Endogenous soybean peptide overexpression: an alternative to protect plants against root-knot nematode
Ciliana Rechenmacher, Beatriz Wiebke-Strohm, Luisa Abruzzi de Oliveira-Busatto, Ricardo Luis Mayer Weber, Mariana Cristina Moraes Corso, Valéria Stefania Lopes-Caitar, Suellen Mika Hishinuma Silva, Waldir Pereira Dias, Francismar Correa Marcelino-Guimarães, Celia Regina Carlini, Maria Helena Bodanese-Zanettini
Abstract
Nematodes are pathogens of many important crops, including soybean. The main species found in Brazil are root-knot (Meloidogyne spp.), cyst (Heterodera glycines), root lesion (Pratylenchus brachyurus) and reniform (Rotylenculus reniformis) nematodes. Ureases are traditionally known for catalyzing the hydrolysis of urea to ammonia and carbon dioxide. Besides the main function, they present other independent biological roles, including toxic activities against insects, specially Coleoptera and Hemiptera, and fungi. In previous work, the DNA sequence encoding an insecticidal peptide - named Jaburetox - was identified in a Canavalia ensiformes urease gene. The recombinant Jaburetox exhibited toxicity against insects. Subsequently, the DNA sequence corresponding to Jaburetox was identified as part of the soybean Eu4 urease gene, with the resulting peptide named Soyuretox. In the present study, explants of soybean were transformed with Agrobacterium rhizogenes and ‘composite’ plants produced consisting of wild-type shoots and transgenic hairy roots overexpressing Soyuretox. Thereafter soybean plants overexpressing Soyuretox were obtained through bombardment transformation. Due to similarity between nematode and insect digestion mechanisms, we challenged composite and whole-transgenic plants with the nematode Meloidogyne javanica. Hairy roots overexpressing Soyuretox exhibited a significant reduction (48 %; p < 0.05) in the average reproductive factor when compared with empty-vector transformed hairy roots. Transgenic plants overexpressing Soyuretox also exhibited significant reduction (37.5 %; p < 0.05) in reproductive factor when compared with non-transformed plants. This study demonstrates the potential of Soyuretox in confering resistance against nematodes, representing a new alternative control method for nematodes in economically important crops.
Keywords
References
Ali et al., 2017
M.A. Ali, F. Azeem, A. Abbas, F.A. Joyia, H. Li, A.A. Dababat
Transgenic strategies for enhancement of nematode resistance in plants
Frontiers in Plant Science, 8 (2017), p. 750, 10.3389/fpls.2017.00750
Becker-Ritt et al., 2007
A.B. Becker-Ritt, A.H. Martinelli, S. Mitidieri, V. Feder, G.E. Wassermann, L. Santi, et al.
Antifungal activity of plant and bacterial ureases
Toxicon, 50 (2007), pp. 971-983, 10.1016/j.toxicon.2007.07.008
Bernard et al., 2017
G.C. Bernard, M. Egnin, C. Bonsi
The impact of plant-parasitic nematodes on agriculture and methods of control
M.M. Shah, M. Mahamood (Eds.), Nematology - Concepts, diagnosis and control, IntechOpen (2017), 10.5772/intechopen.68958
Boneti and Ferraz, 1981
J.I.S. Boneti, S. Ferraz
Modificações do método e Hussey e Baker para a extração de Meloidogyne exigua de cafeeiro
Fitopatol, Brasil, Brasilia (1981), p. 553
Carlini et al., 1997
C.R. Carlini, A.E. Oliveira, P. Azambuja, J. Xavier-Filho, M.A. Wells
Biological effects of canatoxin in different insect models, evidence for a proteolytic activation of the toxin by insect cathepsin like enzymes
Journal of Economic Entomology, 90 (1997), pp. 340-348, 10.1093/jee/90.2.340
Carlini and Ferreira-Da-Silva, 2000
Carlini C.R., Ferreira-Da-Silva C.T., Gombarovits M.E.C. Peptídeo Entomotóxico da Canatoxina. Processo de Produção. Patente de invenção, PI0003334-0, DEINPI/RS País, Brasil. Data de depósito 06/06/2000.
Carlini and Ligabue-Braun, 2016
C.R. Carlini, R. Ligabue-Braun
Ureases as multifunctional toxic proteins: a review
Toxicon, 110 (2016), pp. 90-109, 10.1016/j.toxicon.2015.11.020
Carneiro et al., 2000
R.M.D.G. Carneiro, O. Rading, M.R.A. Almeida, A.D. Campos
Resistence of vegatable crops to Meloidogyne spp., suggestion for a crop rotation system
Nematologia Brasileira, 24 (2000), pp. 49-54
Cheng et al., 2019
C. Cheng, Y. Liu, X. Liu, J. An, L. Jiang, B. Yu
Recretohalophyte Tamarix TrSOS1 confers higher salt tolerance to transgenic plants and yeast than glycophyte soybean GmSOS1
Environmental and Experimental Botany, 165 (2019), pp. 196-207, 10.1016/j.envexpbot.2019.06.006
Chitwood and Perry, 2009
D.J. Chitwood, R.N. Perry
Reproduction, physiology and biochemistry
M. Perry, M.J.L. Starr (Eds.), Root-knot nematodes, CABI, Wallingford, UK (2009), pp. 182-200
Dias et al., 2010
W.P. Dias, A. Garcia, J.F.V. Silva, G.E. de S. Carneiro
Nematóides de soja: Identificação e controle. (ed)
Embrapa: Circular Tecnica, 76 (2010)
Doyle and Doyle, 1987
J.J. Doyle, J.L. Doyle
A rapid DNA isolation procedure for small quantities of fresh leaf tissue
Phytochem Bull, 19 (1987), pp. 11-15
Droste et al., 2002
A. Droste, G. Pasquali, M.H. Bodanese-Zanettini
Transgenic fertile plants of soybean [Glycine max (L) Merrill] obtained from bombarded embryogenic tissue
Euphytica, 127 (2002), pp. 367-376
Dutta et al., 2015
T.K. Dutta, P.K. Papolu, P. Banakar, D. Choudhary, A. Shirohi, U. Rao
Tomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes
Frontiers in Microbiology, 6 (2015), p. 260
Ferreira-DaSilva et al., 2000
C.T. Ferreira-DaSilva, M.E.C. Gombarovits, H. Masuda, C.M. Oliveira, C.R. Carlini
Proteolytic activation of canatoxin, a plant toxic protein, by insect cathepsin-like enzymes
Archives of Insect Biochemistry and Physiology, 44 (2000), pp. 162-171, 10.1002/1520-6327
Follmer et al., 2004
C. Follmer, R. Real-Guerra, G.E. Wasserman, D. Olivera-Severo, C.R. Carlini
Jackbean, soybean and Bacillus pasteurii ureases, biological effects unrelated to ureolytic activity
European Journal of Biochemistry, 271 (2004), pp. 1357-1363, 10.1111/j.1432-1033.2004.04046
Fuller et al., 2008
V.L. Fuller, C.J. Lilley, P.E. Urwin
Nematode resistance
The New Phytologist, 180 (2008), pp. 27-44, 10.1111/j.1469-8137.2008.02508
Goldraij et al., 2003
A. Goldraij, L.J. Beamer, J.C. Polacco
Interallelic complementation at the ubiquitous urease coding locus of soybean
Plant Physiology, 132 (2003), pp. 1801-1810, 10.1104/pp.103.022699
Gonçalves et al., 2014
J.F. Gonçalves, M.L. Laia, B.F.F. Barbosa, V.B. Bergamasco, J.M. Santos, A.L. Costa, et al.
Cloning and expression of a novel cry gene that is potentially active against nematodes
African Journal of Microbiology Research, 8 (2014), pp. 1017-1025, 10.5897/AJMR2013.6282
Guillon et al., 2006
S. Guillon, J. Tremouillaux-Guiller, P.K. Pati, M. Rideau, P.H. Gantet
The potential of hairy roots, dawn of a new era
Trends in Biotechnology, 24 (2006), pp. 403-409, 10.1016/j.tibtech.2006.07.002
Hamawaki et al., 2019
O.T. Hamawaki, R.L. Hamawaki, A.P.O. Nogueira, J.S. Glasenapp, C.D.L. Hamawaki, C.O. Silva
Evaluation of soybean breeding lineages to new sources of root-knot nematode resistance
Ciência e Agrotecnologia, 43 (2019), Article e009519, 10.1590/1413-7054201943009519
Holland et al., 1987
M.A. Holland, J.D. Griffin, L.E. Meyer-Bothling, J.C. Polacco
Developmental genetics of the soybean urease isozymes
Developmental Genetics, 8 (1987), pp. 375-387, 10.1002/dvg.1020080508
Ibrahim et al., 2011
H.M.M. Ibrahim, P. Hosseini, N.W. Alkharouf, E.H.A. Hussein, A.B.D. El-Din, Y. El Kader, et al.
Analysis of Gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways
BMC Genomics, 12 (2011), pp. 2-16, 10.1186/1471-2164-12-220
Jian et al., 2008
B. Jian, B. Liu, Y. Bi, W. Hou, C. Wu, T. Han
Validation of internal control for gene expression study in soybean by quantitative real-time PCR
BMC Molecular Biology, 9 (2008), pp. 1-14, 10.1186/1471-2199-9-59
Jones et al., 2013
J.T. Jones, A. Haegeman, E.G.J. Danchin, H.S. Gaur, J. Helder, M.G.H. Jones, et al.
Top 10 plant-parasitic nematodes in molecular plant pathology
Molecular Plant Pathology, 14 (2013), pp. 946-961, 10.1111/mpp.12057
Kappaun et al., 2018
K. Kappaun, A.R. Piovesan, C.R. Carlini, R. Ligabue-Braun
Ureases: historical aspects, catalytic, and non-catalytic properties – a review
Journal of Advanced Research13 (2018), pp. 3-17
Kappaun et al., 2019
K. Kappaun, A.H.S. Martinelli, V. Broll, B. Zambelli, F.C. Lopes, R. Ligabue-Braun, et al.
Biostructural characterization of Soyuretox, a polypeptide derived from soybean (Glycine max) ubiquitous urease with potential use as a biopesticide
International Journal of Molecular Sciences, 20 (2019), p. 5401, 10.3390/ijms20215401
Karimi et al., 2002
M. Karimi, D. Inze, A. Depicker
GATEWAY vectors for Agrobacterium-mediated plant transformation
Trends in Plant Science, 7 (2002), pp. 193-195, 10.1016/S1360-1385(02)02251-3
Kuma et al., 2015
K.M. Kuma, V.S. Lopes-Caitar, C.C.T. Romero, S.M.H. Silva, M.K. Kuwahara, M.C.C.G. Carvalho, et al.
A high efficient protocol for soybean root transformation by Agrobacterium rhizogenes and most stable reference genes for RT-qPCR analysis
Plant Cell Reports (2015), pp. 1-14, 10.1007/s00299-015-1845-2
Libault et al., 2008
M.S. Libault, D.D. Thibivillier, O. Bilgin, M. Radwan, S.J. Benitez, S.G. Clough
Identification of four soybean reference genes for gene expression normalization
The Plant Genome, 1 (2008), pp. 44-54, 10.3835/plantgenome2008.02.0091
Li et al., 2019
B. Li, Y. Liu, X.-Y. Cui, J.-D. Fu, Y.-B. Zhou, W.-J. Zheng, et al.
Genome-Wide characterization and expression analysis of soybean TGA transcription factors identified a novel TGA gene involved in drought and salt tolerance
Frontiers in Plant Science, 10 (2019), p. 549, 10.3389/fpls.2019.00549
Li et al., 2018
M. Li, Z. Hu, Q.-Y. Jiang, X.-J. Sun, Y. Guo, J.-C. Qi, et al.
GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean
Journal of Integrative Agriculture, 17 (2018), pp. 530-538, 10.1016/S2095-3119(17)61721-0
Li et al., 2008
X.-Q. Li, A. Tan, M. Voegtline, S. Bekele, C.-S. Chen, R.V. Aroian
Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode
Biological Control : Theory and Applications in Pest Management, 47 (2008), pp. 97-102, 10.1016/j.biocontrol.2008.06.007
Li et al., 2007
X.Q. Li, J.Z. Wei, A. Tan, R.V. Aroian
Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein
Plant Biotechnology Journal, 5 (2007), pp. 455-464, 10.1111/j.1467-7652.2007.00257.x
Lin et al., 2013
J.Y. Lin, M. Mazarei, N. Zhao, J.W.J. Zhu, X.F. Zhuang, W.S. Liu, et al.
Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode
Plant Biotechnology Journal, 11 (2013), pp. 1135-1145, 10.1111/pbi.12108
Liu et al., 2012
S. Liu, P.K. Kandoth, S.D. Warren, G. Yeckel, R. Heinz, J. Alden, et al.
A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens
Nature, 492 (2012), pp. 256-260, 10.1038/nature11651
Livak and Schmittgen, 2001
K.J. Livak, T.D. Schmittgen
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))
Method Methods, 25 (2001), pp. 402-408, 10.1006/meth.2001.1262
Lund et al., 2018
M.E. Lund, S. Mourtzinis, S.P. Conley, J. Ané
Soybean cyst nematode control with Pasteuria nishizawae under different management practices
Agronomy Journal, 110 (2018), pp. 2534-2540, 10.2134/agronj2018.05.031
Martinelli et al., 2014
A.H.S. Martinelli, K. Kappaun, R. Ligabue-Braun, M.S. Defferrari, A.R. Piovesan, F. Stanisçuaski, et al.
Structure-function studies on Jaburetox, a recombinant insecticidal and antifungal peptide derived from jack bean (Canavalia ensiformis) urease
Biochim Biophys Acta - General Subjects, 1840 (2014), pp. 935-944, 10.1016/j.bbagen.2013.11.010
Matthews et al., 2014
B.F. Matthews, H. Beard, E. Brewer, S. Kabir, M.H. MacDonald, R.M. Youssef
Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots
BMC Plant Biology, 14 (2014), pp. 2-19, 10.1186/1471-2229-14-96
Moens et al., 2010
M. Moens, R.N. Perry, J.L. Star
Meloidogyne species – A diverse group of novel and important plant parasites
M. Moens, R.N. Perry, J.L. Star (Eds.), Root-knot nematodes., CABI International, Wallingford (2010), pp. 1-13
Morriss et al., 2017
S.C. Morriss, M.E. Studham, G.L. Tylka, G.C. MacIntosh
Validation of a hairy roots system to study soybean-soybean aphid interactions
PloS One, 12 (3) (2017), Article e0174914, 10.1371/journal.pone.0174914
Mulinari et al., 2007
F. Mulinari, F. Stanisçuaski, L.R. Bertholdo-Vargas, M. Postal, O.B. Oliveira-Neto, D.J. Ridgen, et al.
Jaburetox-2Ec, an insecticidal peptide derived from an isoform of urease from the Canavalia ensiformis plant
Peptides, 28 (2007), pp. 2042-2050, 10.1016/j.peptides.2007.08.009
Mulinari et al., 2011
F. Mulinari, A.B. Becker-Ritt, D.R. Demartini, R. Ligabue-Braun, F. Stanisçuaski, H. Verli, et al.
Characterization of JBURE-IIb isoform of Canavalia ensiformis (L) DC urease
Biochimica et Biophysica Acta Proteins and Proteomics, 1814 (2011), pp. 1758-1768
Nicol et al., 2011
J.M. Nicol, S.J. Turner, D.L. Coyne, L. Den Nijs, S. Hockland, Z.T. Maafi
Current nematode threats to world agriculture
J.T. Jones, G. Gheysen, C. Fenoll (Eds.), Genomics and molecular genetics of Plant–Nematode interactions, Heidelberg, Springer (2011), pp. 21-44
Postal et al., 2012
M. Postal, A.H.S. Martinelli, A.B. Becker-Ritt, R. Ligabue-Braun, D.R. Demartini, S.F.F. Ribeiro, et al.
Antifungal properties of Canavalia ensiformis urease and derived peptides
Peptides, 38 (2012), pp. 22-32, 10.1016/j.peptides.2012.08.010
Stanisçuaski and Carlini, 2012
F. Stanisçuaski, C.R. Carlini
Plant ureases and related peptides: understanding their entomotoxic properties
Toxins, 4 (2012), pp. 55-67, 10.3390/toxins4020055
Wang, Cheng et al., 2018
H.-L. Wang, X. Cheng, D. Shan-Wen, D.-W. Wang, C. Chen, C.-L. Xu, et al.
Molecular identification and functional characterization of the cathepsin B gene (Ab-cb-1) in the plant parasitic nematode Aphelenchoides besseyi
PloS One, 13 (6) (2018), Article e0199935
Wang, Chen et al., 2018
L.-S. Wang, Q.-S. Chen, D.-W. Xin, Z.-M. Qi, C. Zhang, S.-N. Li, et al.
Overexpression of GmBIN2, a soybean glycogen synthase kinase 3 gene, enhances tolerance to salt and drought in transgenic Arabidopsis and soybean hairy roots
Journal of Integrative Agriculture, 17 (2018), pp. 1959-1971, 10.1016/S2095-3119(17)61863-X
Weber and Bodanese-Zanettini, 2011
R.L.M. Weber, M.H. Bodanese-Zanettini
Induction of transgenic hairy roots in soybean genotypes by Agrobacterium rhizogenes-mediated transformation
Pesq Agropec Bras Brasília, 46 (2011), pp. 1070-1075, 10.1590/S0100-204X2011000900014
Wiebke-Strohm et al., 2016
B. Wiebke-Strohm, R. Ligabue-Braun, C. Rechenmacher, L. Abruzzi de Oliveira-Busatto, C.R. Carlini, M.H. Bodanese-Znettini
Structural and transcriptional characterization of a novel member of the soybean urease gene Family
Plant Physiology and Biochemistry : PPB, 101 (2016), pp. 96-104, 10.1016/j
Wilcken et al., 2010
S.R.S. Wilcken, J.M.O. Rosa, A.R.O. Higuti, M.J.M. Garcia, A.I.I. Cardoso
Reprodução de Meloidogyne spp. Em porta-enxertos e híbridos de pepino
Horticultura Brasileira, 28 (2010), pp. 120-123, 10.1590/S0102-05362010000100023
Witte, 2011
C.P. Witte
Urea metabolism in plants
Plant Science: an International Journal of Experimental Plant Biology, 180 (2011), pp. e431-e438
Youssef, Margaret et al., 2013
R.M. Youssef, H.M. Margaret, P.B. Eric, R.B. Gary, K.-H. Kim, B.F. Matthews
Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes
BMC Plant Biology, 13 (2013), pp. 2-11, 10.1186/1471-2229-13-67
Youssef, Kim et al., 2013
R.M. Youssef, K.-H. Kim, S.A. Haroon, B.F. Matthews
Post-transcriptional gene silencing of the gene encoding aldolase from soybean cyst nematode by transformed soybean roots
Experimental Parasitology, 134 (2013), pp. 266-274, 10.1016/j.exppara.2013.03.009