsoil.2018.05.013

Shehryar et al., 2019
K. Shehryar, R.S. Khan, A. Iqbal, S.A. Hussain, S. Imdad, A. Bibi, et al.
Transgene stacking as effective tool for enhanced disease resistance in plants
Molecular Biotechnology (2019), Article 0123456789
https://doi.org/10.1007/s12033-019-00213-2

Shete et al., 2018
P.P. Shete, Y.G. Kasal, R.R. Perane
Screening of the cotton genotypes against ramularia areolaatk. Under field condition
Plant Archives, 18 (1) (2018), pp. 734-736

Silva et al., 2015
A.K.F. Silva, E. Romanel, T. da F. Silva, Y. Castilhos, C.G. Schrago, R. Galbieri, et al.
Complete genome sequences of two new virus isolates associated with cotton blue disease resistance breaking in Brazil
Archives of Virology, 160 (5) (2015), pp. 1371-1374
https://doi.org/10.1007/s00705-015-2380-8

Singh, 2018
S. Singh
Transgenic cotton- its adoption, threats and challenges ahead: A review
Journal of Entomology and Zoology Studies, 6 (5) (2018), pp. 1989-1997
http://doi.org/www.entomoljournal.com/archives/?year=2018&vol=6&issue=5&ArticleId=4325

Singh et al., 2016
U.B. Singh, D. Malviya, Singh Wasiullah, J.K. S Pradhan, B.P. Singh, M. Roy, et al.
Microbiological Research, 192 (2016), pp. 300-312
Society, St. Paul., MN, USA

USDA, 2019a
USDA
United States Department of Agriculture. Cotton outlook
(2019)
Accessed 10 September 2019
https://www.usda.gov/oce/forum/2019/outlooks/Cotton.pdf

USDA, 2019b
USDA
United States Department of Agriculture. Cotton outlook
(2019)
Accessed 10 September 2019
https://www.ers.usda.gov/topics/crops/cotton-wool/cotton-sector-at-a-glance/

Vinodkumar et al., 2018
S. Vinodkumar, S. Nakkeeran, P. Renukadevi, S. Mohankumar
Diversity and antiviral potential of rhizospheric and endophytic Bacillus species and phyto-antiviral principles against tobacco streak virus in cotton
Agriculture, Ecosystem & Environment, 267 (2018), pp. 42-51
https://doi.org/10.1016//j.agee.2018.08.008

Wamiq and Khan, 2018
G. Wamiq, J.A. Khan
Overexpression of ghr-miR166b generates resistance against Bemisia tabaci infestation in Gossypium hirsutum plants
Planta, 247 (5) (2018), pp. 1175-1189
https://doi.org/10.1007/s00425-018-2852-7

Wang et al., 2019
M. Wang, L. Tu, D. Yuan, D. Zhu, C. Shen, J. Li, et al.
Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense
Nature Genetics, 51 (2) (2019), pp. 224-229
https://doi.org/10.1038/s41588-018-0282-x

Wang et al., 2018
P. Wang, J. Zhang, L. Sun, Y. Ma, J. Xu, S. Liang, et al.
High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system
Plant Biotechnology Journal, 16 (1) (2018), pp. 137-150
https://doi.org/10.1111/pbi.12755

Watkins, 1981
G.M. Watkins
Compendium of cotton diseases
American Phytopathological. Libraries Australia (1981)

Weaver, 2015
D.B. Weaver
Cotton nematodes
In: Cotton, 2nd ed., Agron. Monogr. 57. ASA, CSSA, & SSSA, Madison, WI. p. 547-570. doi:10.2134/agronmonogr57.2013.0045
(2015)

Wiesel et al., 2014
L. Wiesel, A.C. Newton, I. Elliott, D. Booty, E.M. Gilroy, P.R. Birch
Molecular effects of resistance elicitors from biological origin and their potential for crop protection
Frontiers in Plant Science, 5 (2014), p. 655, 10.3389/fpls.2014.00655

Yan et al., 2016
R. Yan, C. Liang, Z. Meng, W. Malik, T. Zhu, X. Zong, et al.
3Biotech, 6 (2016), p. 217
https://doi.org/10.1007/s13205-016-0534-3

Yan et al., 2019
W.X. Yan, P. Hunnewell, L.E. Alfonse, J.M. Carte, E. Keston-Smith, S. Sothiselvam, et al.
Functionally diverse type V CRISPR-Cas systems
Science, 363 (6422) (2019), pp. 88-91
https://doi.org/10.1126/science.aav7271

Yuan et al., 2017
Y. Yuan, H. Feng, L. Wang, Z. Li, Y. Shi, L. Zhao, et al.
Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease
PloS One, 12 (1) (2017), Article e0170557
https://doi.org/10.1371/journal.pone.0170557

Zaidi et al., 2018
S.S. Zaidi, S. Mansoor, A. Paterson
The rise of cotton genomics
Trends in Plants Science, 23 (11) (2018), pp. 953-955
https://doi.org/10.1016/j.tplants.2018.08.009

Zhang and Wang, 2015
B. Zhang, Q. Wang
MicroRNA-based biotechnology for plant improvement
Journal of Cellular Physiology, 230 (1) (2015), pp. 1-15
https://doi.org/10.1002/jcp.24685

Zhang et al., 2016a
C. Zhang, R. Wohlhueter, H. Zhang
Genetically modified foods: A critical review of their promise and problems
Food Science and Human Wellness, 5 (3) (2016), pp. 116-123
https://doi.org/10.1016/j.fshw.2016.04.002

Zhang et al., 2016b
T. Zhang, Y.L. Zhao, J.H. Zhao, S. Wang, Y. Jin, Z.Q. Chen, et al.
Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen
Nature Plants, 2 (September) (2016), pp. 1-6
https://doi.org/10.1038/nplants.2016.153

Zhang et al., 2018
Z. Zhang, X. Ge, X. Luo, P. Wang, Q. Fan, G. Hu, et al.
Simultaneous editing of two copies of GH14-3-3D confers enhanced transgene-clean plant defense against Verticillium dahliae in allotetraploid upland cotton
Frontiers in Plant Science, 9 (June) (2018), pp. 1-13
https://doi.org/10.3389/fpls.2018.00842
 

608af99da95395064b33d814 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections