Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates
Maryen Alberto Vázquez, Elaine C. Valiño Cabrera, Marcela Ayala Aceves, Jorge Luis Folch Mallol
Abstract
This research explored the lignocellulolytic potential of native strains (Hipoxylon sp, Curvularia kusanoi, Trichoderma sp and Aspergillus fumigatus) isolated from natural substrates. Their sequences were deposited in the GenBank, and it‘s lignocellulosic potentialities were determined quantitatively from kinetics of cellulase and ligninase production in wheat straw, and grass hay. All evaluated strains showed high cellulolytic potential and laccase activity where only found in the C. kusanoi L7 strain. The new strains where co-cultivated with a reference strains of Trichoderma viride to determinate the capacity of joint growth, to know if they can be used together for a better degradation of the cell wall. A three-phase purification system was used to isolate the C. kusanoi laccase where a preparation 10 times purer than the initial crude was obtained, with an enzymatic activity of 2800 U/L, a specific activity of 544.74 U/g and a yield higher than 100%, which showed a more stable behavior at alkaline pH than at acid pH. The purify enzymes showed an optimum range of activity between 30 and 40 °C, and a high thermal stability. It is concluded that the isolated strains have a high degradation capacity and the C. kusanoi L7 strain stands out as the one with the greatest potential when expressing in addition to the cellulolytic complex the enzymes involved in the degradation of lignin.
Keywords
References
Adney and Baker, 2008
B. Adney, J. Baker
Measurement of cellulase activities. Laboratory Analytical Procedure (LAP) Technical Report. A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy, Vol. 21, no. 2 (2008), p. 1212
Baldrian, 2006
P. Baldrian
Fungal laccases – occurrence and properties
FEMS Microbiology Reviews, 30 (2006), pp. 215-242
Banerjee and Vohra, 1991
U.C. Banerjee, R.M. Vohra
Production of laccase by Curvularia sp
Folia Microbiologica, 36 (1991), pp. 4343-4346
Brijwani et al., 2010
K. Brijwani, A. Rigdon, P.V. Vadlani
Fungal laccases: Production, function, and applications in food processing
Enzyme Research, 2010 (2010), 10.4061/2010/149748
Article ID 149748
Chander et al., 2016
K.R. Chander, D. Deswal, S. Sharma, A. Bhattacharya, J.K. Kumar, A. Kaur, et al.
Revisiting cellulase production and redefining current strategies based on major challenges
Renewable and Sustainable Energy Reviews, 55 (2016), pp. 249-272
Dong et al., 2005
J. Dong, Y. Zhang, R. Zhang, W. Huang, Y. Zhang
Influence of culture conditions on laccase production and isozyme patterns in the white-rot fungus Trametes gallica
Journal of Basic Microbiology, 45 (2005), pp. 190-198
CrossRef
Duncan, 1955
D. Duncan
Multiple rage tests and multiple F test
Biometrics, 11 (1) (1955), pp. 1-42
Flores et al., 2009
C. Flores, C. Vidal, M.R. Trejo-Hernández, E. Galindo, L. Serrano-Carreón
Selection of Trichoderma strains capable of increasing laccase production by Pleurotus ostreatus and Agaricus bisporus in dual cultures
Journal of Applied Microbiology, 106 (2009), pp. 249-257
Gagaoua and Hafid, 2016
M. Gagaoua, K. Hafid
Three phase partitioning system, an emerging non-chromatographic tool for proteolytic enzymes recovery and purification
Biosensors Journal, 5 (1) (2016), pp. 1-4, 10.4172/2090-4967.1000134
Gayosso et al., 2004
M. Gayosso, E. Leal, R. Rodriguez
Evaluacion de la actividad enzimaticade Pleurotus ostreatus en presencia de bifenilospoliclorados
Revista Iberioamericana, 23 (2004), pp. 76-81
Ghorai et al., 2009
S. Ghorai, S.P. Banik, D. Verma, S. Chowdhury, Mukherjee, S. Khowala
Fungal biotechnology in food and feed processing
Food Research International, 42 (2009), pp. 577-587
Ghorban et al., 2015
F. Ghorban, M. Karimi, D. Biria, H.R. Kariminia, A. Jeihanipour
Enhancement of fungal delignification of rice straw by Trichoderma viride sp. to improve its saccharification
Biochemical Engineering Journal, 101 (15) (2015), pp. 77-84
Gianfreda et al., 1999
L. Gianfreda, F. Xu, J.-M. Bollag
Laccases: A useful group of oxidoreductive enzymes
Bioremediation Journal, 3 (1999), pp. 1-26
Hatvani and Mécs, 2002
N. Hatvani, I. Mécs
Effect of the nutrient composition on dye decolorisacion and extracellular enzyme production by Lentinus edodes on solid medium
Enzyme and Microbial Technology, 30 (2002), pp. 381-386
Janson, 2012
J.C. Janson
Protein purification, principles, high resolution, methods and applications
Jonh Wiley & Sons, Inc, Hoboken, NJ (2012), pp. 373-375
Janusz et al., 2015
G. Janusz, Czuryło, M. Fra, B. Rola, J. Sulej, A. Pawlik, et al.
Laccase production and metabolic diversity among Flammulina velutipes strains
World Journal of Microbiology and Biotechnology, 31 (2015), pp. 121-133, 10.1007/s11274-014-1769
Kuhad et al., 2004
R. Kuhad, N. Sood, K.K. Tripathi, A. Singh, O.P. Ward
Developments in microbial methods for the treatment of dye effluents
Advances in Applied Microbiology, 56 (2004), pp. 185-213
Kuhad et al., 2011
R.C. Kuhad, R. Gupta, A. Singh
Microbial cellulases and their industrial applications
Enzyme Research (2011), p. 10, 10.4061/2011/280696
Article ID 280696
Kumar and Srikumar, 2012
G.N. Kumar, K. Srikumar
Characterization of xerophytic thermophilic laccase exhibiting metal ion-dependent dye decolorization potential
Applied Biochemistry and Biotechnology, 167 (3) (2012), pp. 662-676
Liu et al., 2015
H. Liu, Y. Cheng, B. Du, C. Tong, S. Liang, S. Han, et al.
Overexpression of a novel thermostable and chloridetolerant laccase from Thermus thermophilus SG0.5JP17-16 in Pichia pastoris and its application in synthetic dye decolorization
PLoS ONE, 10 (3) (2015), p. e0119833
Liu et al., 2009
L. Liu, Z. Lin, T. Zheng, L. Lin, C. Zheng, Z. Lin, et al.
Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969
Enzyme and Microbial Technology, 44 (2009), pp. 426-433
Mandels et al., 1976
M. Mandels, R.E. Andreotti, C. Roche
Measurement of sacarifying cellulose
Biotechnology and Bioengineering Symposium, 6 (1976), pp. 1471-1493
Martins and Rygiewicz, 2005
K.J. Martins, P.T. Rygiewicz
Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts
BMC Microbiology, 5 (2005), p. 28
CrossRef
Moreno et al., 2013
A.D. Moreno, D. Ibarra, I. Ballesteros, A. González, M. Ballesteros
Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase
Bioresource Technology, 135 (2013), pp. 239-245, 10.1016/j.biortech.2012.11.095
Murray et al., 2013
R.K. Murray, D.A. Bender, K.M. Batham, P.J. Kennelly, W.R. Victor, P.W. Anthony
Harper bioquímica ilustrada
McGraw-Hill International Editores, S.A. de C.V., México, D.F. (2013)
Oliva et al., 2015
T. Oliva, A.D. Moreno, M. Demuez, D. Ibarra, E.T. Pejó, C.F. González, et al.
Un raveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw
Bioresourse Technology, 175 (2015), pp. 209-215
Quiroz and Folch, 2011
R.E.C. Quiroz, J.L.M. Folch
Proteínas que remodelan y degradan la pared celular vegetal: Perspectivas actuales
Biotecnología Aplicada, 28 (2011), pp. 194-204
Rajeeva and Lele, 2011
S. Rajeeva, S.S. Lele
Three-phase partitioning for concentration and purification of laccase produced by submerged cultures of Ganoderma sp. WR-1
Biochemical Engineering Journal, 54 (2) (2011), pp. 103-110, 10.1016/j.bej.2011.02.006
Ramírez and Coha, 2003
P. Ramírez, J.M. Coha
Degradación enzimática de celulosa por actinomicetos termófilos: Aislamiento, caracterización y determinación de la actividad celulolítica
Revista Peruana de Biología, 10 (1) (2003), pp. 67-77
Reeta et al., 2017
R. Reeta, M. Singhania, A. Adsul, A.K. Pandey, Patel
Cellulases
Current Developments in Biotechnology and Bioengineering (2017), pp. 73-101
Ribeiro et al., 2012
L. Ribeiro, V. Pinheiro, D. Outor-Monteiro, J. Mourão, R.M.F. Bezzerra, A.A. Dias, et al.
Effects of the dietary incorporation of untreated and white-rot fungi (Ganoderma resinaceum) pre-treated olive leaves on growing rabbits
Animal Feed Science and Technology, 173 (2012), pp. 244-251
Rodríguez et al., 1996
A. Rodríguez, M.A. Falcón, A. Carnicero, F. Perestelo, G. de la Fuente, J. Trojanowski
Laccase activities of Penicillium chrysogenum in relation to lignin degradation
Applied Microbiology and Biotechnology, 45 (3) (1996), pp. 399-403
Savoie and Mata, 1999
J.M. Savoie, G. Mata
The antagonistic action of Trichoderma sp. hyphae to Lentinula edodes hyphae changes lignocellulolytic activities during cultivation in wheat straw
World Journal of Microbiology and Biotechnology, 15 (1999), pp. 369-373
Shraddha et al., 2011
Shraddha, R. Shekher, S. Sehgal, M. Kamthania, A. Kumar
Laccase: Microbial sources, production, purification, and potential biotechnological applications
Enzyme Research (2011), 10.4061/2011/217861
Article ID 217861
Sindhu et al., 2016
R. Sindhu, P. Binod, A. Pandey
Biological pretreatment of lignocellulosic biomass – An overview
Bioresource Technology, 199 (2016), pp. 76-82
Singh et al., 2011
G.D. Singh, H.O. Singh, S. Kaur, S. Bansal, S.B. Kaur
Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi
Industrial Crops and Products, 34 (1) (2011), pp. 1160-1167
Sumathi et al., 2016
T. Sumathi, A. Sri Lakshmi, B. Viswanath, D.V.R. Sai Gopal
Production of Laccase by Cochliobolus sp. Isolated from plastic dumped soils and their ability to degrade low molecular weight PVC
Biochemistry Research International (2016), p. 10, 10.1155/2016/9519527
Article ID 9519527
Taha et al., 2015
M. Taha, E. Shahsavari, K. Al-Hothaly, A. Mouradov, A.T. Smith, A.S. Ball, et al.
Enhanced biological straw saccharification through co-culturing of lignocellulose degrading microorganisms
Applied Biochemistry and Biotechnology, 175 (2015), pp. 3709-3728
Taravillaa et al., 2016
A.O. Taravillaa, E.T. Pejó, M. Demueza, F.C. González, M. Ballesteros
Phenols and lignin: Key players in reducing enzymatic hydrolysis yields of steam-pretreated biomass in presence of laccase
Journal of Biotechnology, 218 (2016), pp. 94-101
Valiño et al., 2004
E. Valiño, A. Elías, V. Torres, T. Carrasco, N. Albelo
Improvement of sugarcane bagasse composition by the strain Trichoderma viride M5-2 in a solid-state fermentation bioreactor
Cuban Journal of Agricultural Science, 38 (2004), p. 145
Valiño et al., 2015
E. Valiño, J.C. Dustet, H. Pérez, L.R. Brandão, A.C. Rosa, I. Scull
Transformation of Stizolobium niveum with cellulolytics fungi strains as functional food
Academia Journal of Microbiology Research (2015), pp. 15-106
ISSN 2315-7771
Van Dyk and Pletschke, 2012
J.S. Van Dyk, B.I. Pletschke
A review of lignocelullose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes – factor affecting enzymes, conversion and synergy
Biotechnology Advances, 30 (2012), pp. 1458-1480
Winquist et al., 2008
E. Winquist, U. Moilanen, A. Mettälä, M. Leisola, A. Hatakka
Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi
Biochemical Engineering Journal, 42 (2) (2008), pp. 128-132
Zhang et al., 2006
H. Zhang, Y.Z. Hong, Y.Z. Xiao, J. Yuan, X.M. Tu, X.Q. Zhang
Efficient production of laccases by Trametes sp. AH28-2 in co-cultivation with a Trichoderma strain
Applied Microbiology and Biotechnology, 73 (2006), pp. 89-94
Zouari et al., 2006
H. Zouari, T. Mechichi, A. Dhouib, S. Sayadi, A. Martínez, M. Martínez
Laccase purification and characterization from Trametes trogii isolated in Tunisia: Decolourization of textile dyes by the purified enzyme
Enzyme and Microbial Technology, 39 (2006), pp. 141-148