Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2018.11.002
Biotechnology Research and Innovation Journal
Short Communication Short Communication

Response with TH1 profile obtained in vaccine formulation against Caseous Lymphadenitis in animal model C57 Black/6

Daniela Droppa-Almeida, Wanessa L. P. Vivas, Ricardo Evangelista Fraga, Andrea F. S. Rezende, Lumar Lucena Alves, Roberto Meyer, Isabel B. Lima-Verde, Odir Delagostin, Sibele Borsuk, Francine F. Padilha

Downloads: 0
Views: 273

Abstract

Caseous Lymphadenitis (CLA) is a contagious disease that compromises the quality of life of sheep and goats. Caused by Corynebacterium pseudotuberculosis CLA is responsible for considerable economic losses in sheep and goat farming. Therefore, the search for preventive measures, such as the development of vaccines is increasing. To evaluate the immunoprotective response of experimental vaccines different murine models susceptible to infections are used. Thus, the objective of this study was to evaluate the protective potential of the recombinant subunit vaccine using an endoglycosidase (rCP40) of C. pseudotuberculosis associated with Saponin and Complete Freund adjuvant (CFA) in murine model C57/Black6. Thus, four groups of animals were separated, where G1 and G2 were control groups and G3 and G4 were experimental groups (rCP40 + Saponin) and (rCP40 + CFA) respectively. The evaluation of the production of reactive antibodies to rCP40 showed that the animals inoculated with the adjuvants presented potentiation of the cellular and humoral immune response, presenting higher production of IgG2a and IgG2b. After the challenge, only the control groups died, while in the experimental groups, although some survived, they presented granulomas, which are characteristics of CLA.

Keywords

Corynebacterium pseudotuberculosis,  Granulomas,  Immunoglobulins,  Endoglycosidade,  Recombinant protein

References

Almeida et al., 2016
S. Almeida, S. Tiwari, D. Mariano, F. Souza, S.B. Jamal, N. Coimbra, et al.
The genome anatomy of Corynebacterium pseudotuberculosis VD57 a highly virulent strain causing Caseous lymphadenitis
Standards in Genomic Sciences, 11 (2016), p. 29

Baird, 2007
Baird G.J.F F.M.
Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis
Journal of Comparative Pathology, 137 (2007), pp. 179-210

Callegari-Jacques et al., 2003
S.M. Callegari-Jacques, D. Grattapaglia, F.M. Salzano, S.P. Salamoni, S.G. Crossetti, M.E. Ferreira, et al.
Historical genetics: Spatiotemporal analysis of the formation of the Brazilian population
American Journal of Human Biology, 15 (2003), pp. 824-834

D’Afonseca et al., 2008
V. D’Afonseca, P.M. Moraes, F.A. Dorella, L.G.C. Pacheco, R. Meyer, R.W. Portela, et al.
A description of genes of Corynebacterium pseudotuberculosis useful in diagnostics and vaccine applications
Genetics and Molecular Research, 7 (2008), pp. 252-260

Dantas, 2004
T.V.M. Dantas
Desenvolvimento E padronização de elisa indireto para diagnóstico de maedi-visna vírus de ovinos (2004), pp. 1-77

Droppa-Almeida et al., 2016
D. Droppa-Almeida, W.L.P. Vivas, K. Kelly, O. Silva, A.F.S. Rezende, S. Simionatto, et al.
Recombinant CP40 from Corynebacterium pseudotuberculosis confers protection in mice after challenge with a virulent strain
Vaccine (2016)

Dorella et al., 2006
F.A. Dorella, E.M. Estevam, L.G.C. Pacheco, C.T. Guimarães, U.G.P. Lana, E.A. Gomes, et al.
In vivo insertional mutagenesis in Corynebacterium pseudotuberculosis: An efficient means to identify DNA sequences encoding exported proteins
Applied and Environment Microbiology, 72 (2006), pp. 7368-7372

Fraga, 2012
R.E. Fraga
Aspectos da relação parasito-hospedeiro durante a infecção com linhagem selvagem e atenuada de Corynebacterium pseudotuberculosis em diferentes linhagens de camundongos
Tese doutorado - Univ. Fed. da Bahia
(2012)

Fisher, 1993
P.F. Fisher
Algorithm and implementation uncertainty in viewshed analysis
International Journal of Geographical Information Science, 7 (1993), pp. 331-347

Fontaine et al., 2006
M.C. Fontaine, G. Baird, K.M. Connor, K. Rudge, J. Sales, W. Donachie
Vaccination confers significant protection of sheep against infection with a virulent United Kingdom strain of Corynebacterium pseudotuberculosis
Vaccine, 24 (2006), pp. 5986-5996

Hartmann et al., 2012
W. Hartmann, M.L. Eschbach, M. Breloer
Strongyloides ratti infection modulates B and T cell responses to third party antigens
Experimental Parasitology, 132 (2012), pp. 69-75

Hoelzle et al., 2013
L.E. Hoelzle, T. Scherrer, J. Muntwyler, M.M. Wittenbrink, W. Philipp, K. Hoelzle
Differences in the antigen structures of Corynebacterium pseudotuberculosis and the induced humoral immune response in sheep and goats
Veterinary Microbiology, 164 (2013), pp. 359-365

IBGE, 2013
IBGE
Estatística
Instituto Brasileiro de Geografia e. Inst. Bras. Geogr. e Estatítica (2013)

Mohr et al., 2010
E. Mohr, A.F. Cunningham, K.M. Toellner, S. Bobat, R.E. Coughlan, R.A. Bird, et al.
IFN-γ produced by CD8 T cells induces T-bet-dependent and -independent class switching in B cells in responses to alum-precipitated protein vaccine
Biology Science Immunology, 107 (2010), pp. 17292-17297

Oliveira et al., 1992
S.C. Oliveira, J. Langenegger, C.H. Langenegger, R. Meyer
Enzyme linked immunosorbent assay (ELISA): Optimal conditions for detection of antibodies produced against Coyinebacterium pseudotuberculosis
Research in Microbiology, 23 (1992), pp. 231-234

Paton et al., 2003
M.W. Paton, S.B. Walker, I.R. W.G.F. Rose
Prevalence of caseous lymphadenitis and usage of caseous lymphadenitis vaccines in sheep flocks
Australian Veterinary Journal, 81 (2003), pp. 91-95

Paule et al., 2003
B.J.A Paule, V. Azevedo, L.F. Regis, R. Carminati, C.R. Bahia, V.L.C. Vale, et al.
Experimental Corynebacterium pseudotuberculosis primary infection in goats: Kinetics of IgG and interferon-γ production, IgG avidity and antigen recognition by Western blotting
Veterinary Immunology and Immunopathology, 96 (2003), pp. 129-139

Pepin et al., 1989
M. Pepin, A. Boisrame, J. Marly
Corynebacterium pseudotuberculosis: Biochemical properties, production of toxin and virulence of ovine and caprine strains
Annales de Recherches Veterinaires, 20 (1989), pp. 111-115

Ribeiro et al., 2001
M.G. Ribeiro, J.G. Dias Junior, A.C. Paes, P.G. Barbosa, G.L.F. Nardi Junior
Punção aspirativa com agulha fina no diagnóstico do Corynebacterium pseudotuberculosis na linfadenite caseosa caprina
Arquivos do Instituto Biológico, 68 (2001), pp. 23-28

Ruiz et al., 2011
J.C. Ruiz, V. D’Afonseca, A. Silva, A. Ali, A.C. Pinto, A.R. Santos, et al.
Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains
PLoS One, 6 (2011), p. e18551

Shadnezhad et al., 2016
A. Shadnezhad, A. Naegeli, M. Collin
CP40 from Corynebacterium pseudotuberculosis is an endo-β-N-acetylglucosaminidase
BMC Microbiology, 16 (1) (2016), pp. 1-10

Silva et al., 2014
J.W. Silva, D. Droppa-Almeida, Borsuk, V. Azevedo, R.W. Portela, A. Miyoshi, et al.
Corynebacterium pseudotuberculosis cp09 mutant and cp40 recombinant protein partially protect mice against caseous lymphadenitis
BMC Veterinary Research, 10 (1) (2014)

Trost et al., 2010
E. Trost, L. Ott, J. Schneider, J. Schröder, S. Jaenicke, A. Goesmann, et al.
The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence
BMC Genomics, 11 (1) (2010), p. 728

Walker et al., 1994
J. Walker, I.H.J. Jackson, D.G. Eggleton, E.N.T. Meeusen, M.J. Wilson
Identification of a novel antigen from Corynebacterium Pseudotuberculosis that protects sheep against Caseous Lymphadenitis, 62 (6) (1994), pp. 2562-2567

Williamson, 2001
L.H. Williamson
Caseous lymphadenitis in small ruminants
Veterinary Clinics of North America: Food Animal Practice, 17 (2001)

Windsor and Bush, 2016
P.A. Windsor, R.D. Bush
Caseous lymphadenitis: Present and near forgotten from persistent vaccination?
Small Ruminant Research (2016)
http://linkinghub.elsevier.com/retrieve/pii/S0921448816300724

Zhang et al., 2012
Z. Zhang, T. Goldschmidt, H. Salter
Possible allelic structure of IgG2a and IgG2c in mice
Molecular Immunology, 50 (3) (2012), pp. 169-171

608af5f4a953956ea7120dc4 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections