Transgenic technology: the strategy for the control and prevention of bovine staphylococcal mastitis?
Clarissa Varajão Cardoso, Eunice Ventura Barbosa, Maíra Halfen Teixeira Liberal, Evelize Folly das Chagas
Abstract
Mastitis is the disease that most affects dairy cattle with losses above US$ 2 billion per year in the United States alone. It frequently presents bacterial origin, with Staphylococcus aureus (S. aureus) standing out as a pathogen challenging to eliminate because of the high resistance to antimicrobials. Antimicrobial therapy often demonstrates failure, with low cure rates, bacterial resistance and bacterial seclusion in the outbreaks of infection as well as leaving its residues in soil, water, and even animal products. Advances in research may provide benefits to animal welfare by increasing cow's resistance to mastitis by inducing mammary gland cells to secrete an antibacterial protein called lysostaphin, which is a potent staphylocolytic enzyme. Over the years, research groups have developed projects aimed at developing particular immunomodulators, as well as transgenic lysostaphin-secreting cows. The focus of this review is to compile studies on the use of lysostaphin and in the therapeutic and prophylactic control of staphylococcal mastitis using genetic engineering and biotechnology as an alternative tool. In the transgenic models of mice and cows, lysostaphin was able to prevent staphylococcal mastitis presenting little effect on the integrity of the mammary gland, animal physiology and milk produced. Further studies should be performed not only related to cases of prevention of staphylococcal mastitis, but also in the treatment and maintenance of the long-term action of lysostaphin.
Keywords
References
Aarestrup et al., 2001
F.M. Aarestrup, A.M. Seyfarth, H. Emborg, K. Pedersen, R.S. Hendriksen, F. Bager
Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal Enterococci from food animals in Denmark
Antimicrobial Agents and Chemotherapy, 45 (2001), pp. 2054-2059
Amin et al., 2011
A.S. Amin, R.H.H. Amouda, A.A.A. Abdel-All
PCR assay for detecting major pathogens of mastitis in milk samples
World Journal of Dairy & Food Sciences, 6 (2011), pp. 199-206
Barkema et al., 2006
H.W. Barkema, Y.H. Schukken, R.N. Zadoks
Invited review: The role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis
Journal of Dairy Science, 89 (2006), pp. 1877-1895
Beloti et al., 2015
V. Beloti, L.A. Nero, M.A.S. Moreira, L.C.C. Da Silva, R. Fagnani, K.T.M.G. Reis
Leite: Obtenção, inspeção e qualidade
(1°Ed)
Editora Planta, Londrina (2015), p. 417
Blazanovic et al., 2015
K. Blazanovic, H. Zhao, Y. Choi, W. Li, R.S. Salvat, D.C. Osipovitch, et al.
Structure-based redesign of lysostaphin yields potent antistaphylococcal enzymes that evade immune cell surveillance
Molecular Therapy Methods & Clinical Development, 2 (2015), pp. 1-10
Bramley and Foster, 1990
A.J. Bramley, R. Foster
Effects of lysostaphin on Staphylococcus aureus infections of the mouse mammary gland
Research in Veterinary Science, 49 (1990), pp. 120-121
Browder et al., 1965
H.P. Browder, W.A. Zygmunt, J.R. Young, P.A. Travormina
Lysostaphin: Enzymatic mode of action
Biochemical and Biophysical Research Communications, 19 (1965), pp. 383-389
Capurro et al., 2010
A. Capurro, A. Aspán, E.H. Unnerstad, K.P. Waller, K. Artursson
Identification of potential sources of Staphylococcus aureus in herds with mastitis problems
Journal of Dairy Science, 93 (2010), pp. 180-191
Cavadini et al., 1998
C. Cavadini, C. Hertel, W.P. Hammes
Application of lysostaphin-producing lactobacilli to control staphylococcal food poisoning in meat products
Journal of Food Protection, 61 (1998), pp. 419-424
Dajcs et al., 2000
J. Dajcs, E. Hume, J. Moreau, A. Caballero, B. Cannon, R. O’callaghan
Lysostaphin treatment of methicillin-resistant Staphylococcus aureus keratitis in rabbits
Investigative Ophthalmology & Visual Science, 41 (2000), pp. 1432-1437
De Paula et al., 2017
R.S. De Paula, K.J.G. Dos Santos, A.P. Pales, C.S. Castro, J.C.S. Lopes, J.F.D. Santos
Animais transgênicos: Conceito
Metodologias e Aplicações. Redvet., 18 (9) (2017), pp. 1-16
Dixon et al., 1968
R.E. Dixon, J.S. Goodman, M.G. Koenig
Lisostaphin: An enzymatic approach to staphylococcal disease. 3. Combined lysostaphin-methicillin therapy of established staphylococcal abscesses in mice
The Yale Journal of Biology and Medicine, 41 (1) (1968), pp. 62-68
Donovan, 2013
Donovan, D. (2013). Fusion of peptidoglycan hydrolase enzymes to a protein transduction domain allows eradication of both extracellular and intracellular gram positive pathogens. United States Patent US8383102 B2.
Ebert et al., 1991
K.M. Ebert, J.P. Selgrath, P. Ditullio, J. Denman, T.E. Smith, M.A. Memon, et al.
Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: Generation of transgenic goats and analysis of expression
Bio/Technology, 9 (1991), pp. 835-838
Fox et al., 1991
L.K. Fox, M. Gershman, D. Hancock, C. Hutton
Fomites and reservoirs of Staphylococcus aureus causing intramammary infections as determined by phage typing: the effect of milking time hygiene practices
The Cornell Veterinarian, 81 (1991), pp. 183-193
Gaier et al., 1992
W. Gaier, R.F. Vogel, W.P. Hammes
Cloning and expression of the lysostaphin gene in Bacillus subtilis and Lactobacillus casei
Letters in Applied Microbiology, 14 (1992), pp. 72-76
Gordon et al., 1987
K. Gordon, E. Lee, J.A. Vitale, A.E. Smith, H. Westphal, L. Hennighusen
Production of human tissue plasminogen activator in transgenic mouse milk
Bio/technology, 5 (1987), pp. 1183-1187
Harmon, 1994
R.J. Harmon
Physiology of mastits and factors affecting somatic cell counts
Journal of Dairy Science, 77 (7) (1994), pp. 2103-2112
Harrison and Cropp, 1967
E.F. Harrison, C.B. Cropp
Therapeutic activity of lysostaphin in experimental staphylocooal infections
Canadian Journal of Microbiology, 13 (1967), pp. 93-97
Hillerton and Berry, 2005
J.E. Hillerton, E.A. Berry
Treating mastitis in the cow – A tradition or an archaism
Journal of Applied Microbiology, 98 (2005), pp. 1250-1255
Hoerning et al., 2016
K.J. Hoerning, D.M. Donovan, P. Pithua, F. Williams, J.R. Middleton
Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle
Journal of Dairy Science, 99 (2016), pp. 1-9
Jagielska et al., 2016
E. Jagielska, O. Chojnacka, I. Sabała
LytM fusion with SH3b-like domain expands its activity to physiological conditions
Microbial Drug Resistance (Larchmont, NY), 22 (2016), pp. 461-469
Kamaruzzaman et al., 2017
N.F. Kamaruzzaman, S.Q.Y. Chong, K.M. Edmondson-Brown
Bactericidal and anti-biofilm effects of polyhexamethylene biguanide in models of intracellular and biofilm of Staphylococcus aureus isolated from bovine mastitis
Frontiers in Microbiology, 8 (2017), p. 1518
Kerr et al., 2001
D.E. Kerr, K. Plaut, A.J. Bramley, C.M. Williamson, A. Lax, K. Moore, et al.
Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice
Nature Biotechnology, 19 (2001), pp. 66-70
Kokai-Kun et al., 2003
J.F. Kokai-Kun, S.M. Walsh, T. Chanturiya, J.J. Mond
Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model
Antimicrobial Agents and Chemotherapy, 47 (2003), pp. 1589-1597
Kolb, 2002
A.F. Kolb
Engineering immunity in the mammary gland
Journal of Mammary Gland Biology and Neoplasia, 7 (2) (2002), pp. 123-134
Krimpenfort et al., 1991
P. Krimpenfort, A. Rademakers, W. Eyestone, A. Van Der Schans, S. Van De Broek, P. Kooiman, et al.
Generation of transgenic dairy cattle using in vitro embryo production
Bio/Technology., 9 (1991), pp. 844-847
Kumar, 2008
J.K. Kumar
Lysostaphin: An antistaphylococcal agent
Applied Microbiology and Biotechnology, 80 (2008), pp. 555-561
Kumar et al., 2010
A. Kumar, A. Rahal, S.K. Dwivedi, M.K. Gupta
Bacterial Prevalence and Antibiotic Resistance Profile from Bovine Mastitis in Mathura, India
Egyptian Journal of Dairy Science, 38 (2010), pp. 31-34
Langlois et al., 1988
B.E. Langlois, R.J. Harmon, K. Akers
Use of lysostaphin and bacitracin susceptibility for routine presumptive identification of staphylococci of bovine origin
Journal of Food Protection, 51 (1988), pp. 24-28
Lund et al., 1996
T. Lund, F. Miglior, J.C.M. Dekkers, E.B. Burnside
Genetic relationship between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins
Livestock Production Science, 39 (1996), pp. 243-251
Metcalf and Deibel, 1969
R.H. Metcalf, R.H. Deibel
Staphylococcus aureus response to lysostaphin in some fermented foods
Applied Microbiology, 17 (63–) (1969), p. 67
Middleton and Fox, 2002
J.R. Middleton, L.K. Fox
Influence of Staphylococcus aureus strain on mammary quarter milk production
The Veterinary Record, 150 (2002), pp. 411-413
Mork et al., 2012
T. Mork, H.J. Jorgensen, M. Sunde, B. Kvitle, S. Sviland, S. Waage, et al.
Persistence of staphylococcal species and genotypes in the bovine udder
Veterinary Microbiology, 159 (2012), pp. 171-180
Oldham and Daley, 1991
E.R. Oldham, M.J. Daley
Lysostaphin: Use of a recombinant bactericidal enzyme as a mastitis therapeutic
Journal of Dairy Science, 74 (1991), pp. 4175-4182
Osipovitch and Griswold, 2015
D.C. Osipovitch, K.E. Griswold
Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent
FEMS Microbiology Letters, 362 (2015), pp. 1-7
Ote et al., 2011
I Ote, B Taminiau, J Duprez, I. Dizier, JG. Mainil
Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates with bovine mastitis
Veterinary Microbiology, 153 (2011), pp. 285-292
Piccinini et al., 2012
R. Piccinini, R. Tassi, V. Daprà, R. Pilla, J. Fenner, B. Carter, et al.
Study of Staphylococcus aureus collected at slaughter from dairy cows with chronic mastitis
The Journal of Dairy Research, 79 (2012), pp. 249-255
Pinkert, 2004
C.A. Pinkert
Engenharia genética em animais domésticos
B Hafez, E.S.E Hafez (Eds.), Reprodução animal, Manole, Barueri (2004), pp. 319-331
Quickel et al., 1971
K. Quickel Jr., R. Selden, J.R. Caldwell, N.F. Nora, W. Schaffner
Efficacy and safety of topical lysostaphin treatment of persistent nasal carriage of Staphylococcus aureus
Applied and Environmental Microbiology, 22 (1971), pp. 446-450
Rainard, 2005
P. Rainard
Tackling mastitis in dairy cows – Transgenic cows expressing an antibacterial endopeptidase in their mammary glands show enhanced resistance to mastitis
Nature Biotechnology, 23 (2005), pp. 430-432
Recsei et al., 1987
P.A. Recsei, A.D. Gruss, R.P. Novick
Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans
Proceedings of the National Academy of Sciences of the United States of America, 84 (1987), pp. 1127-1131
Reiter, 1978
B. Reiter
Review of the progress of dairy science: Antimicrobial systems in milk
The Journal of Dairy Research, 45 (1978), pp. 131-147
Roy and Keefe, 2012
J.P. Roy, G. Keefe
Systematic review: What is the best antibiotic treatment for Staphylococcus aureus intramammary infection of lactating cows in North America
Veterinary Clinics of North America: Food Animal Practice, 28 (2012), pp. 39-50
Saperstein et al., 1988
G. Saperstein, L. Hinckley, J. Post
Taking the team approach to solving staphylococcal mastitis infection
Veterinary Medicine, 83 (1988), pp. 939-947
Schindler and Schuhardt, 1964
C.A. Schindler, V.T. Schuhardt
Lysostaphin: A new bacteriolytic agent for the staphylococci
Proceedings of the National Academy of Sciences of the United States of America, 51 (1964), pp. 414-421
Schindler and Schuhardt, 1965
C.A. Schindler, V.T. Schuhardt
Purification and properties of lysostaphin – A lytic agent for Staphylococcus aureus
Biochimica et Biophysica Acta, 97 (1965), pp. 242-250
Schmelcher et al., 2012
M. Schmelcher, A.M. Powell, S.C. Becker, M.J. Camp, D.M. Donovan
Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands
Applied and Environmental Microbiology, 78 (2012), pp. 2297-2305
Schwendel et al., 2015
B.H. Schwendel, T.J. Wester, P.C.H. Morel, M.H. Tavendale, C. Deadman, N.M. Shadbolt, et al.
Organic and conventionally produced milk – An evaluation of factors influencing milk composition
Journal of Dairy Science, 98 (2015), pp. 721-746
Sears et al., 1988
PM Sears, CA Smith, J. Polak, P. Blackburn
Lysostaphin efficacy for treatment of Staphylococcus aureus intramammary infections
Journal of Dairy Science, 71 (1988), p. 244
Sharma et al., 2007
H. Sharma, S.K. Maiti, K.K. Sharma
Prevalence, etiology and antibiogram of microorganisms associated with sub-clinical mastitis in buffaloes in durg, Chhattisgarh State (Índia)
International Journal of Dairy Science & Processing, 2 (2007), pp. 145-151
Takahashi et al., 1992
N. Takahashi, G. Eisenhuth, I. Lee, C. Schachtele
Nonspecific antibacterial factors in milk from cows immunized with human oral bacterial pathogens
Journal of Dairy Science, 75 (1992), pp. 1810-1820
USDA, 2015
USDA
United states department of agriculture
(2015)
<http://apps.fas.usda.gov/psdonline/psdReport.aspx?hidReportRetrievalName=Fluid+Milk++Cow+Numbers%3a+Summary+For+Selected+Countries&hidReportRetrievalID=2543&hidReportRetrievalTemplateID=7> Accessed 10 june 2018
Van Hekken et al., 2009
D.L. Van Hekken, R.J. Wall, G.A. Somkuti, M.A. Powell, M.H. Tunick, P.M. Tomasula
Fate of lysostaphin in milk from individual cows through pasteurization and cheesemaking
Journal of Dairy Science, 92 (2009), pp. 444-457
Vilela et al., 2017
D. Vilela, J.C. De Resende, J.B. Leite, E.A. Alves
Evolução do leite no brasil em Cinco Décadas
Revista de Política Agrícola. Ano XXVI, 1 (2017), pp. 5-24
Voges et al., 2015
J.G. Voges, A. Thaler Neto, D.C.S. Kazama
Qualidade do leite e a sua relação com o sistema de produção e a estrutura para ordenha
Revista Brasileira de Parasitologia Veterinária, 22 (3-4) (2015), pp. 171-175
Wadstrøm and Vesterberg, 1971
T. Wadstrøm, O. Vesterberg
Studies on endo-β-N- acetylglucosaminidase, staphylolytic peptidase, and N-acetylmu- ramyl-L-alanine amidase in lysostaphin and from Staphylococcus aureus
Acta Pathologica et Microbiologica Scandinavica Section B: Microbiology and Immunology, 79 (1971), pp. 248-264
Wall et al., 1991
R.J. Wall, V.G. Pursel, A. Shamay, R.A. Mcknight, C.W. Pittius, L.J. Hennighausen
High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine
Proceedings of the National Academy of Sciences of the United States of America, 88 (1991), pp. 1696-1700
Wall et al., 2005
R.J. Wall, A.M. Powell, M.J. Paape, D.E. Kerr, D.D. Bannerman, V.G. Pursel, et al.
Genetically enhanced cows resist intramammary Staphylococcus aureus infection
Nature Biotechnology, 23 (2005), pp. 445-451
Williamson et al., 1994
C.M. Williamson, A.J. Bramley, A.J. Lax
Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system
Applied and Environmental Microbiology, 60 (1994), pp. 771-776
Wright et al., 1991
G. Wright, A. Carver, D. Cottom, D. Reeves, A. Scott, P. Simons, et al.
High level expression of active human alpha-1-antitrypsin in the milk of transgenic sheep
Bio/Technology, 9 (1991), pp. 830-834
Wu et al., 2018
X. Wu, S.J. Kwon, D. Kim, J. Zha, M. Mora-Pale, J.S. Dordick
Unprotonated short-chain alkylamines inhibit staphylolytic activity of lysostaphin in a wall teichoic acid-dependent manner
Applied and Environmental Microbiology, 84 (2018), pp. 1-14
Yum et al., 2018
S.Y. Yum, K.Y. Youn, W.J. Choi, G. Jang
Developmente of genome engeneering technologies in cattle: From random to specific
Journal of Animal Science and Biotechnology, 9 (2018), p. 16
Zygmunt and Tavormina, 1972
W.A. Zygmunt, P.A. Tavormina
Lysostaphin: Model for a specific enzymatic approach to infectious disease
Progress in Drug Research Fortschritte Der Arzneimittelforschung Progres Des Recherches Pharmaceutiques, 16 (1972), pp. 309-333