Identification of three robust and efficient Saccharomyces cerevisiae strains isolated from Brazilian's cachaça distilleries
Raquel de Sousa Paredes, Igor Patrick Vasconcelos Vieira, Vinícius Mattos de Mello, Leonardo de Figueiredo Vilela, Rosane Freitas Schwan, Elis Cristina Araújo Eleutherio
Abstract
Three isolated strains from Brazilian's cachaça distilleries were tested for glucose consumption and ethanol production during the fermentation process. The ethanol productivity, cell viability and mitochondrial mutagenic rate of each strain was evaluated at the end of a 24 h-fermentation round. The strains’ resistance to the fermentation process was evaluated after cell recycling followed by another round of fermentation. Among the isolated industrial strains evaluated, the strains CCA083 and CA751 has shown the best performance in terms of productivity and yield. The cachaça strain CCA083 was able to keep a high glucose consumption and ethanol productivity during the second fermentation round. This result suggests that the stress response mechanism is activated due to the heat shock pretreatment, which creates a protective effect on the cell. Therefore, these results could bring up to light a new framework for industries and researchers in order to develop strains with increased stress tolerance on first and second-generation ethanol production.
Keywords
References
Adamis et al., 2007
P.D. Adamis, A.D. Panek, E.C.A. Eleutherio
Toxicology Letters, 173 (2007), pp. 1-7
Amorim et al., 2011
H.V. Amorim, M.L. Lopes, J.V.C. Oliveira, M.S. Buckeridge, G.H. Goldman
Applied Microbiology and Biotechnology, 91 (2011), pp. 1267-1275
Baron et al., 2013
J.A. Baron, K.M. Laws, J.S. Chen, V.C. Culotta
Journal of Biological Chemistry, 288 (2013), pp. 4557-4566
Barry and Gawrisch, 1995
J.A. Barry, K. Gawrisch
Biochemical Journal, 34 (27) (1995), pp. 8852-8860
Basso et al., 2008
L.C. Basso, H.V. Amorim, A.J. de Oliveira, M.L. Lopes
FEMS Yeast Research, 8 (2008), pp. 1155-1163
Basso et al., 2011
L.C. Basso, T.O. Basso, S.N. Rocha
M.A.S. Bernardes (Ed.), Biofuel production, InTech, Rijeka (2011), pp. 85-100
Da Silva et al., 2013
R.O. Da Silva, M. Batistote, M.P. Cereda
Brazilian Archives of Biology and Technology, 56 (2) (2013), pp. 161-169
Della-Bianca and Gombert, 2013
B.E. Della-Bianca, A.K. Gombert
Stress tolerance and growth physiology of yeast strains from the Brazilian fuel ethanol industry
Antonie Van Leeuwenhoek, 104 (6) (2013), pp. 1083-1095
Dorta et al., 2006
C. Dorta, P. de Oliva-Neto, M.S. de Abreu-Neto, N. Nicolau-Junior, A.I. Nagashima
World Journal of Microbiology and Biotechnology, 22 (2) (2006), pp. 177-182
Estruch, 2000
F. Estruch
FEMS Microbiology Review, 24 (4) (2000), pp. 469-486
Fischer et al., 2008
C.R. Fischer, D. Klein-Marcuschamer, G. Stephanopoulos
Metabolic Engineering, 10 (2008), pp. 295-304
Gibson et al., 2008
B.R. Gibson, K.A. Prescott, K.A. Smart
Letters in Applied Microbiology, 46 (2008), pp. 636-642
Good et al., 1993
L. Good, T.M. Dowhanick, J.E. Ernandes, I. Russell, G.G. Steawart
Journal of the American Society of Brewing Chemists, 51 (1993), pp. 35-39
Hahn-Hägerdal et al., 2007
B. Hahn-Hägerdal, K. Karhumaa, C. Fonseca, I. Spencer-Martins, M.F. Gorwa-Grauslund
Applied Biochemistry and Biotechnology, 74 (2007), pp. 937-953
Ivorra et al., 1999
C. Ivorra, J.E. Perrez-ortin, M. Olmo
Biotechnology and Bioengineering, 64 (1999), pp. 698-708
Jönsson and Martín, 2016
L.J. Jönsson, C. Martín
Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects
Bioresource Technology, 199 (2016), pp. 103-112, 10.1016/j.biortech.2015.10.009
Kim et al., 2006
I.S. Kim, H.Y. Moon, H.S. Yun, I. Jin
Journal of Microbiology, 44 (5) (2006), pp. 492-501
Landolfo et al., 2008
S. Landolfo, H. Politi, D. Angelozzi, I. Mannazzu
Biochimica et Biophysica Acta, 1780 (2008), pp. 892-898
Lopes et al., 2016
M.L. Lopes, S.C. Paulillo, A. Godoy, R.A. Cherubin, M.S. Lorenzi, F.H. Giometti, et al.
Brazilian Journal of Microbiology, 47 (Suppl. 1) (2016), pp. 64-76
Lynd et al., 1991
L.R. Lynd, H.J. Ahn, A.G.P. Hill, T. Klapatch
Biotechnology and Applied Biochemistry, 28 (1991), pp. 549-569
Mannarino et al., 2008
S.C. Mannarino, M.A. Amorim, M.D. Pereira, P. Moradas-Ferreira, A.D. Panek, V. Costa, et al.
Mechanisms of Ageing and Development, 129 (2008), pp. 700-705
Mussatto et al., 2010
S.I. Mussatto, G. Dragone, P.M.R. Guimarães, J.P.A. Silva, L.M. Cameiro, I.C. Roberto, et al.
Biotechnology Advances, 28 (2010), pp. 817-830
Pereira et al., 2012
F.B. Pereira, D.G. Gomes, P.M.R. Guimarães, J.A. Teixeira, L. Domingues
Biotechnology Letters, 34 (2012), pp. 45-53
Santiard et al., 1995
D. Santiard, C. Ribiere, R. Nordmann, C. Houee-Levin
Free Radical Biology and Medicine, 19 (1995), pp. 121-127
Seo et al., 2009
H.B. Seo, H.J. Kim, O.K. Lee, J.H. Ha, H.Y. Lee, K.H. Jung
Journal of Industrial Microbiology and Biotechnology, 36 (2) (2009), pp. 285-292
Virmond et al., 2013
E. Virmond, J.D. Rocha, R.F.P.M. Moreira, H.J. José
Journal of the Brazilian Chemical Society, 30 (2) (2013), pp. 197-229
Walker, 1998
G.M. Walker
Yeast physiology and biotechnology
Wiley (1998), pp. 203-264