Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2019.12.001
Biotechnology Research and Innovation Journal
Plant Biotechnology Research article

Abiotic stress and self-destruction: ZmATG8 and ZmATG12 gene transcription and osmotic stress responses in maize

Luis Herminio Chairez Tejeda, Vívian Ebeling Viana, Latóia Eduarda Maltzahn, Carlos Busanello, Lilian Moreira Barros, Luciano Carlos da Maia, Antonio Costa de Oliveira, Camila Pegoraro

Downloads: 0
Views: 308

Abstract

Water deficit is one of the most important stresses affecting the maize crop. Whilst the development of osmotic stress tolerant maize (Zea mays L.) genotypes is an effective approach for reducing yield losses, understanding of the basic mechanisms of response and tolerance is limited. Under normal conditions, autophagy works at baseline levels to maintain cellular homeostasis. However, under abiotic stress conditions, this process intensifies to remove damaged or unwanted cytoplasmic materials or to recycle materials to provide anabolic substrates and metabolites to cells. This process is mediated by ATG genes (AuTophaGy-related genes). Autophagosome expansion and maturation is mediated by ATG8 and ATG12 ubiquitin-like conjugation systems. In this sense, the aim of this study was to characterize the regulation and transcriptional profile of the ZmATG8 gene and isoforms, together with the ZmATG12 gene, in maize landrace seedlings under osmotic stress conditions. A difference in transcript profile was observed between two studied landraces, with higher transcript accumulation in landrace Argentino Amarelo, which was more affected by osmotic stress. Under the stress conditions, all ZmATG genes studied showed an increase in transcript accumulation in shoot tissues in this landrace. In contrast, for landrace Taquarão a reduction in gene expression was detected, with the exception of ZmATG8b. For root tissues under stress, landrace Argentino Amarelo showed an increase in transcript accumulation for the ZmATG genes, with the exception of ZmATG8b, whilst for landrace Taquarão an increase in expression of ZmATG8e and ZmATG12 was observed, with a reduced expression of ZmATG8c. The ZmATG genes presented cis-regulatory elements involved in osmotic stress response via abscisic acid (ABA)-dependent and ABA-independent signaling. As such, it is suggested that the known transcription factors involved in the osmotic stress signaling response may act in the regulation of ZmATG genes. This work provides evidence of autophagy transcriptional signaling in response to osmotic stress in maize.

Keywords

Autophagy,  Gene expression,  Drought,  CREs,  ABA

References

Avin-Wittenberg, 2019
T. Avin-Wittenberg
Autophagy and its role in plant abiotic stress management
Plant Cell & Environment, 42 (3) (2019), pp. 1045-1053, 10.1111/pce.13404

Bailey and Elkan, 1994
T.L. Bailey, C. Elkan
Fitting a mixture model by expectation maximization to discover motifs in biopolymers
Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, 2 (1994), pp. 28-36
https://www.ncbi.nlm.nih.gov/pubmed/7584402

Bassham, 2018
D.C. Bassham
Spheres of autophagy in maize
Nature Plants, 4 (2018), pp. 985-986, 10.1038/s41477-018-0313-8

Bustin et al., 2009
S.A. Bustin, V. Benes, J.A. Garson, J. Hellemans, J. Huggett, M. Kubista, et al.
The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments
Clinical Chemistry, 55 (4) (2009), pp. 611-622, 10.1373/clinchem.2008.112797

Chung et al., 2009
T. Chung, A. Suttangkakul, R.D. Vierstra
The ATG Autophagic Conjugation System in Maize: ATG Transcripts and Abundance of the ATG8-Lipid Adduct Are Regulated by Development and Nutrient Availability
Plant Physiology, 149 (2009), pp. 220-234, 10.1104/pp.108.126714

Cruz de Carvalho, 2008
M.H. Cruz de Carvalho
Drought stress and reactive oxygen species. Production, scavenging and signaling
Plant Signal Behavior, 3 (2008), pp. 156-165, 10.4161/psb.3.3.5536

Demsar et al., 2013
J. Demsar, T. Curk, A. Erjavec, C. Gorup, T. Hocevar, M. Milutinovic, et al.
Orange: Data mining toolbox in Python
Journal of Machine Learning Research, 14 (2013), pp. 2349-2353
http://www.jmlr.org/papers/v14/demsar13a.html

Fei et al., 2019
X. Fei, L. Hou, J. Shi, T. Yang, Y. Liu, A. Wei
Patterns of Drought Response of 38 WRKY Transcription Factors of Zanthoxylum bungeanum Maxim
International Journal of Molecular Sciences, 20 (1) (2019), p. 68, 10.3390/ijms20010068

Han et al., 2011
S. Han, B. Yu, Y. Wang, Y. Liu
Role of plant autophagy in stress response
Protein & Cell, 2 (2011), pp. 784-791, 10.1007/s13238-011-1104-4

Higo et al., 1999
K. Higo, Y. Ugawa, M. Iwamoto, T. Korenaga
Plant cis-acting regulatory DNA elements (PLACE) database: 1999
Nucleic Acids Research, 27 (1999), pp. 297-300, 10.1093/nar/27.1.297

Kuzuoglu-Ozturk et al., 2012
D. Kuzuoglu-Ozturk, O.C. Yalcinkaya, B.A. Akpinar, G. Mitou, G. Korkmaz, D. Gozuacik, et al.
Autophagy-related gene, TdAtg8, in wild emmer wheat plays a role in drought and osmotic stress response
Planta, 236 (2012), pp. 1081-1092, 10.1007/s00425-012-1657-3

Li et al., 2015
F. Li, T. Chung, J.G. Pennington, M.L. Federico, H.F. Kaeppler, S.M. Kaeppler, et al.
Autophagic recycling plays a central role in maize nitrogen remobilization
The Plant Cell, 27 (2015), pp. 1389-1408, 10.1105/tpc.15.00158

Liu et al., 2009
Y. Liu, Y. Xiong, D.C. Bassham
Autophagy is required for tolerance of drought and salt stress in plants
Autophagy, 5 (2009), pp. 954-963, 10.4161/auto.5.7.9290

Livak and Schmittgen, 2001
K.J. Livak, T.D. Schmittgen
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method
Methods, 25 (4) (2001), pp. 402-408, 10.1006/meth.2001.1262

Marshall and Vierstra, 2018
R.S. Marshall, R.D. Vierstra
Autophagy: The master of bulk and selective recycling
Annual Review of Plant Biology, 69 (2018), pp. 22.1-22.36, 10.1146/annurev-arplant-042817-040606

McAdam et al., 2016
S.A. McAdam, M. Manzi, J.J. Ross, T.J. Brodribb, A. Gómez-Cadenas
Uprooting an abscisic acid paradigm: Shoots are the primary source
Plant Signaling & Behavior, 11 (6) (2016), p. e1169359, 10.1080/15592324.2016.1169359

Nakashima et al., 2014
K. Nakashima, K. Yamaguchi-Shinozaki, K. Shinozaki
The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat
Frontiers in Plant Science, 5 (2014), p. 170, 10.3389/fpls.2014.00170

Saeed et al., 2003
A.I. Saeed, V. Sharov, J. White, J. Li, W. Liang, N. Bhagabati, et al.
TM4: A free, open-source system for microarray data management and analysis
BioTechniques, 34 (2003), pp. 374-378, 10.2144/03342mt01

Signorelli et al., 2019
S. Signorelli, L.P. Tarkowski, W.V. den Ende, D.C. Bassham
Linking autophagy to Abiotic and biotic stress responses
Trends in Plant Science, 24 (2019), pp. 413-430, 10.1016/j.tplants.2019.02.001

Singh and Laxmi, 2015
D. Singh, A. Laxmi
Transcriptional regulation of drought response: A tortuous network of transcriptional factors
Frontiers in Plant Science, 6 (2015), p. 895, 10.3389/fpls.2015.00895

Su et al., 2019
Y. Su, F. Wu, Z. Ao, S. Jin, F. Qin, B. Liu, et al.
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar
Plant Methods, 15 (2019), p. 11, 10.1186/s13007-019-0396-x

Sun et al., 2018
X. Sun, P. Wang, X. Jia, L. Huo, R. Che, F. Ma
Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple
Plant Biotechnology Journal, 16 (2018), pp. 545-557, 10.1111/pbi.12794

Tang and Bassham, 2018
J. Tang, D.C. Bassham
Autophagy in crop plants: what’s new beyond Arabidopsis?
Open Biology, 8 (2018), p. 180162, 10.1098/rsob.180162

Üstün et al., 2017
S. Üstün, A. Hafrén, D. Hofius
Autophagy as a mediator of life and death in plants
Current Opinion in Plant Biology, 40 (2017), pp. 122-130, 10.1016/j.pbi.2017.08.011

Wang, Sun et al., 2017
P. Wang, X. Sun, X. Jia, F. Ma
Apple autophagy-related protein MdATG3s afford tolerance to multiple abiotic stresses
Plant Science, 256 (2017), pp. 53-64, 10.1016/j.plantsci.2016.12.003

Wang, Xu et al., 2017
W. Wang, M. Xu, G. Wang, G. Galili
Autophagy: An important biological process that protects plants from stressful environments
Frontiers in Plant Science, 7 (2017), p. 2030, 10.3389/fpls.2016.02030

Williams et al., 2015
B. Williams, I. Njaci, L. Moghaddam, H. Long, M.B. Dickman, X. Zhang, et al.
Trehalose Accumulation Triggers Autophagy during Plant Desiccation
PLoS Genetics, 11 (2015), p. e1005705, 10.1371/journal.pgen.1005705

Wittkopp and Kalay, 2012
P.J. Wittkopp, G. Kalay
Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence
Nature Reviews Genetics, 13 (2012), pp. 59-69
https://www.nature.com/articles/nrg3095

Yang et al., 2013
Z-B. Yang, I.M. Rao, W.J. Horst
Interaction of aluminium and drought stress on root growth and crop yield on acid soils
Plant and Soil, 372 (2013), pp. 3-25, 10.1007/s11104-012-1580-1

Yang et al., 2019
M. Yang, F. Bu, W. Huang, L. Chen
Multiple regulatory levels shape autophagy activity in plants
Frontiers in Plant Science, 10 (2019), p. 532, 10.3389/fpls.2019.00532

Zhang et al., 2017
X. Zhang, X. Liu, D. Zhang, H. Tang, B. Sun, C. Li, et al.
Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance
PLoS One, 12 (2017), p. e0179477, 10.1371/journal.pone.0179477

Zhang et al., 2018
X. Zhang, L. Lei, J. Lai, H. Zhao, W. Song
Effects of drought stress and water recovery on physiological responses and gene expression in maize seedlings
BMC Plant Biology, 18 (2018), p. 68, 10.1186/s12870-018-1281-x

Zhou et al., 2013
J. Zhou, J. Wang, Y. Cheng, Y.J. Chi, B.F. Fan, J.Q. Yu, et al.
Correction: NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses
PLoS Genetics, 9 (2013), p. e1004477, 10.1371/journal.pgen.1004477

Zhu et al., 2018
T. Zhu, L. Zou, Y. Li, X. Yao, F. Xu, X. Deng, et al.
Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum
Plant Biotechnology Journal, 16 (2018), pp. 2063-2076, 10.1111/pbi.12939
 

608af804a9539579e40b91a4 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections