Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2018.08.002
Biotechnology Research and Innovation Journal
Microbial Biotechnology Research article

Candida tropicalis able to produce yeast single cell protein using sugarcane bagasse hemicellulosic hydrolysate as carbon source

Cristina Emanuela Barbosa Magalhães, Manoel Santiago Souza-Neto, Spartaco Astolfi-Filho, Italo Thiago Silveira Rocha Matos

Downloads: 2
Views: 407

Abstract

The world demand for foods will be the most important bottle-neck for human being maintenance. In this context, the research for alternative proteins sources aiming human and animal feeding is a necessary approach. A wild-type strain of Candida tropicalis (KP276650) was identified as potential yeast single cell protein (YSCP) producer using sugarcane bagasse hemicellulosic hydrolysate (SBHH) as substrate. Were evaluated the cell growth and sugar consumption along fermentation assay. Biomass yield (YB, g g−1), protein percentage (%), protein yield (YP, g g−1) and yeast biomass productivity (YBP, g L−1 h−1) were calculated. Fermentation assay reach a total of 96 h, being the total reducing sugar present in the media (59.94 g L−1) fully consumed. Final biomass produced was 16.97 g L−1, and the YBP was 0.1767 g L−1 h−1. Percentage of protein in yeast biomass produced was 60.05%, biomass yield (YB) and protein yield (YP) were, respectively, 0.28 and 0.17 g g−1. The YB and YP obtained are close to the observed for some industrial strains of yeasts. The percentage of protein is greater than the expected for most of yeasts and fungi. These results indicate that the using of C. tropicalis (KP276650) for YSCP production may to aggregate high value for sugarcane bagasse.

Keywords

Candida tropicalis,  Protein production,  Sugarcane bagasse hemicellulosic hydrolysate  

References

AOAC, 2016
AOAC
The official methods of analysis of AOAC International by George W. Latimer
(20th ed.) (2016), p. 3172
Available in http://www.eoma.aoac.org/ (accessed 18.06.18)

BRASIL, 2018a
BRASIL
Acompanhamento da Safra Brasileira, Cana de açúcar
Ministério da Agricultura, Companhia Nacional de Abstecimento (2018)
Available in http://www.agricultura.gov.br/assuntos/sustentabilidade/agroenergia/estimativa-de-safra/arquivos/Apresentacao1LevCanaAbril_201718.pdf/ (accessed 18.06.18)

BRASIL, 2018b
BRASIL
Tabela de comparação da produção sucroalcooleira no Brasil
Ministério da Agricultura, Pecuária e Abastecimento (2018)
Available in: http://www.agricultura.gov.br/assuntos/sustentabilidade/agroenergia/arquivos-producao/copy2_of_07a_anocivilanosafra.pdf/ (accessed 18.06.18)

Duarte et al., 2008
L.C. Duarte, F. Carvalheiro, S. Lopes, I. Neves, F.M. Gírio
yeast biomass production in brewery's spent grains hemicellulosic hydrolyzate
Applied Biochemistry and Biotechnology, 148 (2008), pp. 119-129, 10.1007/s12010-007-8046-6 374

FAO, 2009
FAO
Food and Agriculture Organization of the United Nation
High level expert forum – How to feed the world in 2050 – Global agriculture towards 2050 (2009)
Available in: http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf/ (accessed 15.06.18)

García-Garibay et al., 2014
M. García-Garibay, L. Gómez-Ruiz, A.E. Cruz-Guerrero, E. Barzana
Single cell protein: Yeasts and bacteria
Encyclopedia of Food Microbiology, 3 (2014), 10.1016/B978-0-12-384730-0.00310-4

Gerber et al., 2013
P.J. Gerber, H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman, A. Falcucci, G. Tempio
Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities
Food and Agriculture Organization of the United Nations (FAO), Rome (2013)

Kieliszek et al., 2017
M. Kieliszek, A.M. Kot, A. Bzducha-Wróbel, S. Blazejak, I. Gientka, A. Kurcz
Biotechnological use of Candida yeasts in the food industry: A review
Fungal Biology Reviews, 31 (2017), pp. 185-198, 10.1016/j.fbr.2017.06.001

Matos et al., 2017
I.T.S.R. Matos, E.N. Assunção, E.J. Carmo, V.M. Soares, S. Atolfi-Filho
Isolation and characterization of yeasts able to assimilate sugarcane bagasse hemicellulosic hydrolysate and produce xylitol associated with Veturius transversus (Passalidae, Coleoptera Insecta)
International Journal of Microbiology (2017), 10.1155/2017/5346741

Nalage et al., 2016
D.N. Nalage, G.D. Khedkar, A.D. Kalyankar, A.P. Sarkate, S.R. Ghodke, V.B. Bedre, C.D. Khedkar
Single cell proteins
B. Caballero, P. Finglas, F. Toldrá (Eds.), The encyclopedia of food and health, Vol. 4, Academic Press, Oxford (2016), pp. 790-794

Somda et al., 2018
M.K. Somda, M. Nikiema, I. Keita, I. Mogmenga, S.H.S. Kouhounde, Y. Dabire, W.H. Coulibaly, E. Taale, A.S. Traore
Production of single cell protein (SCP) and essentials amino acids from Candida utilis FMJ12 by solid state fermentation using mango waste supplemented with nitrogen sources
African Journal of Biotechnology, 17 (23) (2018), pp. 716-723, 10.5897/AJB2017.16361

Wirsenius et al., 2010
S. Wirsenius, C. Azar, G. Berndes
How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?
Agricultural Systems, 103 (9) (2010), pp. 621-638, 10.1016/j.agsy.2010.07.005

Yadav et al., 2014
J.S.S. Yadav, J. Bezewada, C.M. Ajila, S. Yan, R.D. Tyagi, R.Y. Surampali
Mixed culture of Kluyveromyces marxianus and Candida krusei for single-cell protein production and organic load removal from whey
Bioresource Technology, 164 (2014), pp. 119-127, 10.1016/j.biortech.2014.04.069
 

608b0126a9539533c6397e04 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections