Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2019.12.003
Biotechnology Research and Innovation Journal
Plant Biotechnology Research article

Stability and tissue-specific Cry10Aa overexpression improves cotton resistance to the cotton boll weevil

Thuanne Pires Ribeiro, Marcos Fernando Basso, Mayara Holanda de Carvalho, Leonardo Lima Pepino de Macedo, Dagna Maria Laurindo da Silva, Isabela Tristan Lourenço-Tessutti, Osmundo Brilhante de Oliveira-Neto, Eduardo Romano de Campos-Pinto, Wagner Alexandre Lucena, Maria Cristina Mattar da Silva, Bruna Mendes Diniz Tripode, Tatianne Piza Ferrari Abreu-Jardim, José Ednilson Miranda, Marcio Alves-Ferreira, Carolina Vianna Morgante, Maria Fatima Grossi-de-Sa

Downloads: 0
Views: 319

Abstract

The cotton boll weevil (CBW, Anthonomus grandis) is the most destructive cotton insect pest affecting cotton crops. To overcome this problem, CBW-resistant genetically modified cotton plants overexpressing Bacillus thuringiensis entomotoxins were successfully obtained. Previous results showed that the overexpression of Cry10Aa protoxin led to high mortality of the CBW larvae in greenhouse conditions. In this study, we advanced three more generations (T2 to T4), with several cotton events constitutively overexpressing the Cry10Aa protoxin, and the transgene stability and agronomic performance were investigated. In addition, stable transgenic cotton overexpressing the Cry10Aa active (Cry10Aa protoxin lacking the α-helix N-terminal) driven by cotton flower bud-specific promoters were generated and characterized. Cotton events constitutively or tissue-specifically overexpressing the Cry10Aa protein (protoxin or active) represented mortality percentages of the CBW larva of up to 85 % in plants under greenhouse conditions. Events overexpressing the Cry10Aa active under control of the flower bud-specific promoter showed higher protein accumulation in stamens and carpels compared to the events with constitutive expression. Our findings suggested that the high stability of the Cry10Aa transgene and the elevated expression level and protein accumulation in flower bud tissues (primarily in stamen and carpels) contribute to improved resistance to CBW larvae. Finally, some notable events were selected with potential for future field trials in different cotton-producing regions of Brazil. Therefore, cotton events overexpressing high levels of the Cry10Aa protein in flower bud tissue may have a strong potential for commercial use in the integrated management of CBW.

Keywords

Stable inheritance,  Insect pest,  Resistance management,  Bacillus thuringiensis, entomotoxin.

References

ABRAPA, 2018
ABRAPA (2018). Estatísticas: O Algodão no mundo. Associação Brasileira de Produtores de Algodão (http://www.abrapa.com.br/estatisticas/Paginas/Algodao-noMundo.aspx.).

Adang et al., 2014
M.J. Adang, N. Crickmore, J.L. Jurat-Fuentes
Diversity of Bacillus thuringiensis crystal toxins and mechanism of action
T.S. Dhadialla, S.S. Gill (Eds.), In Advances in Insect Physiology, Academic Press (2014), pp. 39-87

Aguiar et al., 2012
R.W..S. Aguiar, E.S. Martins, B.M. Ribeiro, R.G. Monnerat
Cry10Aa protein is highly toxic to Anthonomus grandis Boheman (Coleoptera: Curculionidae), an important insect pest in Brazilian cotton crop fields
Bt Research, 3 (2012), pp. 20-28

Almeida Garcia et al., 2017
R. Almeida Garcia, L. Lima Pepino Macedo, D. Cabral do Nascimento, F.X. Gillet, C.E. Moreira-Pinto, M. Faheem, A.M. Moreschi Basso, M.C. Mattar Silva, M.F Grossi-de-Sa
Nucleases as a barrier to gene silencing in the cotton boll weevil
PLos One, 12 (2017), Article e0189600

Altschul et al., 1990
S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman
Basic local alignment search tool
Journal of Molecular Biology, 215 (1990), pp. 403-410

Araujo et al., 1999
L.H.A. Araujo, R. Braga Sobrinho, M.F. Queiroz
Aspectos biológicos de adultos de um parasitóide do bicudo do algodoeiro
Scientia Agric, 56 (1999), pp. 765-776

Artico, Lambret-Frotté et al., 2014
S. Artico, J. Lambret-Frotté, S.M. Nardeli, O.B. Oliveira-Neto, M.F. Grossi-de-Sa, M. Alves-Ferreira
Isolation and characterization of three new promoters from Gossypium hirsutum that show high activity in reproductive tissues
Plant Molecular Biology Reporter, 32 (2014), pp. 630-643

Artico et al., 2010
S. Artico, S.M. Nardeli, O. Brilhante, M.F. Grossi-de-Sa, M. Alves-Ferreira
Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data
BMC Plant Biology, 10 (2010)
49-49

Artico, Ribeiro-Alves et al., 2014
S. Artico, M. Ribeiro-Alves, O.B. Oliveira-Neto, L.L. de Macedo, S. Silveira, M.F. Grossi-de-Sa, A.P. Martinelli, M. Alves-Ferreira
Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae
BMC Genomics, 15 (2014), p. 854

Baum et al., 2007
J.A. Baum, T. Bogaert, W. Clinton, G.R. Heck, P. Feldmann, O. Ilagan, et al.
Control of coleopteran insect pests through RNA interference
Nature Biotechnology, 25 (2007), p. 1322

Bradford, 1976
M.M. Bradford
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
Analytical Biochemistry, 72 (1976), pp. 248-254

Bravo et al., 2007
A. Bravo, S.S. Gill, M. Soberon
Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control
Toxicon: official journal of the International Society on Toxinology, 49 (2007), pp. 423-435

Burand and Hunter, 2013
J.P. Burand, W.B. Hunter
RNAi: Future in insect management
Journal of Invertebrate Pathology, 112 (2013), pp. S68-S74

Carrière et al., 2015
Y. Carrière, N. Crickmore, B.E. Tabashnik
Optimizing pyramided transgenic Bt crops for sustainable pest management
Nature Biotechnology, 33 (2015), p. 161

Christou et al., 2006
P. Christou, T. Capell, A. Kohli, J.A. Gatehouse, A.M. Gatehouse
Recent developments and future prospects in insect pest control in transgenic crops
Trends in Plant Science, 11 (2006), pp. 302-308

CONAB, 2018
CONAB
Acompanhamento da safra de grãos brasileira (SAFRA 2016/17 - Quarto levantamento)
Companhia Nacional de abastecimento, 4 (2018), pp. 1-162
(http://www.conab.gov.br)

Crickmore et al., 2016
N. Crickmore, J. Baum, A. Bravo, D. Lereclus, K. Narva, K. Sampson, E. Schnepf, M. Sun, D.R. Zeigler
Bacillus thuringiensis toxin nomenclature
http://www.btnomenclature.info (2016)

Crickmore et al., 1998
N. Crickmore, D.R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, D.H. Dean
Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins
Microbiology and Molecular Biology Reviews: MMBR, 62 (1998), pp. 807-813

de Lima et al., 2013
I.S. de Lima Jr., P.E. Degrande, J.E. Miranda, W.J. dos Santos
Evaluation of the Boll Weevil Anthonomus grandis Boheman (Coleoptera: Curculionidae) suppression program in the state of Goias, Brazil
Neotropical Entomology, 42 (2013), pp. 82-88

de Oliveira et al., 2016
R.S. de Oliveira, O.B. Oliveira-Neto, H.F. Moura, L.L. de Macedo, F.B. Arraes, W.A. Lucena, I.T. Lourenco-Tessutti, A.A. de Deus Barbosa, M.C. da Silva, M.F. Grossi-de-Sa
Transgenic cotton plants expressing Cry1Ia12 toxin confer resistance to fall armyworm (Spodoptera frugiperda) and Cotton Boll Weevil (Anthonomus grandis)
Frontiers in Plant Science, 7 (2016), p. 165

de Souza Freire et al., 2014
I. de Souza Freire, A.L. Miranda-Vilela, L.C. Barbosa, E.S. Martins, R.G. Monnerat, C.K. Grisolia
Evaluation of cytotoxicity, genotoxicity and hematotoxicity of the recombinant spore-crystal complexes Cry1Ia, Cry10Aa and Cry1Ba6 from Bacillus thuringiensis in Swiss mice
Toxins, 6 (2014), pp. 2872-2885

Dellaporta et al., 1983
S. Dellaporta, J. Wood, J. Hicks
A plant DNA miniprepration: Version II
Plant Molecular Biology Reports, 1 (1983), pp. 19-21

Farias et al., 2015
D.F. Farias, A.A. Peijnenburg, M.F. Grossi-de-Sa, A.F. Carvalho
Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants
Bioengineered, 6 (2015), pp. 323-327

Fernandes et al., 2001
W.D. Fernandes, S.L. Carvalho, M. Habib
Between-season attraction of cotton boll weevil, Anthonomus grandis Boh. (Coleoptera: Curculionidae) adults by its aggregation pheromone
Scientia Agricola, 58 (2001), pp. 229-234

Foster, 2009
R.N. Foster
Boll weevil
V.H. Resh, R.T. Cardé (Eds.), In encyclopedia of insects (second edition), Academic Press: Academic Press (2009), pp. 116-117

Gao, 2018
C. Gao
The future of CRISPR technologies in agriculture
Nature Reviews Molecular Cell Biology, 19 (2018), pp. 275-276

Gillet et al., 2017
F.X. Gillet, R.A. Garcia, L.L.P. Macedo, E.V.S. Albuquerque, M.C.M. Silva, M.F. Grossi-de-Sa
Investigating engineered ribonucleoprotein particles to improve oral RNAi delivery in crop insect pests
Frontiers in Physiology, 8 (2017), p. 256

Goodstein et al., 2012
D.M. Goodstein, S. Shu, R. Howson, R. Neupane, R.D. Hayes, J. Fazo, et al.
Phytozome: A comparative platform for green plant genomics
Nucleic Acids Research, 40 (2012), pp. D1178-D1186

Gould, 1998
F. Gould
Sustainability of transgenic insecticidal cultivars: Integrating pest genetics and ecology
Annual Review of Entomology, 43 (1998), pp. 701-726

Grossi-de-Sa et al., 2007
M.F. Grossi-de-Sa, M. Quezado de Magalhaes, M.S. Silva, S.M. Silva, S.C. Dias, E.Y. Nakasu, et al.
Susceptibility of Anthonomus grandis (cotton boll weevil) and Spodoptera frugiperda (fall armyworm) to a cry1ia-type toxin from a Brazilian Bacillus thuringiensis strain
Journal of Biochemistry and Molecular Biology, 40 (2007), pp. 773-782

Hou et al., 2019
J. Hou, R. Cong, M. Izumi-Willcoxon, H. Ali, Y. Zheng, E. Bermudez, M. McDonald, M. Nelson, T. Yamamoto
Engineering of Bacillus thuringiensis cry proteins to enhance the activity against western corn rootworm
Toxins, 11 (2019)

Kearse et al., 2012
M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, et al.
Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data
Bioinformatics, 28 (2012), pp. 1647-1649

Kohli et al., 2006
A. Kohli, P.G. Melendi, R. Abranches, T. Capell, E. Stoger, P. Christou
The quest to understand the basis and mechanisms that control expression of introduced transgenes in crop plants
Plant Signaling & Behavior, 1 (2006), pp. 185-195

Lambret-Frotte et al., 2016
J. Lambret-Frotte, S. Artico, S. Muniz Nardeli, F. Fonseca, O. Brilhante Oliveira-Neto, M.F. Grossi-de-Sa, et al.
Promoter isolation and characterization of GhAO-like1, a Gossypium hirsutum gene similar to multicopper oxidases that is highly expressed in reproductive organs
Genome, 59 (2016), pp. 23-36

Latham and Love, 2017
J.R. Latham, M. Love
The distinct properties of natural and GM cry insecticidal proteins
Biotechnology & Genetic Engineering Reviews, 33 (2017), pp. 62-96

Lucena et al., 2014
W.A. Lucena, P.B. Pelegrini, D. Martins-de-Sa, F.C. Fonseca, J.E. Gomes Jr, L.L. de Macedo, M.C. da Silva, R.S. Oliveira, M.F. Grossi-de-Sa
Molecular approaches to improve the insecticidal activity of Bacillus thuringiensis Cry toxins
Toxins, 6 (2014), pp. 2393-2423

Macedo et al., 2017
L.L.P. Macedo, J.D. Antonino de Souza Junior, R.R. Coelho, F.C.A. Fonseca, A.A.P. Firmino, M.C.M. Silva, et al.
Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil
Biotechnology Research and Innovation, 1 (2017), pp. 72-86

Magalhaes et al., 2012
D.M. Magalhaes, M. Borges, R.A. Laumann, E.R. Sujii, P. Mayon, J.C. Caulfield, et al.
Semiochemicals from herbivory induced cotton plants enhance the foraging behavior of the cotton boll weevil, Anthonomus grandis
Journal of Chemical Ecology, 38 (2012), pp. 1528-1538

Magalhaes et al., 2016
D.M. Magalhaes, M. Borges, R.A. Laumann, C.M. Woodcock, J.A. Pickett, M.A. Birkett, et al.
Influence of two acyclic homoterpenes (Tetranorterpenes) on the foraging behavior of Anthonomus grandis boh
Journal of Chemical Ecology, 42 (2016), pp. 305-313

Martins et al., 2008
E.S. Martins, R.W. Aguiar, N.F. Martins, V.M. Melatti, R. Falcao, A.C. Gomes, B.M. Ribeiro, R.G. Monnerat
Recombinant Cry1Ia protein is highly toxic to cotton boll weevil (Anthonomus grandis Boheman) and fall armyworm (Spodoptera frugiperda)
Journal of Applied Microbiology, 104 (2008), pp. 1363-1371

Martins et al., 2010
E.S. Martins, R.G. Monnerat, P.R. Queiroz, V.F. Dumas, S.V. Braz, R.W. de Souza Aguiar, A.C. Gomes, J. Sanchez, A. Bravo, B.M. Ribeiro
Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis
Insect Biochemistry and Molecular Biology, 40 (2010), pp. 138-145

Martins, Praça et al., 2007
É.S. Martins, L.B. Praça, V.F. Dumas, J.O. Silva-Werneck, E.H. Sone, I.C. Waga, C. Berry, R.G. Monnerat
Characterization of Bacillus thuringiensis isolates toxic to cotton boll weevil (Anthonomus grandis)
Biological Control, 40 (2007), pp. 65-68

Martins, Ayres et al., 2007
W.F. Martins, C.F. Ayres, W.A. Lucena
Genetic diversity of Brazilian natural populations of Anthonomus grandis Boheman (Coleoptera: Curculionidae), the major cotton pest in the New World
Genetics and Medical Research, 6 (2007), pp. 23-32

Neves et al., 2014
R.C. Neves, F. Colares, J.B. Torres, R.L. Santos, C.S. Bastos
Rational practices to manage boll weevils colonization and population growth on family farms in the semiarido region of Brazil
Insects, 5 (2014), pp. 818-831

Oliveira et al., 2011
G.R. Oliveira, M.C.M. Silva, W.A. Lucena, E.Y.T. Nakasu, A.A.P. Firmino, M.A. Beneventi, et al.
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)
BMC Biotechnology, 11 (2011), p. 85

Papa and Celoto, 2016
G. Papa, F. Celoto
Controle químico do bicudo-do-algodoeiro, Anthonomus grandis Boheman (Coleoptera: Curculionidae)
J. Belot (Ed.), In O Bicudo-do-algodoeiro (Anthonomus grandis boh,. 1843) nos cerrados brasileiros: biologia e medidas de controle, (Instituto Matogrossense do Algodão (IMAmt)) (2016), pp. 143-154

Pardo-Lopez et al., 2009
L. Pardo-Lopez, C. Munoz-Garay, H. Porta, C. Rodriguez-Almazan, M. Soberon, A. Bravo
Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis
Peptides, 30 (2009), pp. 589-595

Pardo-Lopez et al., 2013
L. Pardo-Lopez, M. Soberon, A. Bravo
Bacillus thuringiensis insecticidal three-domain Cry toxins: Mode of action, insect resistance and consequences for crop protection
FEMS Microbiology Reviews, 37 (2013), pp. 3-22

Perlak et al., 2001
F.J. Perlak, M. Oppenhuizen, K. Gustafson, R. Voth, S. Sivasupramaniam, D. Heering, B. Carey, R.A. Ihrig, J.K. Roberts
Development and commercial use of Bollgard cotton in the USA--early promises versus today’s reality
The Plant Journal, 27 (2001), pp. 489-501

Pimenta et al., 2016
M. Pimenta, R.A. Mata, M. Venzon, D.N.C. Cunha, E.M.G. Fontes, C.S.S. Pires, et al.
Survival and preference of cotton boll weevil adults for alternative food sources
Brazilian Journal of Biology, 76 (2016), pp. 387-395

Rao et al., 2013
X. Rao, X. Huang, Z. Zhou, X. Lin
An improvement of the 2^(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis
Biostatistics, Bioinformatics and Biomathematics, 3 (2013), pp. 71-85

Rech et al., 2008
E.L. Rech, G.R. Vianna, F.J. Aragao
High-efficiency transformation by biolistics of soybean, common bean and cotton transgenic plants
Nature Protocols, 3 (2008), pp. 410-418

Ribeiro et al., 2010
P..A. Ribeiro, E.R. Sujii, I.R. Diniz, M.A. Medeiros, M.L. Salgado-Labouriau, M.C. Branco, C.S.S. Pires, E.M.G. Fontes
Alternative food sources and overwintering feeding behavior of the boll weevil, Anthonomus grandis boheman (coleoptera: Curculionidae) underthe tropical conditions of central Brazil
Neotropical Entomology, 39 (2010), pp. 28-34

Ribeiro et al., 2017
T.P. Ribeiro, F.B.M. Arraes, I.T. Lourenco-Tessutti, M.S. Silva, M.E. Lisei-de-Sa, W.A. Lucena, et al.
Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil
Plant Biotechnology Journal, 15 (2017), pp. 997-1009

Sanahuja et al., 2011
G. Sanahuja, R. Banakar, R.M. Twyman, T. Capell, P. Christou
Bacillus thuringiensis: A century of research, development and commercial applications
Plant Biotechnology Journal, 9 (2011), pp. 283-300

Santos et al., 2003
R.C. Santos, L.H. Marcellino, R.G. Monnerat, E.S. Gander
Mechanical damage in cotton buds caused by the boll weevil
Pesquisa Agropecuária Brasileira, 38 (2003), pp. 1351-1356

Schneider-Orelli, 1947
O. Schneider-Orelli
Entomologisches Praktikum: Einführung in die land- und forstwirtschaftliche Insektenkunde
Sauerlander Aarau, Switzerland (1947)

Showler, 2004
A.T. Showler
Influence of cotton fruit stages as food sources on boll weevil (Coleoptera: Curculionidae) fecundity and oviposition
Journal of Economic Entomology, 97 (2004), pp. 1330-1334

Showler, 2005
A.T. Showler
Relationships of different cotton square sizes to Boll Weevil (Coleoptera: Curculionidae) feeding and oviposition in field conditions
Journal of Economic Entomology, 98 (5) (2005), pp. 1572-1579

Silva et al., 2016
C.R. Silva, R. Monnerat, L.M. Lima, É.S. Martins, P.A. Melo Filho, M.P. Pinheiro, et al.
Stable integration and expression of a cry1Ia gene conferring resistance to fall armyworm and boll weevil in cotton plants
Pest Management Science, 72 (2016), pp. 1549-1557

Stadler and Buteler, 2007
T. Stadler, M. Buteler
Migration and dispersal of Anthonomus grandis (Coleoptera: Curculionidae) in South America
Revista de la Sociedad Entomológica Argentina, 66 (2007), pp. 205-217

Sujii and Pires, 2015
E. Sujii, C. Pires
Plantas hospedeiras do Bicudo-do-algodoeiro
J.L. Belot (Ed.), In O bicudo-do-algodoeiro (Anthonomus grandis BOH., 1843) nos cerrados brasileiros: biologia e medidas de controle, (Instituto Mato-grossense do algodão (IMAmt)) (2015), pp. 61-78

Trapero et al., 2016
C. Trapero, I.W. Wilson, W.N. Stiller, L.J. Wilson
Enhancing integrated pest management in GM cotton systems using host plant resistance
Frontiers in Plant Science, 7 (2016), p. 500

USDA, 2018
USDA
Cotton: World markets and trade 2017/18. Foreign agricultural Service/USDA - office of global analysis
(2018), pp. 1-27
https://apps.fas.usda.gov/psdonline/circulars/cotton.pdf

Viana et al., 2011
A.A. Viana, R.R. Fragoso, L.M. Guimaraes, N. Pontes, O.B. Oliveira-Neto, S. Artico, et al.
Isolation and functional characterization of a cotton ubiquitination-related promoter and 5’UTR that drives high levels of expression in root and flower tissues
BMC Biotechnology, 11 (2011), p. 115

Wu and Tian, 2019
J. Wu, Y. Tian
Development of insect-resistant transgenic cotton with chimeric TVip3A* accumulating in chloroplasts (Humana press, New York, NY: Humana press, New York, NY)
(2019)

Yang et al., 2012
X. Yang, F. Li, C. Liu, X. Zhang, K. Liu, W. Fang, et al.
Analysis of the copy number of exogenous genes in transgenic cotton using real-time quantitative PCR and the 2-ΔΔCt method
African Journal of Biotechnology, 11 (2012), pp. 6226-6233

Yang et al., 2011
Z. Yang, H. Chen, W. Tang, H. Hua, Y. Lin
Development and characterization of transgenic rice expressing two Bacillus thuringiensis genes
Pest Management Science, 67 (2011), pp. 414-422

Zhang et al., 2015
T. Zhang, Y. Hu, W. Jiang, L. Fang, X. Guan, J. Chen
Sequencing of allotetraploid cotton (Gossypium hirsutum L. Acc. TM-1) provides a resource for fiber improvement
Nature Biotechnology, 33 (2015), pp. 531-537

Zhang et al., 2003
X.D. Zhang, J.N. Jenkins, F.E. Callahan, R.G. Creech, Y. Si, J.C. McCarty, S. Saha, D.P. Ma
Molecular cloning, differential expression, and functional characterization of a family of class I ubiquitin-conjugating enzyme (E2) genes in cotton (Gossypium)
Biochimica et Biophysica Acta, 1625 (2003), pp. 269-279
 

608afac6a9539502ff1e31b4 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections