Production and optimization of pterin deaminase from cyanide utilizing bacterium Bacillus cereus AM12
Murugesan Thandeeswaran, Sajitha Bijukumar, Mani Arulkumar, Ramasamy Mahendran, Muthusamy Palaniswamy, Jayaraman Angayarkanni
Abstract
In a search of new-fangled antitumor chemotherapeutic agent, the studies are elucidating the enzymes, contributing to the metabolic reprogramming and their potential as therapeutic targets. This study was an endeavor to explore the potential of enzyme pterin deaminase from cyanide degraders. In preliminary and secondary screening, potent cyanide degraders were selected and estimated for pterin deaminase activity. The intracellular crude extract containing enzyme activity was found to be higher in potential strain Bacillus cereus AM12. The optimization conditions for the production of pterin deaminase from this selected strain was studied with the help of Box–Behnken design. The determination coefficient of the model (0.91) was highly significant and indicative of goodness of fit. This design found to be ideal for the selected parameters, such as temperature of 35 °C, pH 8, 0.005 M of pterin and 20% of glucose which yielded maximum production of pterin deaminase (9.99 U/ml). This study might make a major breakthrough in the field of medicine as well as in pharmaceutical compositions when the biological significance of this distinct enzyme is proven.
Keywords
References
Akhnazarova and Kafarov, 1982
S. Akhnazarova, V. Kafarov
Experiment optimization in chemistry and chemical engineering
Mir Publications, Moscow (1982), 10.1002/pol.1984.130220614
Balagopalan and Rajalekshmy, 1998
C. Balagopalan, L. Rajalekshmy
Cyanogen accumulation in environment during processing of cassava (Manihot Esculenta Crantz) for starch and sago
Water, Air, & Soil Pollution, 102 (1998), pp. 407-413, 10.1023/A: 1004992611810
Bernstein and Van Driel, 1980
R.L. Bernstein, R. Van Driel
Control of folate deamine activity of Dictyostelium discoideum by cyclic AMP
FEBS Letters, 119 (1980), pp. 249-253
Box and Behnken, 1960
G.E.P. Box, D.W. Behnken
Some new three level designs for the study of quantitative variables
Technometrics, 2 (1960), pp. 455-475
Box et al., 1978
G.E.P. Box, W.G. Hunter, J.S. Hunter
Statistics for experimenters: An introduction to design data analysis and model building
John Wiley and Sons Inc., New York, USA (1978), p. pp653
Box and Wilson, 1951
G.E.P. Box, K.B. Wilson
On the experimental attainment of optimum conditions
Journal of Royal Statistical Society, 13 (1951), pp. 1-45
Cabuk et al., 2006
A. Cabuk, A. Taspinar, U.N. Kolankaya
Biodegradation of cyanide by a white rot fungus
Trametes versicolor. Biotechnol Lett, 28 (2006), pp. 1313-1317
Chabner et al., 1972
B.A. Chabner, P.L. Chello, J.R. Bertino
Antitumor activity of a folate cleaving enzyme, carboxypeptidase G 1
Cancer Research, 32 (1972), pp. 2114-2119
Cochran and Cox, 1957
W.G. Cochran, G.M. Cox
Experimental designs
(2nd edn.), John Wiley and Sons, New York (1957), pp. pp346-pp354
Curtius et al., 1983
H.C. Curtius, A. Niederwieser, R.A. Levine, W. Lovenberg, B. Woggon, J. Angst
Successful treatment of depression with tetrahydrobiopterin
Lancet, 1 (1983), pp. 657-658
Doddapaneni et al., 2007
K.K. Doddapaneni, R. Tatineni, R. Potumarthi, L.N. Mangamoori
Optimization of media constituents through response surface methodology for improved production of alkaline proteases by Serratia rubidaea
Journal of Chemical Technology and Biotechnology, 82 (2007), pp. 721-729, 10.1002/jctb.1714
Dubey and Holmes, 1995
S.K. Dubey, D.S. Holmes
Biological cyanide destruction mediated by microorganisms – Review
World Journal of Microbiology and Biotechnology, 11 (1995), pp. 257-265, 10.1007/BF00367095
Durairaju et al., 2015
N.S. Durairaju, S.K.A. Teresa Infanta, D.S. Raja, K. Natarajan, M. Palaniswamy, J. Angayarkanni
Spectral characterization of a pteridine derivative from cyanide-utilizing bacterium Bacillus subtilis – JN989651
Journal of Microbiology, 53 (2015), pp. 262-271, 10.1007/s12275-015-4138-0
Ebbs, 2004
S. Ebbs
Biological degradation of cyanide compounds
Current Opinion in Biotechnology, 15 (2004), pp. 1-6, 10.1016/j.copbio.2004.03.006
Faiza et al., 2011
A. Faiza, N.B. Haq, R. Saima
Optimization of growth parameters for lipase production by Ganoderma lucidum using response surface methodology
African Journal of Biotechnology, 10 (2011), pp. 5514-5523, 10.5897/AJB10.1714
Fitzpatrick, 1999
P.F. Fitzpatrick
Tetrahydropterin-dependent amino acid hydroxylases
Annual Review in Biochemistry, 68 (1999), pp. 355-381, 10.1146/annurev.biochem.68.1.355
Gamagedara et al., 2011
S. Gamagedara, S. Gibbons, Y. Ma
Investigation of urinary pteridine levels as potential biomarkers for noninvasive diagnosis of cancer
Clinica Chimica Acta, 412 (2011), pp. 120-128, 10.1016/j.cca.2010.09.015
Gomes and Mergulhao, 2017
L.C. Gomes, F.J. Mergulhao
SEM analysis of surface impact on biofilm antibiotic treatment
Scanning (2017), 10.1155/2017/2960194
Gulati et al., 1997
R. Gulati, R.K. Saxena, R. Gupta
A rapid plate assay for screening l-asparaginase producing micro-organisms
Letters in Applied Microbiology, 24 (1997), pp. 23-26
Igeno et al., 2007
Igeno, M. I., Orovengua, E., Guijo, M. I., Merchán, F., Quesada, A., & Blasco, R. (2007). Communicating current research and educational topics and trends in applied microbiology. A Mendez-Vilas (Ed.) 2:100–107.
James, 2010
G. James
PCR for clinical microbiology: Universal bacterial identification by PCR and DNA sequencing of 16S rRNA gene
(2010), pp. 209-214
Jayaraman et al., 2016
A. Jayaraman, M. Thandeeswaran, U. Priyadarsini, S. Sabarathinam, K.A. Ayub, M. Palaniswamy
Characterization of unexplored amidohydrolase enzyme-pterin deaminase
Applied Microbiology and Biotechnology, 100 (2016), pp. 4779-4789, 10.1007/s00253-016-7513-9
Kathiresan et al., 2014
K. Kathiresan, K. Saravanakumar, K.S. Sahu, M. Sivasankaran
Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina
3 Biotech, 4 (2014), pp. 235-239, 10.1007/s13205-013-0144-2
Khuri and Cornell, 1987
A.I. Khuri, J.A. Cornell
Response surfaces design and analysis
Marcel Dekker Inc., New York (1987)
Kumar and Bhalla, 2015
V. Kumar, T.C. Bhalla
Statistical enhancement of cyanide degradation using microbial consortium
Journal of Microbial and Biochemical Technology, 7 (2015), pp. 344-350, 10.9790/2380-0350104
Kumari et al., 2009
A. Kumari, P. Mahapatra, R. Banerjee
Statistical optimization of culture conditions by response surface methodology for synthesis of lipase with Enterobacter aerogenes
Brazilian Archives in Biology and Technology, 52 (2009), pp. 1349-1356, 10.1590/S1516-89132009000600005
Kunz et al., 2001
D.A. Kunz, R.F. Fernandez, P. Parab
Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase
Biochemical and Biophysical Research Communications, 287 (2001), pp. 514-518, 10.1006/bbrc.2001.5611
Kusakabe et al., 1976
Kusakabe, H., Kodama, K., Midorika, Y., Machida, H., Kuninaka, A., & Yoshino, H. (1976). Process for producing pterin deaminases having antitumour activity, US patent: 3930955.
Levenberg and Hayaishi, 1959
B. Levenberg, O. Hayaishi
A bacterial pterin deaminase
The Journal of Biological Chemistry, 234 (1959), pp. 955-961
Lee and Chen, 1997
S.L. Lee, W.C. Chen
Optimization of medium composition for the production of glucosyltransferase by Aspergillus niger with response surface methodology
Enzyme and Microbial Technology, 21 (1997), pp. 436-440, 10.1016/S0141-0229(97)00016-1
Luque-Almagro et al., 2011
V.M. Luque-Almagro, R. Blasco, M. Martinez-Luque, C. Moreno-Vivian, F. Castillo, M.D. Roldan
Bacterial cyanide degradation is under review: Pseudomonas pseudoalcaligenes CECT5344, a case of an alkaliphilic cyanotroph
Biochemical Society Transactions, 39 (2011), pp. 269-274, 10.1042/BST0390269
Luque-Almagro et al., 2005
V.M. Luque-Almagro, M.J. Huertas, M. Martinez-Luque, C. Moreno-Vivian, M.D. Roldan, L.J. Garcia-Gil, et al.
Bacterial degradation of cyanide and its metal complexes under alkaline conditions
Applied and Environmental Microbiology, 71 (2005), pp. 940-947, 10.1128/AEM.71.2.940-947.2005
Ma and Ooraikul, 1986
A.Y.M. Ma, B. Ooraikul
Optimization of enzymatic hydrolysis of canla meal with response surface methology
Journal of Food Processing and Preservation, 10 (1986), pp. 99-113, 10.1111/j.1745-4549.1986.tb00010.x
Mak et al., 1995
K.W.Y. Mak, M.G.S. Yap, W.K. Teo
Formulation and optimization of two culture media for the production of tumor necrosis factor-β in Escherichia coli
Journal of Chemical Technology and Biotechnology, 62 (1995), pp. 289-294
Maniatis et al., 1982
T. Maniatis, E.F. Fritsch, J. Sambrook
Molecular cloning: A laboratory manual
Cold Spring Harbor Laboratory Press, New York, USA (1982)
Mashburn and Wriston, 1964
L.T. Mashburn, J.C. Wriston
Tumor inhibitory effect of l-asparaginase from Escherichia coli
Archives in Biochemistry and Biophysics, 105 (1964), pp. 450-452
Mekuto et al., 2015
L. Mekuto, S.K. Ntwampe, V.A. Jackson
Biodegradation of free cyanide and subsequent utilisation of biodegradation by-products by Bacillus consortia: Optimisation using response surface methodology
Environmental Science and Pollution Research, 22 (2015), pp. 10434-10443, 10.1007/s11356-015-4221-4
Milstein et al., 2002
S. Milstein, G. Kapatos, R.A. Levine
Chemistry and biology of pteridines and folates. Proceedings of the 12th international symposium on pteridines and folates
National Institutes of Health, Bethesda, MD (2002), p. p677
Murugesan et al., 2017
T. Murugesan, N. Durairaj, M. Ramasamy, K. Jayaraman, M. Palaniswamy, A. Jayaraman
Analeptic agent from microbes upon cyanide degradation
Applied Microbiology and Biotechnology, 102 (2017), pp. 1557-1565, 10.1007/s00253-017-8674-x
Park et al., 2008
D. Park, D.S. Lee, Y.M. Kim, J.M. Park
Bioaugmentation of cyanide-degrading microorganisms in a full-scale cokes wastewater treatment facility
Bioresource Technology, 99 (2008), pp. 2092-2096, 10.1016/j.biortech.2007.03.027
Salihu et al., 2011
A. Salihu, Z. Alam, M.I. Abdul Karim, H.M. Salleh
Optimization of lipase production by Candida cylindracea in palm oil mill effluent based medium using statistical experimental design
Journal of Molecular Catalysis B: Enzymatic, 69 (2011), pp. 66-73, 10.1016/j.molcatb.2010.12.012
Sambrook and Russell, 2001
J. Sambrook, D.W. Russell
Molecular cloning: A laboratory manual
(3rd edn), Cold Spring Harbor Laboratory Press, New York (2001)
Shanmugam, 2011
S. Shanmugam
Optimization of synergistic parameters for atypical pterin deaminase activity from Rattus norvegicus using response surface methodology
Biochemical and molecular engineering XVII, Emerging Frontiers, Seattle (2011)
Sonia et al., 2005
K.G. Sonia, B.S. Chadha, H.S. Saini
Sorghum straw for xylanase hyper-production by Thermomyces lanuginosus (D2W) under solid-state fermentation
Bioresource Technology, 96 (2005), pp. 1561-1569, 10.1016/j.biortech.2004.12.037
Takikawa et al., 1979
S. Takikawa, C. Kitayamayokokawa, M. Tsusue
Pterin deaminase from Bacillus megaterium purification and properties
Journal of Biochemistry, 85 (1979), pp. 785-790
Yee and Blanch, 1993
L. Yee, H.W. Blanch
Defined media optimization for growth of recombinant Escherichia coli X90
Biotechnology and Bioengineering, 41 (1993), pp. 221-230, 10.1002/bit.260410208
Zhu et al., 2010
C. Zhu, W. Han, Z. Chen, Z. Han
Statistical optimization of microwave assisted astaxanthin extraction from Phaffia rhodozym
Journal of Biomedical Engineering Information, 5 (2010), pp. 2104-2109, 10.1109/BMEI. 2010.5639994
Ziegler, 2003
I. Ziegler
The pteridine pathway in zebrafish: Regulation and specification during the determination of neural crest cell-fate
Pigment Cell Research, 16 (2003), pp. 172-182
Ziegler et al., 1983
I. Ziegler, H. Ulrike, J. Berndt
Participation of pterins in the control of lymphocyte stimulation and lymphoblast proliferation
Cancer Research, 43 (1983), pp. 5356-5359