Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2019.12.004
Biotechnology Research and Innovation Journal
Review Section Review article

Citrus biotechnology: What has been done to improve disease resistance in such an important crop?

R. Caserta, N.S. Teixeira-Silva, L.M. Granato, S.O. Dorta, C.M. Rodrigues, L.K. Mitre, J.T.H. Yochikawa, E.R. Fischer, C.A. Nascimento, R.R. Souza-Neto, M.A. Takita, R.L. Boscariol-Camargo, M.A. Machado, A.A. De Souza

Downloads: 0
Views: 357

Abstract

Citrus cropping is widely distributed as an important economic activity worldwide. Amongst the major producers are Brazil, China, United States, Mexico and some European countries. Brazil is the largest sweet orange producer accounting for more than three-quarters of the orange juice exports around the world, followed by China and the United States (Foreign Agricultural Service/USDA, 2019). Although juice is the main commodity in many countries producing citrus, by-products like essential oils, molasses, dried pulp, pectin, blend syrup and others are also part of the citrus trade chain. Since citriculture is threatened by several pathogens and its control is mainly based on regular chemical applications both during plant development and post-harvest, management becomes a non-environmentally friendly strategy. Meanwhile, consumers are searching for sustainable products of great quality and high aggregated value pressuring the agricultural industry to crop in a sustainable manner. In this scenario, citriculture also needs innovative solutions to meet such demand. Although classic breeding programs succeeded over time, citrus narrow genetic base and long evaluation periods turns it difficult to demand faster solutions for emerging problems. Biotechnology rises as a source of innovative solutions since new varieties can be developed for specific problems. In this context, the use of biotechnology approaches involving genetic engineering that allow the development of more resistant varieties are the focus of many research groups. Here we show how biotechnology has been used to develop citrus plants more resistant to the main phytopathogens that impact citrus production.

Keywords

Transgenic plants,  GMO,  New breeding techniques  

References

Abe and Benedetti, 2016
V.Y. Abe, C.E. Benedetti
Additive roles of PthAs in bacterial growth and pathogenicity associated with nucleotide polymorphisms in effector-binding elements of citrus canker susceptibility genes
Molecular Plant Pathology, 17 (8) (2016), pp. 1223-1236, 10.1111/mpp.12359

Afroz et al., 2011
A. Afroz, Z. Chaudhry, U. Rashid, G.M. Ali, F. Nazir, J. Iqbal, M.R. Khan
Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene
Plant Cell, Tissue and Organ Culture, 104 (2) (2011), pp. 227-237, 10.1007/s11240-010-9825-2

Almeida et al., 2019
R.P.P. Almeida, L. de La Fuente, R. Koebnik, J.R.S. Lopes, S. Parnell, H. Scherm
Addressing the new global threat of Xylella fastidiosa
Phytopathology, 109 (2) (2019), pp. 172-174, 10.1094/PHYTO-12-18-0488-FI

Attílio et al., 2013
L.B. Attílio, Filho, F. de A. A. M, R. Harakava, T.L. Da Silva, L.Y. Miyata, L.C.L. Stipp, B.M.J. Mendes
Genetic transformation of sweet oranges with the D4E1 gene driven by the AtPP2 promoter
Pesquisa Agropecuaria Brasileira, 48 (7) (2013), pp. 741-747, 10.1590/S0100-204X2013000700006

Ayres et al., 2001
A.J. Ayres, N. Gimenes-Fernandes, J.C. Barbosa
Intensidade da clorose variegada dos citros no Estado de São Paulo e Sul do Triângulo Mineiro
Summa Phytopathologica, 27 (2001), pp. 189-197

Azevedo et al., 2006
F.A. Azevedo, F.A.A. Mourão Filho, B.M.J. Mendes, W.A.B. Almeida, E.H. Schinor, R. Pio, ..., E. Lam
Genetic transformation of Rangpur lime (Citrus limonia Osbeck) with the bO (bacterio-opsin) gene and its initial evaluation for Phytophthora nicotianae resistance
Plant Molecular Biology Reporter, 24 (2) (2006), pp. 185-196, 10.1007/BF02914057

Barbosa-Mendes et al., 2009
J.M. Barbosa-Mendes, F.A.A. Mourão Filho, A. Bergamin Filho, R. Harakava, S.V. Beer, B.M.J. Mendes
Genetic transformation of Citrus sinensis cv. Hamlin with hrpN gene from Erwinia amylovora and evaluation of the transgenic lines for resistance to citrus canker
Scientia Horticulturae, 122 (1) (2009), pp. 109-115, 10.1016/j.scienta.2009.04.001

Bassanezi et al., 2010
R.B. Bassanezi, A.S. Lopes, J. Belasque Júnior, M.B. Spósito, P.T. Yamamoto, M.P. Miranda, ..., N.A. Wulff
Epidemiologia do huanglongbing e suas implicações para o manejo da doença
Citrus Research & Technology, 31 (1) (2010), pp. 11-23, 10.5935/2236-3122.20100002

Bastianel et al., 2006
M. Bastianel, J. Freitas-Astúa, E.W. Kitajima, M.A. Machado
The citrus leprosis pathosystem
Summa Phytopathologica, 32 (3) (2006), pp. 211-220, 10.1590/s0100-54052006000300001

Bastianel et al., 2010
M. Bastianel, V.M. Novelli, E.W. Kitajima, K.S. Kubo, R.B. Bassanezi, M.A. Machado, J. Freitas-Astúa
Citrus leprosis: Centennial of an unusual mite–Virus pathosystem
Plant Disease, 94 (3) (2010), pp. 284-292, 10.1094/pdis-94-3-0284

Beachy et al., 1990
R.N. Beachy, S. Loesch-Fries, N.E. Tumer
Coat protein-mediated resistance against virus infection
Annual Review of Phytopathology, 28 (1) (1990), pp. 451-472, 10.1146/annurev.py.28.090190.002315

Berk, 2016
Z. Berk
Chapter 6 - Postharvest changes
Z. Berk (Ed.), Citrus fruit processing, Academic Press, San Diego (2016), pp. 95-105, 10.1016/B978-0-12-803133-9.00006-0

Boava et al., 2011
L.P. Boava, M. Cristofani-Yaly, V.S. Mafra, K. Kubo, L.T. Kishi, M.A. Takita, ..., M.A. Machado
Global gene expression of Poncirus trifoliata, Citrus sunki and their hybrids under infection of Phytophthora parasitica
BMC Genomics, 12 (1) (2011), p. 39, 10.1186/1471-2164-12-39

Borad and Sriram, 2008
V. Borad, S. Sriram
Pathogenesis-related proteins for the plant protection
Asian Journal of Experimental Sciences, 22 (3) (2008), pp. 189-196

Boscariol et al., 2006
R.L. Boscariol, B.M.J. Mendes, M. Monteiro, E.K. Takahashi, S.M. Chabregas, L.F.P. Pereira
Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinesis“Hamlin”
Journal of the American Society for Horticultural Science, 131 (4) (2006), pp. 530-536, 10.21273/JASHS.131.4.530

Boscariol-Camargo et al., 2016
R.L. Boscariol-Camargo, M.A. Takita, M.A. Machado
Bacterial resistance in AtNPR1 transgenic sweet orange is mediated by priming and involves EDS1 and PR2
Tropical Plant Pathology, 41 (6) (2016), pp. 341-349, 10.1007/s40858-016-0108-2

Boutrot and Zipfel, 2017
F. Boutrot, C. Zipfel
Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance
Annual Review of Phytopathology, 55 (2017), pp. 257-286, 10.1146/annurev-phyto-080614-120106
In this issue

Bové, 2006
J.M. Bové
Huanglongbing: A destructive, newly emerging, century-old disease of citrus
Journal of Plant Pathology, 88 (1) (2006), pp. 7-37, 10.4454/jpp.v88i1.828

Bové and Ayres, 2007
J.M. Bové, A.J. Ayres
Etiology of three recent diseases of citrus in São Paulo state: Sudden death, variegated chlorosis and huanglongbing
IUBMB Life, 59 (4-5) (2007), pp. 346-354, 10.1080/15216540701299326

Brunings and Gabriel, 2003
A.M. Brunings, D.W. Gabriel
Xanthomonas citri: Breaking the surface
Molecular Plant Pathology, 4 (3) (2003), pp. 141-157, 10.1046/j.1364-3703.2003.00163.x

Cardoso et al., 2009
S.C. Cardoso, J.M. Barbosa-Mendes, R.L. Boscariol-Camargo, R.S.C. Christiano, A. Bergamin Filho, M.L.C. Vieira, ..., F.A.A. Mourão Filho
Transgenic sweet orange (Citrus sinensis L. Osbeck) expressing the attacin a gene for resistance to Xanthomonas citri subsp. Citri
Plant Molecular Biology Reporter, 28 (2) (2009), pp. 185-192, 10.1007/s11105-009-0141-0

Caserta et al., 2014
R. Caserta, S.C. Picchi, M.A. Takita, J.P. Tomaz, W.E.L. Pereira, M.A. Machado, ..., A.A. de Souza
Expression ofXylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence
Molecular Plant-Microbe Interactions, 27 (11) (2014), pp. 1241-1252, 10.1094/MPMI-03-14-0090-R

Caserta et al., 2017
R. Caserta, R.R. Souza-Neto, M.A. Takita, S.E. Lindow, A.A. de Souza
Ectopic expression of Xylella fastidiosa RpfF conferring production of diffusible signal factor in transgenic tobacco and citrus alters pathogen behavior and reduces disease severity
Molecular Plant-Microbe Interactions: MPMI, 30 (11) (2017), pp. 866-875, 10.1094/MPMI-07-17-0167-R

Castillo et al., 2011
I.I. Castillo, L.F.Z. Diaz, W. Mendez, G. Otero-Colina, J. Freitas-Astúa, E.C. Locali-Fabris, ..., E.W. Kitajima
Confirmation of the presence of the Citrus leprosis virus C (CiLV-C) in Southern Mexico
Tropical Plant Pathology, 36 (6) (2011), pp. 400-403, 10.1590/S1982-56762011000600009

CDA, 2019
CDA, Coordenadoria de Defesa Agropecuária do Estado de São Paulo
Legislação: Instrução normativa nº 48, de 24 de setembro de 2013
Retrieved 29 May 2019, from
(2019)
https://www.defesa.agricultura.sp.gov.br/legislacoes/instrucao-normativa-n-48-de-24-de-setembro-de-2013,1136.html

Cernadas et al., 2008
R.A. Cernadas, L.R. Camillo, C.E. Benedetti
Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. Citri and Xanthomonas axonopodis pv. Aurantifolii
Molecular Plant Pathology, 9 (5) (2008), pp. 609-631, 10.1111/j.1364-3703.2008.00486.x

Chen et al., 2013
X. Chen, J.Y. Barnaby, A. Sreedharan, X. Huang, V. Orbović, J.W. Grosser, ..., W.Y. Song
Over-expression of the citrus gene CtNH1 confers resistance to bacterial canker disease
Physiological and Molecular Plant Pathology, 84 (1) (2013), pp. 115-122, 10.1016/j.pmpp.2013.07.002

Chinchilla et al., 2006
D. Chinchilla, Z. Bauer, M. Regenass, T. Boller, G. Felix
The Arabidopsis receptor kinase FLS2 Binds flg22 and determines the specificity of flagellin perception
The Plant Cell, 18 (2) (2006), pp. 465-476, 10.1105/tpc.105.036574

Chung, 2011
K.R. Chung
Elsinoë fawcettii and Elsinoë australis: The fungal pathogens causing citrus scab
Molecular Plant Pathology, 12 (2) (2011), pp. 123-135, 10.1111/j.1364-3703.2010.00663.x

Colariccio et al., 1995
A. Colariccio, O. Lovisolo, C.M. Chagas, S.R. Galetti, V.V. Rossetti, E.W. Kitajima
Mechanical transmission and ultrastructural aspects of citrus leprosis virus
Fitopatologia Brasileira, 20 (1995), pp. 208-213

Coletta-Filho and de Souza, 2014
H.D. Coletta-Filho, A.A. de Souza
Advances on knowledge about citrus variegated chlorosis: An overview on different components of this pathosystem
Citrus Research & Technology, 35 (1) (2014), pp. 19-33, 10.5935/2236-3122.20140003

Coletta-Filho et al., 2017
H.D. Coletta-Filho, C.S. Francisco, J.R.S. Lopes, C. Muller, R.P.P. Almeida
Homologous recombination and Xylella fastidiosa host–pathogen associations in South America
Phytopathology, 107 (3) (2017), pp. 305-312, 10.1094/phyto-09-16-0321-r

Coletta-Filho et al., 2004
H.D. Coletta-Filho, M.L.P.N. Targon, M.A. Takita, J.D. de Negri, J. Pompeu, M.A. Machado, ..., G.W. Muller
First report of the causal agent of Huanglongbing (“Candidatus Liberibacter asiaticus”) in Brazil
Plant Disease, 88 (12) (2004), p. 1382, 10.1094/pdis.2004.88.12.1382c

Coletta-Filho et al., 2000
H.D. Coletta-Filho, K.M. Borges, M.A. Machado
Ocorrência de Xylella fastidiosa em plantas canditatas a matrizes de laranja-doce, e transmissão por borbulhas contaminadas
Laranja (21) (2000), pp. 327-334

da Graça et al., 2016
J.V. da Graça, G.W. Douhan, S.E. Halbert, M.L. Keremane, R.F. Lee, G. Vidalakis, H. Zhao
Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus
Journal of Integrative Plant Biology, 58 (4) (2016), pp. 373-387, 10.1111/jipb.12437

Dalio et al., 2018
R.J.D. Dalio, H.J. Maximo, T.S. Oliveira, R.O. Dias, M.C. Breton, H. Felizatti, M. Machado
Phytophthora parasitica effector PpRxLR2 suppresses Nicotiana benthamiana immunity
Molecular Plant-Microbe Interactions, 31 (4) (2018), pp. 481-493, 10.1094/mpmi-07-17-0158-fi

de Lucca et al., 1998
A.J. de Lucca, J.M. Bland, C. Grimm, T.J. Jacks, J.W. Cary, J.M. Jaynes, ..., T.J. Walsh
Fungicidal properties, sterol binding, and proteolytic resistance of the synthetic peptide D4E1
Canadian Journal of Microbiology, 44 (6) (1998), pp. 514-520, 10.1139/w98-032

de Oliveira et al., 2013
M.L.P. de Oliveira, C.C. de Lima Silva, V.Y. Abe, M.G.C. Costa, R.A. Cernadas, C.E. Benedetti
Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase
Molecular Plant-Microbe Interactions, 26 (10) (2013), pp. 1190-1199, 10.1094/mpmi-04-13-0122-r

de Souza et al., 2009
A.A. de Souza, M.A. Takita, A.M. Amaral, H.D. Coletta-Filho, M.A. Machado
Citrus responses to Xylella fastidiosa infection, the causal agent de citrus variegated chlorosis
Tree and Forestry Science and Biotechnology, 3 (2) (2009), pp. 73-80

de Souza et al., 2007
A.A. de Souza, M.A. Takita, H.D. Coletta-Filho, M.A. Campos, J.E.C. Teixeira, M.L.P.N. Targon, ..., M.A. Machado
Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa
Genetics and Molecular Biology, 30 (3 suppl) (2007), pp. 965-971, 10.1590/S1415-47572007000500024

do Prado Apparecido et al., 2017
R. do Prado Apparecido, E.F. Carlos, L.M. Lião, L.G.E. Vieira, G.B. Alcantara
NMR-based metabolomics of transgenic and non-transgenic sweet orange reveals different responses in primary metabolism during citrus canker development
Metabolomics, 13 (2) (2017), pp. 1-20, 10.1007/s11306-017-1163-5

Domínguez et al., 2002
A. Domínguez, A.H. De Mendoza, J. Guerri, M. Cambra, L. Navarro, P. Moreno, L. Peña
Pathogen-derived resistance to Citrus tristeza virus (CTV) in transgenic mexican lime (Citrus arrurantifolia (Christ.) Swing.) plants expressing its p25 coat protein gene
Molecular Breeding, 10 (1–2) (2002), pp. 1-10, 10.1023/A:1020347415333

Droby et al., 2009
S. Droby, M. Wisniewski, D. Macarisin, C. Wilson
Twenty years of postharvest biocontrol research: Is it time for a new paradigm?
Postharvest Biology and Technology, 52 (2) (2009), pp. 137-145, 10.1016/j.postharvbio.2008.11.009

Dutt et al., 2015
M. Dutt, G. Barthe, M. Irey, J. Grosser
Transgenic citrus expressing an arabidopsis NPR1 gene exhibit enhanced resistance against Huanglongbing (HLB; Citrus greening)
PloS One, 10 (9) (2015), p. e0137134, 10.1371/journal.pone.0137134

Eckert and Brown, 1986
J.W. Eckert, G.E. Brown
Postharvest citrus diseases and their control
W.F. Wardowski, S. Nagy, W. Grierson (Eds.), Fresh Citrus fruits, Avi Publishing Co. Inc, Westport, CT (1986), pp. 315-360

El-Otmani et al., 2011
M. El-Otmani, A. Ait-Oubahou, L. Zacarías
Citrus spp.: Orange, mandarin, tangerine, clementine, grapefruit, pomelo, lemon and lime
Postharvest biology and technology of tropical and subtropical fruits (2011), pp. 437-514, 10.1533/9780857092762.437
515e-516e

Fagoaga et al., 2006
C. Fagoaga, C. López, A.H. De Mendoza, P. Moreno, L. Navarro, R. Flores, L. Peña
Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime
Plant Molecular Biology, 60 (2) (2006), pp. 153-165, 10.1007/s11103-005-3129-7

Fagoaga et al., 2001
C. Fagoaga, I. Rodrigo, V. Conejero, C. Hinarejos, J.J. Tuset, J. Arnau, ..., L. Peña
Increased tolerance to Phytophthora citrophthora in transgenic orange plants constitutively expressing a tomato pathogenesis related protein PR-5
Molecular Breeding, 7 (2) (2001), pp. 175-185, 10.1023/A:1011358005054

Fawcett, 1911
H.S. Fawcett
Scaly bark or nail-head rust of citrus
Bulletin of the Florida Agricultural Experimental Station, 106 (1911), pp. 1-41

Febres et al., 2008
V.J. Febres, R.F. Lee, G.A. Moore
Transgenic resistance to Citrus tristeza virus in grapefruit
Plant Cell Reports, 27 (1) (2008), pp. 93-104, 10.1007/s00299-007-0445-1

Feichtenberger, 1990
E. Feichtenberger
Control of phytophthora gummosis of citrus with systemic fungicides in Brazil
EPPO Bulletin, 20 (1) (1990), pp. 139-148, 10.1111/j.1365-2338.1990.tb01191.x

Ference et al., 2018
C.M. Ference, A.M. Gochez, F. Behlau, N. Wang, J.H. Graham, J.B. Jones
Recent advances in the understanding of Xanthomonas citri ssp. Citri pathogenesis and citrus canker disease management
Molecular Plant Pathology, 19 (6) (2018), pp. 1302-1318, 10.1111/mpp.12638

Fischer et al., 2007
I.H. Fischer, L. Toffano, S.A. Lourenço, L. Amorim
Caracterização dos danos pós-colheita em citros procedentes de “packinghouse”
Fitopatologia Brasileira, 32 (4) (2007), pp. 304-310, 10.1590/s0100-41582007000400004

Folimonov et al., 2007
A.S. Folimonov, S.Y. Folimonova, M. Bar-Joseph, W.O. Dawson
A stable RNA virus-based vector for citrus trees
Virology, 368 (1) (2007), pp. 205-216, 10.1016/j.virol.2007.06.038

Fu et al., 2011
X.Z. Fu, C.W. Chen, Y. Wang, J.H. Liu, T. Moriguchi
Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: Involvement of H₂O₂ production and transcriptional alteration
BMC Plant Biology, 11 (1) (2011), p. 55, 10.1186/1471-2229-11-55

Furman et al., 2013
N. Furman, K. Kobayashi, M.C. Zanek, J. Calcagno, M.L. García, A. Mentaberry
Transgenic sweet orange plants expressing a dermaseptin coding sequence show reduced symptoms of citrus canker disease
Journal of Biotechnology, 167 (4) (2013), pp. 412-419, 10.1016/j.jbiotec.2013.07.019

Ghosh et al., 2018
D.K. Ghosh, M. Motghare, S. Gowda
Citrus greening: Overview of the most severe disease of citrus
Advanced Agricultural Research & Technology Journal, 2 (1) (2018), pp. 83-100

Gómez-Gómez and Boller, 2000
L. Gómez-Gómez, T. Boller
FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis
Molecular Cell, 5 (6) (2000), pp. 1003-1011, 10.1016/S1097-2765(00)80265-8

Gottwald et al., 2002
T.R. Gottwald, M. Polek, K. Riley
History, present incidence, and spatial distribution of Citrus tristeza virus in the California Central Valley
N. Duran-Vila, R.G. Milne, J.V. da Graça (Eds.), Proceedings of the 15th Conference of the International organization of Citrus virologists, Riverside, CA (2002), pp. 83-94

Graham and Feichtenberger, 2015
J. Graham, E. Feichtenberger
Citrus phytophthora diseases: Management challenges and successes
Journal of Citrus Pathology, 2 (1) (2015), pp. 1-11
Retrieved from
https://escholarship.org/uc/item/3db485rh

Grosser et al., 2011
J.W. Grosser, M. Dutt, A. Omar, V. Orbovic, G. Barthe
Progress towards the development of transgenic disease resistance in citrus
Acta Horticulturae, 892 (892) (2011), pp. 101-107, 10.17660/ActaHortic.2011.892.12

Guzmán-Rodríguez et al., 2015
J.J. Guzmán-Rodríguez, A. Ochoa-Zarzosa, R. López-Gómez, J.E. López-Meza
Plant antimicrobial peptides as potential anticancer agents
BioMed Research International, 2015 (735087) (2015), pp. 1-11, 10.1155/2015/735087

Hajeri et al., 2014
S. Hajeri, N. Killiny, C. El-Mohtar, W.O. Dawson, S. Gowda
Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing)
Journal of Biotechnology, 176 (2014), pp. 42-49, 10.1016/j.jbiotec.2014.02.010

Hall et al., 2013
D.G. Hall, M.L. Richardson, E.D. Ammar, S.E. Halbert
Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease
Entomologia Experimentalis et Applicata, 146 (2) (2013), pp. 207-223, 10.1111/eea.12025

Hao et al., 2015
G. Hao, M. Pitino, Y. Duan, E. Stover
Reduced susceptibility to Xanthomonas citri in transgenic citrus expressing the FLS2 receptor from Nicotiana benthamiana
Molecular Plant-Microbe Interactions, 29 (2) (2015), pp. 132-142, 10.1094/mpmi-09-15-0211-r

Hao et al., 2016
G. Hao, E. Stover, G. Gupta
Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB)
Frontiers in Plant Science, 7 (1078) (2016), pp. 1-11, 10.3389/fpls.2016.01078

Hao et al., 2017
G. Hao, S. Zhang, E. Stover
Transgenic expression of antimicrobial peptide D2A21 confers resistance to diseases incited by Pseudomonas syringae pv. Tabaci and Xanthomonas citri, but not Candidatus Liberibacter asiaticus
PloS One, 12 (10) (2017), pp. 132-142, 10.1371/journal.pone.0186810

He et al., 2011
Y. He, S. Chen, A. Peng, X. Zou, L. Xu, T. Lei, ..., L. Yao
Production and evaluation of transgenic sweet orange (Citrus sinensis Osbeck) containing bivalent antibacterial peptide genes (Shiva A and Cecropin B) via a novel Agrobacterium-mediated transformation of mature axillary buds
Scientia Horticulturae, 128 (2) (2011), pp. 99-107, 10.1016/j.scienta.2011.01.002

Heller and Tudzynski, 2011
J. Heller, P. Tudzynski
Reactive oxygen species in phytopathogenic fungi: Signaling, development, and disease
Annual Review of Phytopathology, 49 (1) (2011), pp. 369-390, 10.1146/annurev-phyto-072910-095355

Hu et al., 2014
Y. Hu, J. Zhang, H. Jia, D. Sosso, T. Li, W.B. Frommer, ..., J.B. Jones
Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease
Proceedings of the National Academy of Sciences, 111 (4) (2014), pp. e521-e529, 10.1073/pnas.1313271111

Ionescu et al., 2016
M. Ionescu, K. Yokota, E. Antonova, A. Garcia, E. Beaulieu, T. Hayes, ..., S.E. Lindow
Promiscuous diffusible signal factor production and responsiveness of the Xylella fastidiosa Rpf system
MBio, 7 (4) (2016), pp. e01054-16, 10.1128/mBio.01054-16

Ippolito and Nigro, 2000
A. Ippolito, F. Nigro
Impact of preharvest application of biological control agents on postharvest diseases of fresh fruits and vegetables
Crop Protection, 19 (8–10) (2000), pp. 715-723, 10.1016/S0261-2194(00)00095-8

ISAAA, 2016
ISAAA
Global Status of commercialized Biotech/GM crops: 2016
ISAAA brief No. 52, ISAAA, Ithaca, NY (2016)

Ismail and Zhang, 2004
M. Ismail, J. Zhang
Post-harvest Citrus diseases and their control
Outlooks on Pest Management, 15 (1) (2004), pp. 29-35, 10.1564/15feb12

Jagoueix et al., 1994
S. Jagoueix, J.-M. Bove, M. Garnier
The phloem-limited bacterium of greening disease of citrus is a member of the subdivision of the proteobacteria
International Journal of Systematic Bacteriology, 44 (3) (1994), pp. 379-386, 10.1099/00207713-44-3-379

Jia et al., 2019
H. Jia, V. Orbović, N. Wang
CRISPR‐LbCas12a‐mediated modification of citrus
Plant Biotechnology Journal, 17 (2019), pp. 1928-1937, 10.1111/pbi.13109
In this issue

Jia and Wang, 2014
H. Jia, N. Wang
Targeted genome editing of sweet orange using Cas9/sgRNA
PloS One, 9 (4) (2014), p. e93806, 10.1371/journal.pone.0093806

Jia et al., 2016
H. Jia, V. Orbovic, J.B. Jones, N. Wang
Modification of the PthA4 effector binding elements in Type I CsLOB1 promoter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4:dCsLOB1.3 infection
Plant Biotechnology Journal, 14 (5) (2016), pp. 1291-1301, 10.1111/pbi.12495

Jia et al., 2017
H. Jia, Y. Zhang, V. Orbović, J. Xu, F.F. White, J.B. Jones, N. Wang
Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker
Plant Biotechnology Journal, 15 (7) (2017), pp. 817-823, 10.1111/pbi.12677

Kobayashi et al., 2017
A.K. Kobayashi, L.G.E. Vieira, J.C. Bespalhok Filho, R.P. Leite, L.F.P. Pereira, H.B.C. Molinari, V.V. Marques
Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene
European Journal of Plant Pathology, 149 (4) (2017), pp. 865-873, 10.1007/s10658-017-1234-5

Lacombe et al., 2010
S. Lacombe, A. Rougon-Cardoso, E. Sherwood, N. Peeters, D. Dahlbeck, H.P. Van Esse, ..., C. Zipfel
Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance
Nature Biotechnology, 28 (4) (2010), pp. 365-369, 10.1038/nbt.1613

LeBlanc et al., 2018
C. LeBlanc, F. Zhang, J. Mendez, Y. Lozano, K. Chatpar, V.F. Irish, Y. Jacob
Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress
The Plant Journal: For Cell and Molecular Biology, 93 (2) (2018), pp. 377-386, 10.1111/tpj.13782

Ledford, 2017
H. Ledford
Geneticists enlist engineered virus and CRISPR to battle citrus disease
Nature, 545 (7654) (2017), pp. 277-278, 10.1038/545277a

Levy and El-Mohtar, 2018
A. Levy, C. El-Mohtar
Tools for temporary gene expression in the HLB battle - Citrus industry magazine
Retrieved 13 June 2019, from
(2018)
http://citrusindustry.net/2018/05/09/tools-for-temporary-gene-expression-in-the-hlb-battle/

Li et al., 2014
D.L. Li, X. Xiao, W.W. Guo
Production of transgenic anliucheng sweet orange (Citrus sinensis Osbeck) with xa21 gene for potential canker resistance
Journal of Integrative Agriculture, 13 (11) (2014), pp. 2370-2377, 10.1016/S2095-3119(13)60675-9

Lindow et al., 2014
S. Lindow, K. Newman, S. Chatterjee, C. Baccari, A.T. Lavarone, M. Ionescu
Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce’s disease
Molecular Plant-Microbe Interactions: MPMI, 27 (3) (2014), pp. 244-254, 10.1094/MPMI-07-13-0197-FI

Locali-Fabris et al., 2006
E.C. Locali-Fabris, J. Freitas-Astúa, A.A. Souza, M.A. Takita, G. Astúa-Monge, R. Antonioli-Luizon, ..., M.A. Machado
Complete nucleotide sequence, genomic organization and phylogenetic analysis of Citrus leprosis virus cytoplasmic type
The Journal of General Virology, 87 (9) (2006), pp. 2721-2729, 10.1099/vir.0.82038-0

Lu et al., 2015
F. Lu, H. Wang, S. Wang, W. Jiang, C. Shan, B. Li, ..., W. Sun
Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR
Journal of Integrative Plant Biology, 57 (7) (2015), pp. 641-652, 10.1111/jipb.12306

Machado et al., 2007
E.C. Machado, R.F. de Oliveira, R.V. Ribeiro, C.L. Medina, E.S. Stuchi, L.C. Pavani
Deficiência hídrica agrava os sintomas fisiológicos da clorose variegada dos citros em laranjeira “Natal”
Bragantia, 66 (3) (2007), pp. 373-379, 10.1590/s0006-87052007000300002

Machado et al., 1994
E.C. Machado, J.A. Quaggio, A.M.M.A. Lagôa, M. Ticelli, P.R. Furlani
Trocas gasosas e relações hídricas em citros com clorose variegada dos citros
Revista Brasileira de Fisiologia Vegetal, 6 (1) (1994), pp. 53-57

Mari et al., 2003
M. Mari, P. Bertolini, G.C. Pratella
Non-conventional methods for the control of post-harvest pear diseases
Journal of Applied Microbiology, 94 (5) (2003), pp. 761-766, 10.1046/j.1365-2672.2003.01920.x

Mauricio et al., 2019
F.N. Mauricio, T.A.T. Soratto, J.A. Diogo, R.L. Boscariol-Camargo, A.A. De Souza, H.D. Coletta-Filho, ..., M. Cristofani-Yaly
Analysis of defense-related gene expression in citrus hybrids infected by Xylella fastidiosa
Phytopathology, 109 (2) (2019), pp. 301-306, 10.1094/phyto-09-18-0366-fi

Mendes et al., 2010
B.M.J. Mendes, S.C. Cardoso, R.L. Boscariol-Camargo, R.B. Cruz, F.A.A. Mourão Filho, A. Bergamin Filho
Reduction in susceptibility to Xanthomonas axonopodis pv. Citri in transgenic Citrus sinensis expressing the rice Xa21 gene
Plant Pathology, 59 (1) (2010), pp. 68-75, 10.1111/j.1365-3059.2009.02148.x

Mittler et al., 2007
R. Mittler, V. Shulaev, E. Lam
Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump
The Plant Cell, 7 (1) (2007), p. 29, 10.2307/3869835

Mondal et al., 2012
S.N. Mondal, M. Dutt, J.W. Grosser, M.M. Dewdney
Transgenic citrus expressing the antimicrobial gene Attacin E (attE) reduces the susceptibility of ‘Duncan’ grapefruit to the citrus scab caused by Elsinoë fawcettii
European Journal of Plant Pathology, 133 (2) (2012), pp. 391-404, 10.1007/s10658-011-9912-1

Moreno et al., 2008
P. Moreno, S. Ambrós, M.R. Albiach-Martí, J. Guerri, L. Peña
Citrus tristeza virus: A pathogen that changed the course of the citrus industry
Molecular Plant Pathology, 9 (2) (2008), pp. 251-268, 10.1111/j.1364-3703.2007.00455.x

NAPPO Phytosanitary Alert System, 2005
NAPPO Phytosanitary Alert System. (2005). (Accessed 16 January 2020).

National Academies of Sciences, Engineering, and Medicine, 2016
National Academies of Sciences, Engineering, and Medicine
Genetically engineered crops: Experiences and prospects
The National Academies Press, Washington, DC (2016), 10.17226/23395

Navarro et al., 2002
L. Navarro, J.A. Pina, J. Juárez, J.F. Ballester-Olmos, J.M. Arregui, C. Ortega, ..., S. Zaragoza
The citrus variety improvement program in Spain in the period 1975-2001
N. Duran-Vila, R.G. Milne, J.V. da Graça (Eds.), Proceedings of the 15th Conference of the International organization of Citrus virologists, Riverside, CA (2002), pp. 306-316

Nawrocki et al., 2014
K.L. Nawrocki, E.K. Crispell, S.M. McBride
Antimicrobial peptide resistance mechanisms of gram-positive bacteria
Antibiotics (Basel, Switzerland), 3 (4) (2014), pp. 461-492, 10.3390/antibiotics3040461

Neves et al., 2010
M.F. Neves, V.G. Trombim, P. Milan, F.F. Lopes, F. Cressoni, R. Kalaki
O retrato da citricultura Brasileira
CitrusBR, São Paulo (2010)

Newman et al., 2004
K.L. Newman, R.P.P. Almeida, A.H. Purcell, S.E. Lindow
Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants
Proceedings of the National Academy of Sciences of the United States of America, 101 (6) (2004), pp. 1737-1742, 10.1073/pnas.0308399100

Nguyen et al., 2016
H. Nguyen, G. Hao, E. Stover, G. Gupta
Novel therapy of high-priority citrus diseases
Citrograph, 7 (1) (2016), pp. 72-75

Omar et al., 2018
A.A. Omar, M.M. Murata, H.A. El-Shamy, J.H. Graham, J.W. Grosser
Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice
Transgenic Research, 27 (2) (2018), pp. 179-191, 10.1007/s11248-018-0065-2

Panabieres et al., 2016
F. Panabieres, G. Ali, M. Allagui, R. Dalio, N. Gudmestad, M. Kuhn, S. Guha Roy, ..., A. Zampounis
Phytophthora nicotianae diseases worldwide: New knowledge of a long-recognised pathogen
Phytopathologia Mediterranea, 55 (1) (2016), pp. 20-40, 10.14601/Phytopathol_Mediterr-16423

Parra et al., 2005
J.R.P. Parra, J.R.S. Lopes, R.A. Zucchi, J.V.C. Guedes
Biologia de insetos-praga e vetores
D. Mattos Júnior, J.D. de Negri, R.M. Pio, J. Pompeu Júnior (Eds.), Citro, Instituto Agronômico & Fundag, Campinas, SP (2005), pp. 655-687

Pelegrini and Franco, 2005
P.B. Pelegrini, O.L. Franco
Plant γ-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins
The International Journal of Biochemistry & Cell Biology, 37 (11) (2005), pp. 2239-2253, 10.1016/j.biocel.2005.06.011

Peng et al., 2017
A. Peng, S. Chen, T. Lei, L. Xu, Y. He, L. Wu, ..., X. Zou
Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus
Plant Biotechnology Journal, 15 (12) (2017), pp. 1509-1519, 10.1111/pbi.12733

Pitt and Hocking, 2009
J.I. Pitt, A.D. Hocking
Fungi and food spoilage
Springer, Boston, MA (2009), 10.1007/978-0-387-92207-2

Pruitt et al., 2015
R.N. Pruitt, B. Schwessinger, A. Joe, N. Thomas, F. Liu, M. Albert, P.C. Ronald
The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium
Science Advances, 1 (6) (2015), p. e1500245, 10.1126/sciadv.1500245

Rea et al., 2002
G. Rea, O. Metoui, A. Infantino, R. Federico, R. Angelini
Copper amine oxidase expression in defense responses to wounding and Ascochyta rabiei invasion
Plant Physiology, 128 (3) (2002), pp. 865-875, 10.1104/pp.010646

Robertson et al., 2018
C. Robertson, X. Zhang, S. Gowda, V. Orbović, W. Dawson, Z. Mou
Overexpression of the Arabidopsis NPR1 protein in citrus confers tolerance to Huanglongbing
Journal of Citrus Pathology, 5 (1) (2018), pp. 0-8
Retrieved from
https://escholarship.org/uc/item/9xg9z0q7

Rodrigues et al., 2013
C.M. Rodrigues, A.A. de Souza, M.A. Takita, L.T. Kishi, M.A. Machado
RNA-Seq analysis of Citrus reticulata in the early stages of Xylella fastidiosa infection reveals auxin-related genes as a defense response
BMC Genomics, 14 (676) (2013), pp. 1-13, 10.1186/1471-2164-14-676

Rodrigues et al., 2003
J.C.V. Rodrigues, E.W. Kitajima, C.C. Childers, C.M. Chagas
Citrus leprosis virus vectored by Brevipalpus phoenicis (Acari: Tenuipalpidae) on citrus in Brazil
Experimental & Applied Acarology, 30 (1) (2003), pp. 161-179, 10.1023/B:APPA.0000006547.76802.6e

Rodríguez et al., 2008
A. Rodríguez, M. Cervera, J.E. Peris, L. Peña
The same treatment for transgenic shoot regeneration elicits the opposite effect in mature explants from two closely related sweet orange (Citrus sinensis (L.) Osb.) genotypes
Plant Cell, Tissue and Organ Culture, 93 (1) (2008), pp. 97-106, 10.1007/s11240-008-9347-3

Rodriguez et al., 2014
A. Rodriguez, T. Shimada, M. Cervera, B. Alquezar, J. Gadea, A. Gomez-Cadenas, L. Pena
Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens
Plant Physiology, 164 (1) (2014), pp. 321-339, 10.1104/pp.113.224279

Rodríguez et al., 2015
A. Rodríguez, T. Shimada, M. Cervera, A. Redondo, B. Alquézar, M.J. Rodrigo, L. Peña
Resistance to pathogens in terpene down-regulated orange fruits inversely correlates with the accumulation of D-limonene in peel oil glands
Plant Signaling & Behavior, 10 (6) (2015), p. e1028704, 10.1080/15592324.2015.1028704

Ronald et al., 1992
P.C. Ronald, B. Albano, R. Tabien, L. Abenes, K.S. Wu, S. McCouch, S.D. Tanksley
Genetic and physical analysis of the rice bacterial blight disease resistance locus, Xa21
Molecular & General Genetics : MGG, 236 (1) (1992), pp. 113-120, 10.1007/bf00279649

Rossetti et al., 1990
V. Rossetti, M.D.J. Garnier, J.M. Bové, M.J.G. Beretta, A.R. Teixeira, J.A. Quaggio, J.D. de Negri
Présence de bactéries dans le xylème d’orangers atteints de chlorose variégée, une nouvelle maladie des agrumes au Brésil
Compte Rendus de l' Academie des Sciences. Série 3, Sciences de la vie, 310 (8) (1990), pp. 345-349

Sendín et al., 2017
L.N. Sendín, I.G. Orce, R.L. Gómez, R. Enrique, C.F. Grellet Bournonville, A.S. Noguera, M.P. Filippone
Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease
Plant Molecular Biology, 93 (6) (2017), pp. 607-621, 10.1007/s11103-017-0586-8

Shi et al., 2015
Q. Shi, V.J. Febres, J.B. Jones, G.A. Moore
Responsiveness of different citrus genotypes to the Xanthomonas citri ssp. Citri-derived pathogen-associated molecular pattern (PAMP) flg22 correlates with resistance to citrus canker
Molecular Plant Pathology, 16 (5) (2015), pp. 507-520, 10.1111/mpp.12206

Shi et al., 2016
Q. Shi, V. J Febres, J. Jones, G. A Moore
A survey of FLS2 genes from multiple citrus species identifies candidates for enhancing disease resistance toXanthomonas citri ssp. citri
Horticulture Research, 3 (16022) (2016), pp. 1-11, 10.1038/hortres.2016.22

Soler et al., 2012
N. Soler, M. Plomer, C. Fagoaga, P. Moreno, L. Navarro, R. Flores, L. Peña
Transformation of Mexican lime with an intron-hairpin construct expressing untranslatable versions of the genes coding for the three silencing suppressors of Citrus tristeza virus confers complete resistance to the virus
Plant Biotechnology Journal, 10 (5) (2012), pp. 597-608, 10.1111/j.1467-7652.2012.00691.x

Song et al., 1995
W.Y. Song, G.L. Wang, L.L. Chen, H.S. Kim, L.Y. Pi, T. Holsten, P. Ronald
A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21
Science, 270 (5243) (1995), p. 1804, 10.1126/science.270.5243.1804

Stover et al., 2013
E. Stover, R.R. Stange, G.T. McCollum, J. Jaynes, M. Irey, E. Mirkov
Screening antimicrobial peptides in vitro for use in developing transgenic citrus resistant to huanglongbing and citrus canker
Journal of the American Society for Horticultural Science, 138 (2) (2013), pp. 142-148, 10.21273/JASHS.138.2.142

Tabachnick, 2015
W.J. Tabachnick
Diaphorina citri (Hemiptera: Liviidae) vector competence for the citrus greening pathogen “Candidatus Liberibacter asiaticus”
Journal of Economic Entomology, 108 (3) (2015), pp. 839-848, 10.1093/jee/tov038

Tavano et al., 2015
E.C.R. Tavano, M.L.C. Vieira, A.A. Mourão Filho, R. Harakava, B.M.J. Mendes
Genetic transformation of Citrus sinensis ‘Hamlin’ with Attacin A driven by a phloem tissue-specific promoter for resistance to Candidatus Liberibacter spp
Acta Horticulturae, 1065 (2015), pp. 695-702, 10.17660/ActaHortic.2015.1065.87

Texeira et al., 2005
D.C. Texeira, J. Ayres, E.W. Kitajima, L. Danet, S. Jagoueix-Eveillard, C. Saillard, J.M. Bové
First report of a huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter species, “Candidatus liberibacter americanus”, with the disease
Plant Disease, 89 (1) (2005), 10.1094/pd-89-0107a
107–107

Timmer et al., 2000
L.W. Timmer, S.M. Garnsey, J.H. Graham
Compendium of Citrus diseases
APS Press, St. Paul, Min (2000)

Timmer et al., 2004
L.W. Timmer, S.N. Mondal, N.A.R. Peres, A. Bhatia
Fungal diseases of fruit and foliage of Citrus trees
S.A.M.H. Naqvi (Ed.), Diseases of fruits and vegetables volume I, Springer, Dordrecht (2004), pp. 191-227, 10.1007/1-4020-2606-4_3

Tripathi et al., 2014
J.N. Tripathi, J. Lorenzen, O. Bahar, P. Ronald, L. Tripathi
Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.) confers resistance to Xanthomonas campestris pv. Musacearum
Plant Biotechnology Journal, 12 (6) (2014), pp. 663-673, 10.1111/pbi.12170

USDA Citrus Forecast, 2019
USDA
Citrus forecast, June 2019
Retrieved June 12, 2019, from
(2019)
https://www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/Citrus_Forecast/2018-19/citJUNE19.pdf

USDA/Foreign Agricultural Services, 2019
USDA/FAS Foreign Agricultural Services
Citrus: World markets and trade
Retrieved June 12, 2019, from
(2019)
https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf

van Loon and van Strien, 1999
L.C. van Loon, E.A. van Strien
The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins
Physiological and Molecular Plant Pathology, 55 (2) (1999), pp. 85-97, 10.1006/pmpp.1999.0213

Wang et al., 1996
G.L. Wang, W.Y. Song, D.L. Ruan, S. Sideris, P.C. Ronald
The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. Oryzae isolates in transgenic plants
Molecular Plant-Microbe Interactions: MPMI, 9 (9) (1996), pp. 850-855
Retrieved from
https://escholarship.org/uc/item/4pw512d4

Wang et al., 2019
L. Wang, S. Chen, A. Peng, Z. Xie, Y. He, X. Zou
CRISPR/Cas9- mediated editing of CsWRKY22 reduces susceptibility to Xanthomonas citri subsp. Citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck)
Plant Biotechnology Reports (2019), 10.1007/s11816-019-00556-x

Wang et al., 2017
N. Wang, E.A. Pierson, J.C. Setubal, J. Xu, J.G. Levy, Y. Zhang, J. Martins
The Candidatus Liberibacter–Host interface: Insights into pathogenesis mechanisms and disease control
Annual Review of Phytopathology, 55 (1) (2017), pp. 451-482, 10.1146/annurev-phyto-080516-035513

Yang et al., 2010
L. Yang, C. Hu, N. Li, J. Zhang, J. Yan, Z. Deng
Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease
Plant Molecular Biology, 75 (1) (2010), pp. 11-23, 10.1007/s11103-010-9699-z

Yoda et al., 2009
H. Yoda, K. Fujimura, H. Takahashi, I. Munemura, H. Uchimiya, H. Sano
Polyamines as a common source of hydrogen peroxide in host- and nonhost hypersensitive response during pathogen infection
Plant Molecular Biology, 70 (1–2) (2009), pp. 103-112, 10.1007/s11103-009-9459-0

Yoda et al., 2006
H. Yoda, Y. Hiroi, H. Sano
Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells
Plant Physiology, 142 (1) (2006), pp. 193-206, 10.1104/pp.106.080515

Zhang et al., 2017
F. Zhang, C. LeBlanc, V.F. Irish, Y. Jacob
Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO promoter
Plant Cell Reports, 36 (12) (2017), pp. 1883-1887, 10.1007/s00299-017-2202-4

Zhang et al., 2010
X. Zhang, M.I. Francis, W.O. Dawson, J.H. Graham, V. Orbović, E.W. Triplett, Z. Mou
Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker
European Journal of Plant Pathology, 128 (1) (2010), pp. 91-100, 10.1007/s10658-010-9633-x

Zipfel et al., 2006
C. Zipfel, G. Kunze, D. Chinchilla, A. Caniard, J.D.G. Jones, T. Boller, G. Felix
Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation
Cell, 125 (4) (2006), pp. 749-760, 10.1016/j.cell.2006.03.037

Zhou et al., 2017
P. Zhou, R. Jia, S. Chen, L. Xu, A. Peng, T. Lei, Y. He
Cloning and expression analysis of four Citrus WRKY genes responding to Xanthomonas axonopodis pv. Citri
Acta Horticult Sin, 44 (2017), pp. 452-462, 10.16420/j.issn.0513-353x.2016-0577

Zou et al., 2012
H. Zou, S. Gowda, L. Zhou, S. Hajeri, G. Chen, Y. Duan
The destructive citrus pathogen, “Candidatus liberibacter asiaticus” encodes a functional flagellin characteristic of a pathogen-associated molecular pattern
PLoS One, 7 (9) (2012), p. e46447, 10.1371/journal.pone.0046447

Zou et al., 2017
X. Zou, X. Jiang, L. Xu, T. Lei, A. Peng, Y. He, S. Chen
Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing
Plant Molecular Biology, 93 (4–5) (2017), pp. 341-353, 10.1007/s11103-016-0565-5
 

608aff6fa95395267a0a5ae4 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections