Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2019.08.002
Biotechnology Research and Innovation Journal
Medical Biotechnology Research article

Transcriptome analysis and gene networks in a rare pediatric tumor

Michel L. Leite , Elio F. Vanin , Stephen Iannaccone, Nicolau B. da Cunha, Sérgio de Alencar, Fabricio F. Costa

Downloads: 0
Views: 263

Abstract

Ependymoma, a rare pediatric tumor originating from ependymal cells located in the lining of ventricular surfaces in the brain, presents great challenges in treatment despite advances in neurosurgical techniques. In order to identify new molecular biomarkers that could improve clinical management and outcomes, we have used RNA-seq to profile the Whole Transcriptome of three ependymoma samples and one normal control brain tissue, producing a total of 2.5 Gigabases of sequencing data. Different protein-coding gene databases were interrogated for known annotated genes to calculate RPKM and Fold Changes (FGs) for each clustered gene. Using this approach, we were able to identify Differentially Expressed Genes (DEGs) in ependymomas. KEGG pathways and Gene Ontology (GO) categories enriched in the DEGs were analyzed using Enrichr, and protein interaction networks were then built using MetaCore™. Thirty differentially expressed protein-coding genes associated with neurogenesis were identified by TaqMan Real-Time PCR, 17 of these showing statistically significant differential expression. Based on these results, we have identified IGF-2 as highly over-expressed in ependymomas and that this is due to loss of DNA methylation in its promoter region. In conclusion, we believe that some of these genes, specially IGF-2, may be of clinical importance, opening new avenues for disease management and new therapies.

Keywords

Ependymomas,  Transcriptome analysis,  Expression,  Big data analytics,  Epigenetic regulation,  Potential biomarkers.

References

Baba et al., 2010
Y. Baba, K. Nosho, K. Shima, C. Huttenhower, N. Tanaka, A. Hazra, ..., S. Ogino
Hypomethylation of the IGF2 DMR in colorectal tumors, detected by bisulfite pyrosequencing, is associated with poor prognosis
Gastroenterology, 139 (6) (2010), pp. 1855-1864, 10.1053/j.gastro.2010.07.050

Bolger et al., 2014
A.M. Bolger, M. Lohse, B. Usadel
Trimmomatic: a flexible trimmer for Illumina sequence data
Bioinformatics, 30 (15) (2014), pp. 2114-2120, 10.1093/bioinformatics/btu170

Cage et al., 2013
T.A. Cage, A.J. Clark, D. Aranda, N. Gupta, P.P. Sun, A.T. Parsa, ..., K.I. Auguste
A systematic review of treatment outcomes in pediatric patients with intracranial ependymomas
Journal of Neurosurgery Pediatrics, 11 (6) (2013), pp. 673-681, 10.3171/2013.2.PEDS12345

Chen et al., 2014
Y.C. Chen, R.L. Huang, Y.K. Huang, Y.P. Liao, P.H. Su, H.C. Wang, ..., H.C. Lai
Methylomics analysis identifies epigenetically silenced genes and implies an activation of β-catenin signaling in cervical cancer
International Journal of Cancer, 135 (1) (2014), pp. 117-127, 10.1002/ijc.28658

Cheon et al., 2014
D.J. Cheon, Y. Tong, M.S. Sim, J. Dering, D. Berel, X. Cui, ..., S. Orsulic
A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer
Clinical Cancer Research, 20 (3) (2014), pp. 711-723, 10.1158/1078-0432.CCR-13-1256

Choi et al., 2015
J. Choi, B. Stradmann-Bellinghausen, N. Savaskan, A. Regnier-Vigouroux
Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages glutamatergic gene expressions
Cancer Biology & Therapy, 63 (August) (2015), p. E466, 10.1080/15384047.2015.1056406

Corcoran et al., 2008
R.B. Corcoran, T.B. Raveh, M.T. Barakat, E.Y. Lee, M.P. Scott
Insulin-like growth factor 2 is required for progression to advanced medulloblastoma in patched1 heterozygous mice
Cancer Research, 68 (21) (2008), pp. 8788-8795, 10.1158/0008-5472.CAN-08-2135

Costa et al., 2011
F.F. Costa, J.M. Bischof, E.F. Vanin, R.R. Lulla, M. Wang, S.T. Sredni, ..., M.B. Soares
Identification of microRNAs as potential prognostic markers in ependymoma
PloS One, 6 (10) (2011), 10.1371/journal.pone.0025114

Damaschke et al., 2017
N.A. Damaschke, B. Yang, S. Bhusari, M. Avilla, W. Zhong, M.L. Blute, ..., D.F. Jarrard
Loss of Igf2 gene imprinting in murine prostate promotes widespread neoplastic growth
Cancer Research, 77 (19) (2017), pp. 5236-5247, 10.1158/0008-5472.CAN-16-3089

de Bont et al., 2008
J.M. de Bont, R.J. Packer, E.M. Michiels, M.L.d. Boer, R. Pieters
Biological background of pediatric medulloblastoma and ependymoma: A review from a translational research perspective
Neuro-Oncology, 10 (6) (2008), pp. 1040-1060, 10.1215/15228517-2008-059

Endo et al., 2015
M. Endo, M. Nishita, M. Fujii, Y. Minami
Insight into the role of Wnt5a-induced signaling in Normal and cancer cells
International review of cell and molecular biology, Vol. 314, Elsevier Ltd. (2015), 10.1016/bs.ircmb.2014.10.003

Griffiths-Jones, 2004
S. Griffiths-Jones
The microRNA registry
Nucleic Acids Research, 32 (90001) (2004), pp. 109D-111D, 10.1093/nar/gkh023

Güllü et al., 2015
G. Güllü, I. Peker, A. Haholu, F. Eren, Z. Küçükodaci, B. Güleç, ..., M. Akkiprik
Clinical significance of miR-140-5p and miR-193b expression in patients with breast cancer and relationship to IGFBP5
Sexual Development : Genetics, Molecular Biology, Evolution, Endocrinology, Embryology, and Pathology of Sex Determination and Differentiation, 29 (2015), pp. 21-29

Guo et al., 2013
J. Guo, L. Wu, L. Wang, S. Shangguan, S. Chang, Z. Wang, ..., T. Zhang
Altered methylation of IGF2 DMR0 is associated with neural tube defects
Molecular and Cellular Biochemistry, 380 (1–2) (2013), pp. 33-42, 10.1007/s11010-013-1655-1

He et al., 2008
X. He, S. Chang, J. Zhang, Q. Zhao, H. Xiang, K. Kusonmano, ..., J. Wang
MethyCancer: The database of human DNA methylation and cancer
Nucleic Acids Research, 36 (SUPPL. 1) (2008), pp. 836-841, 10.1093/nar/gkm730

Jiménez-Jiménez et al., 2014
F.J. Jiménez-Jiménez, H. Alonso-Navarro, C. Martínez, M. Zurdo, L. Turpín-Fenoll, J. Millán-Pascual, ..., J.A.G. Agúndez
The solute carrier family 1 (glial high affinity glutamate transporter), member 2 gene, SLC1A2, rs3794087 variant and assessment risk for restless legs syndrome
Sleep Medicine, 15 (2) (2014), pp. 266-268, 10.1016/j.sleep.2013.08.800

Kanai et al., 2013
Y. Kanai, B. Clémençon, A. Simonin, M. Leuenberger, M. Lochner, M. Weisstanner, ..., M.A. Hediger
The SLC1 high-affinity glutamate and neutral amino acid transporter family
Molecular Aspects of Medicine, 34 (2–3) (2013), pp. 108-120, 10.1016/j.mam.2013.01.001

Kanai and Hediger, 2004
Y. Kanai, M.A. Hediger
The glutamate/neutral amino acid transporter family SLC1: Molecular, physiological and pharmacological aspects
Pflugers Archiv European Journal of Physiology, 447 (5) (2004), pp. 469-479, 10.1007/s00424-003-1146-4

Kent et al., 2002
W.J. Kent, C.W. Sugnet, T.S. Furey, K.M. Roskin
The human genome browser at UCSC
Journal of Medicinal Chemistry, 19 (10) (2002), pp. 1228-1231, 10.1101/gr.229102

Kessler et al., 2016
S. Kessler, J. Haybaeck, A. Kiemer
Insulin-Like growth factor 2 - the Oncogene and its accomplices
Current Pharmaceutical Design, 22 (39) (2016), pp. 5948-5961, 10.2174/1381612822666160713100235

Khatua et al., 2017
S. Khatua, V. Ramaswamy, E. Bouffet
Current therapy and the evolving molecular landscape of paediatric ependymoma
European Journal of Cancer, 70 (2017), pp. 34-41, 10.1016/j.ejca.2016.10.013

Kin et al., 2007
T. Kin, K. Yamada, G. Terai, H. Okida, Y. Yoshinari, Y. Ono, ..., K. Asai
fRNAdb: A platform for mining/annotating functional RNA candidates from non-coding RNA sequences
Nucleic Acids Research, 35 (SUPPL. 1) (2007), pp. 145-148, 10.1093/nar/gkl837

Kološa et al., 2015
K. Kološa, H. Motaln, C. Herold-Mende, M. Koršič, T.T. Lah
Paracrine effects of mesenchymal stem cells induce senescence and differentiation of glioblastoma stem-like cells
Cell Transplantation, 24 (4) (2015), pp. 631-644, 10.3727/096368915X687787

Korshunov et al., 2003
A. Korshunov, K. Neben, G. Wrobel, B. Tews, A. Benner, M. Hahn, ..., P. Lichter
Gene expression patterns in Ependymomas Correlate with tumor location, grade, and patient age
The American Journal of Pathology, 163 (5) (2003), pp. 1721-1727, 10.1016/S0002-9440(10)63530-4

Küffer et al., 2018
S. Küffer, T. Gutting, D. Belharazem, C. Sauer, M.S. Michel, A. Marx, ..., P. Ströbel
Insulin-like growth factor 2 expression in prostate cancer is regulated by promoter-specific methylation
Molecular Oncology, 12 (2) (2018), pp. 256-266, 10.1002/1878-0261.12164

Kuleshov et al., 2016
M.V. Kuleshov, M.R. Jones, A.D. Rouillard, N.F. Fernandez, Q. Duan, Z. Wang, ..., A. Ma’ayan
Enrichr: A comprehensive gene set enrichment analysis web server 2016 update
Nucleic Acids Research, 44 (W1) (2016), pp. W90-W97, 10.1093/nar/gkw377

Lee et al., 2016
C.H. Lee, C.K. Chung, C.H. Kim
Genetic differences on intracranial versus spinal cord ependymal tumors: A meta-analysis of genetic researches
European Spine Journal, 25 (12) (2016), pp. 3942-3951, 10.1007/s00586-016-4745-4

Lee et al., 2014
S. Lee, D.S. Yoon, S. Paik, K.-M. Lee, Y. Jang, J.W. Lee
microRNA-495 Inhibits Chondrogenic Differentiation in Human Mesenchymal Stem Cells by TargetingSox9
Stem Cells and Development, 23 (15) (2014), pp. 1798-1808, 10.1089/scd.2013.0609

Lin et al., 2014
L. Lin, Y. Liu, W. Zhao, B. Sun, Q. Chen
Wnt5A expression is associated with the tumor metastasis and clinical survival in cervical cancer
International Journal of Clinical and Experimental Pathology, 7 (9) (2014), pp. 6072-6078

Liu et al., 2010
Y. Liu, E.B. Carson-Walter, A. Cooper, B.N. Winans, M.D. Johnson, K.A. Walter
Vascular gene expression patterns are conserved in primary and metastatic brain tumors
Journal of Neuro-oncology, 99 (1) (2010), pp. 13-24, 10.1007/s11060-009-0105-0

Liu et al., 2014
Z. Liu, Y. Li, Y. Cui, C. Roberts, M. Lu, U. Wilhelmsson, ..., M. Chopp
Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke
Glia, 62 (12) (2014), pp. 2022-2033, 10.1002/glia.22723

Lourdusamy et al., 2017
A. Lourdusamy, L.Z. Luo, L.C. Storer, K.J. Cohen, L. Resar, R.G. Grundy
Transcriptomic analysis in pediatric spinal ependymoma reveals distinct molecular signatures
Oncotarget, 8 (70) (2017), pp. 115570-115581, 10.18632/oncotarget.23311

Lu et al., 2015
C. Lu, X. Wang, H. Zhu, J. Feng, S. Ni, J. Huang
Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer
Oncotarget, 6 (28) (2015), pp. 24912-24921, 10.18632/oncotarget.4701

Martinez-Quetglas et al., 2016
I. Martinez-Quetglas, R. Pinyol, D. Dauch, S. Torrecilla, V. Tovar, A. Moeini, ..., J.M. Llovet
IGF2 is up-regulated by epigenetic mechanisms in hepatocellular carcinomas and is an actionable oncogene product in experimental models
Gastroenterology, 151 (6) (2016), pp. 1192-1205, 10.1053/j.gastro.2016.09.001

Mendrzyk et al., 2006
F. Mendrzyk, A. Korshunov, A. Benner, G. Toedt, S. Pfister, B. Radlwimmer, ..., P. Lichter
Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma
Clinical Cancer Research, 12 (7 I) (2006), pp. 2070-2079, 10.1158/1078-0432.CCR-05-2363

Merchant et al., 2019
T.E. Merchant, A.E. Bendel, N.D. Sabin, P.C. Burger, D.W. Shaw, E. Chang, ..., V. Ramaswamy
Conformal radiation therapy for pediatric ependymoma, chemotherapy for incompletely resected ependymoma, and observation for completely resected, supratentorial ependymoma
Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 37 (12) (2019), pp. 974-983, 10.1200/JCO.18.01765

Miroglio et al., 2010
A. Miroglio, H. Jammes, J. Tost, L. Ponger, I.G. Gut, H.E. Abdalaoui, ..., L. Dandolo
Specific hypomethylated CpGs at the IGF2 locus act as an epigenetic biomarker for familial adenomatous polyposis colorectal cancer
Epigenomics, 2 (3) (2010), pp. 365-375, 10.2217/epi.10.24

Modena et al., 2012
P. Modena, F.R. Buttarelli, R. Miceli, E. Piccinin, C. Baldi, M. Antonelli, ..., M. Massimino
Predictors of outcome in an AIEOP series of childhood ependymomas: A multifactorial analysis
Neuro-Oncology, 14 (11) (2012), pp. 1346-1356, 10.1093/neuonc/nos245

Modena et al., 2006
P. Modena, E. Lualdi, F. Facchinetti, J. Veltman, J.F. Reid, S. Minardi, ..., G. Sozzi
Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics
Journal of Clinical Oncology, 24 (33) (2006), pp. 5223-5233, 10.1200/JCO.2006.06.3701

Monoranu et al., 2008
C.M. Monoranu, B. Huang, I.L. Zangen, S. Rutkowski, G.H. Vince, N.U. Gerber, ..., W. Roggendorf
Correlation between 6q25.3 deletion status and survival in pediatric intracranial ependymomas
Cancer Genetics and Cytogenetics, 182 (1) (2008), pp. 18-26, 10.1016/j.cancergencyto.2007.12.008

Murrell et al., 2008
A. Murrell, Y. Ito, G. Verde, J. Huddleston, K. Woodfine, M.C. Silengo, ..., A. Riccio
Distinct methylation changes at the IGF2-H19 locus in congenital growth disorders and cancer
PloS One, 3 (3) (2008), pp. 1-7, 10.1371/journal.pone.0001849

Neuzillet et al., 2017
Y. Neuzillet, E. Chapeaublanc, C. Krucker, L. De Koning, T. Lebret, F. Radvanyi, ..., I. Bernard-Pierrot
IGF1R activation and the in vitro antiproliferative efficacy of IGF1R inhibitor are inversely correlated with IGFBP5 expression in bladder cancer
BMC Cancer, 17 (1) (2017), pp. 1-12, 10.1186/s12885-017-3618-5

Niesen et al., 2013
C.E. Niesen, J. Xu, X. Fan, X. Li, C.J. Wheeler, A.N. Mamelak, ..., C. Wang
Transcriptomic Profiling of Human Peritumoral Neocortex Tissues Revealed Genes Possibly Involved in Tumor-Induced Epilepsy
PloS One, 8 (2) (2013), pp. 1-9, 10.1371/journal.pone.0056077

Niknami et al., 2017
Z. Niknami, A. Eslamifar, A. Emamirazavi, A. Ebrahimi, R. Shirkoohi
The association of vimentin and fibronectin gene expression with epithelial-mesenchymal transition and tumor malignancy in colorectal carcinoma
EXCLI Journal, 16 (2017), pp. 1009-1017, 10.17179/excli2017-481

O’Leary et al., 2016
N.A. O’Leary, M.W. Wright, J.R. Brister, S. Ciufo, D. Haddad, R. McVeigh, ..., K.D. Pruitt
Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation
Nucleic Acids Research, 44 (D1) (2016), pp. D733-D745, 10.1093/nar/gkv1189

Oliva et al., 2018
C.R. Oliva, B. Halloran, A.B. Hjelmeland, A. Vazquez, S.M. Bailey, J.N. Sarkaria, ..., C.E. Griguer
IGFBP6 controls the expansion of chemoresistant glioblastoma through paracrine IGF2/IGF-1R signaling
Cell Communication and Signaling, 16 (1) (2018), pp. 1-14, 10.1186/s12964-018-0273-7

Pidsley et al., 2012
R. Pidsley, E. Dempster, C. Troakes, S. Al-Sarraj, J. Mill
Imprinting control region on 11P15. 5 is associated with cerebellum weight, (February)
(2012), pp. 155-163

Polioudaki et al., 2015
H. Polioudaki, S. Agelaki, R. Chiotaki, E. Politaki, D. Mavroudis, A. Matikas, ..., P.A. Theodoropoulos
Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer
BMC Cancer, 15 (2015), p. 399, 10.1186/s12885-015-1386-7

Poppleton and Gilbertson, 2007
H. Poppleton, R.J. Gilbertson
Stem cells of ependymoma
British Journal of Cancer, 96 (1) (2007), pp. 6-10, 10.1038/sj.bjc.6603519

Rand et al., 2008
V. Rand, E. Prebble, L. Ridley, M. Howard, W. Wei, M.A. Brundler, ..., R.G. Grundy
Investigation of chromosome 1q reveals differential expression of members of the S100 family in clinical subgroups of intracranial paediatric ependymoma
British Journal of Cancer, 99 (7) (2008), pp. 1136-1143, 10.1038/sj.bjc.6604651

Reni et al., 2007
M. Reni, G. Gatta, E. Mazza, C. Vecht
Ependymoma
Critical Reviews in Oncology/hematology, 63 (1) (2007), pp. 81-89, 10.1016/j.critrevonc.2007.03.004

Robinson et al., 2009
M.D. Robinson, D.J. McCarthy, G.K. Smyth
edgeR: A Bioconductor package for differential expression analysis of digital gene expression data
Bioinformatics, 26 (1) (2009), pp. 139-140, 10.1093/bioinformatics/btp616

Rosner et al., 2017
M. Rosner, H.T.T. Pham, R. Moriggl, M. Hengstschläger
Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1
Nature Communications, 8 (1) (2017), 10.1038/s41467-017-00661-x

Russell et al., 2017
M.R. Russell, C. Graham, A. D’Amato, A. Gentry-Maharaj, A. Ryan, J.K. Kalsi, ..., R.L.J. Graham
A combined biomarker panel shows improved sensitivity for the early detection of ovarian cancer allowing the identification of the most aggressive type II tumours
British Journal of Cancer, 117 (5) (2017), pp. 666-674, 10.1038/bjc.2017.199

Sandberg Nordqvist and Mathiesen, 2002
A.C. Sandberg Nordqvist, T. Mathiesen
Expression of IGF-II, IGFBP-2, -5, and -6 in meningiomas with different brain invasiveness
Journal of Neuro-oncology, 57 (1) (2002), pp. 19-26, 10.1023/A:1015765613544

Satelli et al., 2017
A. Satelli, I. Batth, Z. Brownlee, A. Mitra, S. Zhou, H. Noh, ..., S. Li
EMT circulating tumor cells detected by cell-surface vimentin are associated with prostate cancer progression
Oncotarget, 8 (30) (2017), pp. 49329-49337, 10.18632/oncotarget.17632

Sayegh et al., 2014
E.T. Sayegh, D. Aranda, J.M. Kim, T. Oh, A.T. Parsa, M.C. Oh
Prognosis by tumor location in adults with intracranial ependymomas
Journal of Clinical Neuroscience, 21 (12) (2014), pp. 2096-2101, 10.1016/j.jocn.2014.05.011

Shago et al., 2008
M. Shago, E. Bouffet, V. Wong, J. Rutka, N. Alon, C. Hawkins, ..., D. Malkin
Telomere maintenance and dysfunction predict recurrence in paediatric ependymoma
British Journal of Cancer, 99 (7) (2008), pp. 1129-1135, 10.1038/sj.bjc.6604652

Shojima et al., 2015
K. Shojima, A. Sato, H. Hanaki, I. Tsujimoto, M. Nakamura, K. Hattori, ..., A. Kikuchi
Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively
Scientific Reports, 5 (2015), p. 8042, 10.1038/srep08042

Tabano et al., 2010
S. Tabano, P. Colapietro, I. Cetin, F.R. Grati, S. Zanutto, C. Mandò, ..., M. Miozzo
Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction
Epigenetics, 5 (4) (2010), pp. 313-324, 10.4161/epi.5.4.11637

Taylor et al., 2005
M.D. Taylor, H. Poppleton, C. Fuller, X. Su, Y. Liu, P. Jensen, ..., R.J. Gilbertson
Radial glia cells are candidate stem cells of ependymoma
Cancer Cell, 8 (4) (2005), pp. 323-335, 10.1016/j.ccr.2005.09.001

Unger et al., 2017
C. Unger, N. Kramer, D. Unterleuthner, M. Scherzer, A. Burian, A. Rudisch, ..., H. Dolznig
Stromal-derived IGF2 promotes colon cancer progression via paracrine and autocrine mechanisms
Oncogene (March) (2017), pp. 1-15, 10.1038/onc.2017.116

Wang et al., 2006
H. Wang, H. Wang, W. Zhang, G.N. Fuller
Overexpression of IGFBP5, but not IGFBP3, correlates with the histologic grade of human diffuse glioma: A tissue microarray and immunohistochemical study
Technology in Cancer Research & Treatment, 5 (3) (2006), pp. 195-199, 10.1177/153303460600500303

Woodfine et al., 2011
K. Woodfine, J.E. Huddleston, A. Murrell
Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue
Epigenetics & Chromatin, 4 (1) (2011), p. 1, 10.1186/1756-8935-4-1

Xie et al., 2009
H. Xie, M. Wang, M. Bonaldo, F. de, C. Smith, V. Rajaram, S. Goldman, ..., M.B. Soares
Epigemic analysis of Alu repeats in human ependymomas
Nucleic Acids Research, 37 (13) (2009), pp. 4331-4340, 10.1093/nar/gkp393

Ye et al., 2015
X. Ye, A. Kohtz, G. Pollonini, A. Riccio, C.M. Alberini
Insulin like growth factor 2 expression in the rat brain both in basal condition and following learning predominantly derives from the maternal allele
PloS One, 10 (10) (2015), pp. 1-15, 10.1371/journal.pone.0141078

Yung et al., 1985
W.K. Yung, M. Luna, A. Borit
Vimentin and glial fibrillary acidic protein in human brain tumors
Journal of Neuro-oncology, 3 (0167-594X (Print)) (1985), pp. 35-38

Zhou and Danbolt, 2013
Y. Zhou, N.C. Danbolt
GABA and glutamate transporters in brain
Frontiers in Endocrinology, 4 (November) (2013), pp. 1-14, 10.3389/fendo.2013.00165
 

608abfc3a95395460b21a0e2 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections