Quinolines-1,2,3-triazolylcarboxamides exhibits antiparasitic activity in Trichomonas vaginalis
Ângela Sena-Lopes, Raquel Nascimentodas Neves, Mirna Samara Dié Alves, Gelson Perin, Diego Alves, Angela Maria Casaril, Lucielli Savegnago, Karine Rech Begnini, Fabiana Kommling Seixas, Tiago Collares, Sibele Borsuk
Abstract
Increased prevalence of metronidazole-resistant infections has resulted in a search for alternative drugs for the treatment of trichomoniasis. In the present study, we report the evaluation of in vitro activity of three quinolines-1,2,3-triazolylcarboxamides (QTCA-1, QTCA-2 and QTCA-3) against Trichomonas vaginalis, evaluation of cytotoxicity in CHO cells and expression of genes related to hydrogenosome by real time PCR. Nine concentrations of these compounds were analyzed for in vitro activity against ATCC 30236 isolate of T. vaginalis. QTCA-2 reported a cytotoxic effect against 100% of T. vaginalis trophozoites at a final concentration of 80 μM with an IC50 of 50 μM. The kinetic growth curve of trophozoites indicated that QTCA-2 reduced the growth by 70% at a concentration of 80 μM after an exposure of 12 h, and induced complete parasite death at 24 h. QTCA-2 induced less than 30% of cytotoxicity in CHO-K1 cells at 80 μM and data showed this concentration and lower ones had no significant cytotoxic effect when compared to the control. There was no significant difference in gene expression (pyruvate-ferredoxin oxidoreductase A and B; Malic enzyme D; Hydrogenase; β-tubulin) when compared to control and MTZ. Further in silico analysis showed that QTCA-2 had significant binding free energy with T. vaginalis lactate dehydrogenase (−9.3 kcal/mol), purine nucleoside phosphorylase (−9.1 kcal/mol) and triosephosphate isomerase (−7.3 kcal/mol). The present study offers new perspectives for exploring the potential of this class of molecules as an additional option for the treatment of trichomoniasis.
Keywords
References
Agalave et al., 2011
S.G. Agalave, S.R. Maujan, V.S. Pore
Click chemistry: 1,2,3-triazoles as pharmacophores
Chemistry – An Asian Journal, 6 (2011), pp. 2696-2718, 10.1002/asia.201100432
Begnini et al., 2017
K.R. Begnini, W.R. Duarte, L.P. da Silva, J.H. Buss, B.S. Goldani, M. Fronza, et al.
Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells
Biomedicine and Pharmacotherapy, 91 (2017), pp. 510-516, 10.1016/j.biopha.2017.04.098
Candéa et al., 2009
A.L.P. Candéa, M.L. Ferreira, K.C. Pais, L.N.D.F. Cardoso, C.R. Kaiser, M.V. de Souza
Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives
Bioorganic & Medicinal Chemistry Letters, 19 (2009), pp. 6272-6274, 10.1016/j.bmcl.2009.09.098
Conrad et al., 2013
M.D. Conrad, M. Bradic, S.D. Warring, A.W. Gorman, J.M. Carlton
Getting trichy: Tools and approaches to interrogating Trichomonas vaginalis in a post-geome world
Trends in Parasitology, 29 (2013), pp. 17-25, 10.1016/j.pt.2012.10.004.Getting
De Souza et al., 2011
N.B. De Souza, A.M.L. Carmo, D.C. Lagatta, M.J.M. Alves, A.P.S. Fontes, E.S. Coimbra, et al.
4-Aminoquinoline analogues and its platinum (II) complexes as antimalarial agents
Biomedicine and Pharmacotherapy, 65 (2011), pp. 313-316, 10.1016/j.biopha.2011.03.003
Di Pietro et al., 2015
O. Di Pietro, E. Vicente-Garciá, M.C. Taylor, D. Berenguer, E. Viayna, A. Lanzoni, et al.
Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity
European Journal of Medicinal Chemistry, 105 (2015), pp. 120-137, 10.1016/j.ejmech.2015.10.007
Diamond, 1957
L.S. Diamond
The establishment of various trichomonads of animals and man in axenic cultures
Journal of Parasitology, 43 (1957), pp. 488-490
Dorey et al., 2000
G. Dorey, B. Lockhart, P. Lestage, P. Casara
New quinolinic derivatives as centrally active antioxidants
Bioorganic & Medicinal Chemistry Letters, 10 (2000), pp. 935-939, 10.1016/S0960-894X(00)00122-0
Dos Santos et al., 2015
O. Dos Santos, G. De Vargas Rigo, A.P. Frasson, A.J. Macedo, T. Tasca
Optimal reference genes for gene expression normalization in Trichomonas vaginalis
PLoS One, 10 (2015), pp. 1-17, 10.1371/journal.pone.0138331
FDA-EUA, 2019
FDA-EUA. Drug approvals and databases. In: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm.
Ferretti et al., 2014
M.D. Ferretti, A.T. Neto, A.F. Morel, T.S. Kaufman, E. Larghi
Synthesis of symmetrically substituted 3,3-dibenzyl-4-hydroxy-3,4-dihydro-1H-quinolin-2-ones, as novel quinoline derivatives with antibacterial activity
European Journal of Medicinal Chemistry, 81 (2014), pp. 253-266, 10.1016/j.ejmech.2014.05.024
Figueroa-Angulo et al., 2012
E.E. Figueroa-Angulo, P. Estrella-Hernández, H. Salgado-Lugo, A. Ochoa-Leyva, A.G. Puyou, S.S. Campos, et al.
Cellular and biochemical characterization of two closely related triosephosphate isomerases from Trichomonas vaginalis
Parasitology (2012), pp. 1729-1738, 10.1017/S003118201200114X
Hanwell et al., 2012
M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
Journal of Cheminformatics, 4 (1) (2012), p. 17, 10.1186/1758-2946-4-17
Kulda, 1999
J. Kulda
Trichomonads, hydrogenosomes and drug resistance
International Journal for Parasitology, 29 (1999), pp. 199-212
Leitsch, 2016
D. Leitsch
Recent advances in the Trichomonas vaginalis Field
F1000Research, 5 (2016), pp. 1-7, 10.12688/f1000research.7594.1
Leitsch et al., 2009
D. Leitsch, D. Kolarich, M. Binder, J. Stadlmann, F. Altmann, M. Duchene
Trichomonas vaginalis: Metronidazole and other nitroimidazole drugs are reduced by the flavin enzyme thioredoxin reductase and disrupt the cellular redox system. Implications for nitroimidazole toxicity and resistance
Molecular Microbiology, 72 (2009), pp. 518-536, 10.1111/j.1365-2958.2009.06675.x
Leitsch et al., 2010
D. Leitsch, D. Kolarich, M. Duchêne
The flavin inhibitor diphenyleneiodonium renders Trichomonas vaginalis resistant to metronidazole, inhibits thioredoxin reductase and flavin reductase, and shuts off hydrogenosomal enzymatic pathways
Molecular and Biochemical Parasitology, 171 (2010), pp. 17-24, 10.1016/j.molbiopara.2010.01.001
Lumsden et al., 1988
W.H. Lumsden, D.H. Robertson, R. Heyworth, C. Harrison
Treatment failure in Trichomonas vaginalis vaginitis
Genitourinary Medicine, 64 (1988), pp. 217-218
Masood et al., 2017
M.M. Masood, P. Hasan, S. Tabrez, M.D. Ahmad, U. Yadava, C.G. Daniliue, et al.
Anti-leishmanial and cytotoxic activities of amino acid-triazole hybrids: Synthesis, biological evaluation, molecular docking and in silico physico-chemical properties
Bioorganic & Medicinal Chemistry Letters, 27 (2017), pp. 1886-1891, 10.1016/j.bmcl.2017.03.049
Mead et al., 2006
A.J.R. Mead, M. Fernadez, P.A. Romagnoli, W.E. Secor
Use of Trichomonas vaginalis clinical isolates to evaluate correlation of gene expression and metronidazole
Journal of Parasitology, 92 (2006), pp. 196-199
Menezes et al., 2016
C.B. Menezes, A.P. Frasson, T. Tasca
Trichomoniasis – Are we giving the deserved attention to the most common non-viral sexually transmitted disease worldwide?
Microbial Cell, 3 (2016), pp. 404-418, 10.15698/mic2016.09.526
Miranda-ozuna et al., 2016
J.F.T. Miranda-ozuna, M.S. Hernández-garcía, L.G. Brieba, C.G. Benítez-Cardoza, J. Ortega-López, A. González-Robles, et al.
The glycolytic enzyme triosephosphate isomerase of Trichomonas vaginalis is a surface-associated protein induced by glucose that functions as a laminin- and fibronectin-binding protein
Infection and Immunity, 84 (2016), pp. 2878-2894, 10.1128/IAI.00538-16.Editor
Muraleedharan and Avery, 2007
K.M. Muraleedharan, M.A. Avery
Advances in the discovery of new antimalarials
Elsevier Ltd (2007), p. 804, 10.1016/B978-0-12-800167-7.00009-2
Musiol et al., 2006
R. Musiol, J. Jampilek, V. Buchta, L. Silva, H. Niedbala, B. Podeszwa, et al.
Antifungal properties of new series of quinoline derivatives
Bioorganic & Medicinal Chemistry, 14 (2006), pp. 3592-3598, 10.1016/j.bmc.2006.01.016
Pal et al., 2009
D. Pal, S. Banerjee, J. Cui, A. Schwartz, S.K. Ghosh, J. Samuelson
Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases)
Antimicrobial Agents and Chemotherapy, 53 (2009), pp. 458-464, 10.1128/AAC.00909-08
Pettersen et al., 2004
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, et al.
UCSF Chimera – A visualization system for exploratory research and analysis
Journal of Computational Chemistry (2004), 10.1002/jcc.20084
Rinaldo-matthis et al., 2007
A. Rinaldo-matthis, C. Wing, M. Ghanem, H. Deng, P. Wu, A. Gupta, et al.
Inhibition and structure of Trichomonas vaginalis purine nucleoside phosphorylase with picomolar transition state analogues
Biochemistry, 46 (3) (2007), pp. 659-668
Sena-Lopes et al., 2017
Â. Sena-Lopes, R.N. das Neves, F.S.B. Bezerra, M.T. de Oliveira Silva, P.C. Nobre, G. Perin, et al.
Antiparasitic activity of 1,3-dioxolanes containing tellurium in Trichomonas vaginalis
Biomedicine and Pharmacotherapy, 89 (2017), pp. 284-287, 10.1016/j.biopha.2017.01.173
Steindel et al., 2016
P.A. Steindel, E.H. Chen, J.D. Wirth, D.L. Theobald
Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases
Protein Science, 25 (7) (2016), pp. 1319-1331, 10.1002/pro.2904
Upcroft and Upcroft, 2001
P. Upcroft, J. Upcroft
Drug targets and mechanisms of resistance in the anaerobic protozoa drug targets and mechanisms of resistance in the anaerobic protozoa
Clinical Microbiology Reviews, 14 (2001), pp. 150-164, 10.1128/CMR.14.1.150
Vieira et al., 2012
P.B. Vieira, C.L.C. Brandelli, C.M. Veríssimo, T. Tasca
Mecanismos específicos de patogenicidade de protozoários de mucosa
Clinical and Biomedical Research, 32 (2012), pp. 58-70
WHO, 2012
WHO
Global incidence and prevalence of selected curable sexually transmitted infections – 2008
World Heal. Organ. (2012)
http://apps.who.int/iris/bitstream/10665/75181/1/9789241503839_eng.pdf
Wilhelm et al., 2014
E.A. Wilhelm, N.C. Machado, A.B. Pedroso, B.S. Goldani, N. Seus, S. Moura, et al.
Organocatalytic synthesis and evaluation of 7-chloroquinoline-1,2,3-triazoyl carboxamides as potential antinociceptive, anti-inflammatory and anticonvulsant agent
RSC Advances, 4 (2014), pp. 41437-41445, 10.1039/C4RA07002J
Zang et al., 2005
Y. Zang, W. Wang, S. Wu, S.E. Ealick, C.C. Wang
Identification of a subversive substrate of Trichomonas vaginalis purine nucleoside phosphorylase and the crystal structure of the enzyme-substrate complex
Journal of Biological Chemistry, 280 (2005), pp. 22318-22325, 10.1074/jbc.M501843200