Checkerboard testing method indicates synergic effect of pelgipeptins against multidrug resistant Klebsiella pneumoniae
Rosiane A. Costa, Daniel B. Ortega, Débora L. A. Fulgêncio, Flávio S. Costa, Thiago F. Araújo, Cristine C. Barreto
Abstract
Multidrug resistant bacteria infections have motivated the search for new therapeutics. The synergic effect of conventional antibiotics and lipopeptides of the pelgipeptin family was evaluated by the Checkerboard method. Results indicate that the association of Pelgipeptin B and C or chloramphenicol has a synergic effect against a multidrug resistant bacteria strain; which may be may be due to the variations on hydrophobicity and mechanisms of action of the molecules tested.
Keywords
References
Baindara et al., 2016
P. Baindara, V. Chaudhry, G. Mittal, L.M. Liao, C.O. Matos, N. Khatri, …, S. Korpole
Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp strain A3
Antimicrobial Agents and Chemotherapy, 60 (1) (2016), pp. 580-591, 10.1128/AAC. 01813-15
Balouiri et al., 2016
M. Balouiri, M. Sadiki, S.K. Ibnsouda
Methods for in vitro evaluating antimicrobial activity: A review
Journal of Pharmaceutical Analaysis, 6 (2) (2016), pp. 71-79, 10.1016/j.jpha.2015.11.005
Canova et al., 2010
S.P. Canova, T. Petta, L.F. Reyes, T.D. Zucchi, L.A.B. Moraes, I.S. Melo
Characterization of lipopeptides from Paenibacillus sp (IIRAC30) suppressing Rhizoctonia solani
World Journal of Microbiology and Biotechnology, 26 (12) (2010), pp. 2241-2247, 10.1007/s11274-010-0412-9
Chi and Holo, 2018
H. Chi, H. Holo
Synergistic antimicrobial activity between the broad spectrum bacteriocin garvicin KS and nisin farnesol and polymyxin B against gram-positive and gram-negative bacteria
Current Microbiology, 75 (3) (2018), pp. 272-277, 10.1007/s00284-017-1375-y
Chin et al., 1997
N.X. Chin, I. Weitzman, P. Della-Latta
In vitro activity of fluvastatin, a cholesterol-lowering agent, and synergy with flucanazole and itraconazole against Candida species and Cryptococcus neoformans
Antimicrobial Agents and Chemotherapy, 41 (4) (1997), pp. 850-852
Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC163809/
Clinical Laboratory Standards Institute, 2004
Clinical and Laboratory Standards Institute – CLSI
Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Document M07-A6
CLSI, Wayne, PA (2004)
Cochrane and Vederas, 2016
S.A. Cochrane, J.C. Vederas
Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates
Medicinal Research Reviews, 36 (1) (2016), pp. 4-31, 10.1002/med.21321
Croxen et al., 2013
M.A. Croxen, R.J. Law, R. Scholz, K.M. Keeney, M. Wlodarska, B.B. Finlay
Recent advances in understanding enteric pathogenic Escherichia coli
Clinical Microbiology Reviews, 26 (4) (2013), pp. 822-880, 10.1128/CMR. 00022-13
Cushnie et al., 2016
T.P. Cushnie, N.H. O’Driscoll, A.J. Lamb
Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action
Cellular and Molecular Life Sciences, 73 (23) (2016), pp. 4471-4492, 10.1007/s00018-016-2302-2
Ding et al., 2011
R. Ding, X.-C. Wu, C.-D. Qian, Y. Teng, O. Li, Z.-J. Zhan, Y.-H. Zhao
Isolation and identification of lipopeptide antibiotics from Paenibacillus elgii B69 with inhibitory activity against methicillin-resistant Staphylococcus aureus
The Journal of Microbiology, 49 (6) (2011), pp. 942-949, 10.1007/s12275-011-1153-7
Doern, 2014
C.D. Doern
When does 2 plus 2 equal 5?. A review of antimicrobial synergy testing
Journal of Clinical Microbiology, 52 (12) (2014), pp. 4124-4128, 10.1128/JCM. 01121-14
Guo et al., 2012
Y. Guo, E. Huang, C. Yuan, L. Zhang, A.E. Yousef
Isolation of a Paenibacillus sp. strain and structural elucidation of its broad-spectrum lipopeptide antibiotic
Applied and Environmental Microbiology, 78 (9) (2012), pp. 3156-3165, 10.1128/AEM. 07782-11
He et al., 2007
Z. He, D. Kisla, L. Zhang, C. Yuan, K.B. Green-Church, A.E. Yousef
Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin
Applied and Environmental Microbiology, 73 (1) (2007), pp. 168-178, 10.1128/AEM. 02023-06
Huang and Yousef, 2014
E. Huang, A.E. Yousef
The lipopeptide antibiotic paenibacterin binds to the bacterial outer membrane and exerts bactericidal activity through cytoplasmic membrane damage
Applied and Environmental Microbiology, 80 (9) (2014), pp. 2700-2704, 10.1128/aem.03775-13
Kaneda, 1967
T. Kaneda
Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species
Journal of Bacteriology, 93 (3) (1967), pp. 894-903
Kaneda, 1991
T. Kaneda
Iso- and anteiso-fatty acids in bacteria: Biosynthesis, function, and taxonomic significance
Microbiological Reviews, 55 (2) (1991), pp. 288-302
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1886522
Kumar et al., 2012
S.N. Kumar, J.V. Siji, B. Nambisan, C. Mohandas
Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro
World J Microbiol Biotechnol, 28 (11) (2012), pp. 3143-3150, 10.1007/s11274-012-1124-0
Lohans et al., 2012
C.T. Lohans, Z. Huang, M.J. van Belkum, M. Giroud, C.S. Sit, E.M. Steels, …, J.C. Vederas
Structural characterization of the highly cyclized lantibiotic paenicidin a via a partial desulfurization/reduction strategy
Journal of the American Chemical Society, 134 (48) (2012), pp. 19540-19543, 10.1021/ja3089229
Montero et al., 2018
M. Montero, B.D. VanScoy, C. Lopez-Causape, H. Conde, J. Adams, C. Segura, …, P.G. Ambrose
Evaluation of ceftolozane-tazobactam in combination with meropenem against pseudomonas aeruginosa sequence type 175 in a hollow-fiber infection model
Antimicrobial Agents Chemotherapy, 62 (5) (2018), 10.1128/aac.00026-18
Narasimhaswamy et al., 2017
N. Narasimhaswamy, I. Bairy, G. Shenoy, L. Bairy
In vitro activity of recombinant lysostaphin in combination with linezolid, vancomycin and oxacillin against methicillin-resistant Staphylococcus aureus
Iranian Journal of Microbiology, 9 (4) (2017), pp. 208-212
Retrieved from internal-pdf://0185403528/IJM-9-208.pdf
Niu et al., 2013
B. Niu, J. Vater, C. Rueckert, J. Blom, M. Lehmann, J.-J. Ru, …, R. Borriss
Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1
BMC Microbiology, 13 (1) (2013), p. 137, 10.1186/1471-2180-13-137
Ortega et al., 2018
D.B. Ortega, R.A. Costa, A.S. Pires, T.F. Araújo, J.F. Araújo, A.S. Kurokawa, …, C.C. Barreto
Draft genome sequence of the antimicrobial-producing strain Paenibacillus elgii AC13
Genome Announcements (2018), pp. 4-5
Qian et al., 2012a
C.-D. Qian, T.-Z. Liu, S.-L. Zhou, R. Ding, W.-P. Zhao, O. Li, X.-C. Wu
Identification and functional analysis of gene cluster involvement in biosynthesis of the cyclic lipopeptide antibiotic pelgipeptin produced by Paenibacillus elgii
BMC Microbiology, 12 (1) (2012), p. 197, 10.1186/1471-2180-12-197
Qian et al., 2012b
C.-D. Qian, X.-C. Wu, Y. Teng, W.-P. Zhao, O. Li, S.-G. Fang, …, H.-C. Gao
Battacin (Octapeptin B5), a new cyclic lipopeptide antibiotic from Paenibacillus tianmuensis active against multidrug-resistant Gram-negative bacteria
Antimicrobial Agents and Chemotherapy, 56 (3) (2012), pp. 1458-1465, 10.1128/AAC. 05580-11
Ribeiro et al., 2015
S.M. Ribeiro, C. de la Fuente-Nunez, B. Baquir, C. Faria-Junior, O.L. Franco, R.E. Hancock
Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to beta-lactam antibiotics
Antimicrobial Agents Chemotherapy, 59 (7) (2015), pp. 3906-3912, 10.1128/aac.00092-15
Selim et al., 2005
S. Selim, J. Negrel, C. Govaerts, S. Gianinazzi, D. van Tuinen
Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp strain B2 isolated from the sorghum mycorrhizosphere
Applied and Environmental Microbiology, 71 (11) (2005), pp. 6501-6507, 10.1128/AEM.71.11.6501-6507.2005
Tanwar et al., 2014
J. Tanwar, S. Das, Z. Fatima, S. Hameed
Multidrug resistance: An emerging crisis
Interdisciplinary Perspectives on Infectious Diseases, 2014 (2014), p. 541340, 10.1155/2014/541340
Tipper and Strominger, 1965
D.J. Tipper, J.L. Strominger
Mechanism of action of penicillins: A proposal based on their structural similarity to acyl-d-alanyl-d-alanine
Proceedings of the National Academy of Sciences U S A, 54 (4) (1965), pp. 1133-1141
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/5219821
Tong et al., 2015
S.Y.C. Tong, J.S. Davis, E. Eichenberger, T.L. Holland, V.G. Fowler
Staphylococcus aureus infections: Epidemiology, pathophysiology clinical manifestations, and management
Clinical Microbiology Reviews, 28 (3) (2015), pp. 603-661, 10.1128/CMR. 00134-14
Tzouvelekis et al., 2012
L.S. Tzouvelekis, A. Markogiannakis, M. Psichogiou, P.T. Tassios, G.L. Daikos
Carbapenemases in Klebsiella pneumoniae and other enterobacteriaceae: An evolving crisis of global dimensions
Clinical Microbiology Reviews, 25 (4) (2012), pp. 682-707, 10.1128/CMR. 05035-11
von Nussbaum et al., 2006
F. von Nussbaum, M. Brands, B. Hinzen, S. Weigand, D. Habich
Antibacterial natural products in medicinal chemistry – exodus or revival?
Angewandte Chemie International Edition in English, 45 (31) (2006), pp. 5072-5129, 10.1002/anie.200600350
Wen et al., 2011
Y. Wen, X. Wu, Y. Teng, C. Qian, Z. Zhan, Y. Zhao, O. Li
Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69
Environmental Microbiology, 13 (10) (2011), pp. 2726-2737, 10.1111/j.1462-2920.2011.02542.x
Wu et al., 2010
X.-C. Wu, X.-B. Shen, R. Ding, C.-D. Qian, H.-H. Fang, O. Li
Isolation and partial characterization of antibiotics produced by Paenibacillus elgii B69
FEMS Microbiology Letters, 310 (1) (2010), pp. 32-38, 10.1111/j.1574-6968.2010.02040.x