The development of veterinary vaccines: a review of traditional methods and modern biotechnology approaches
Sérgio Jorge, Odir Antônio Dellagostin
Abstract
The immunization of animals has been carried out for centuries and is generally accepted as the most cost-effective and sustainable method of controlling infectious veterinary diseases. Up to twenty years ago, most veterinary vaccines were either inactivated organisms that were formulated with an oil-based adjuvant or live attenuated vaccines. In many cases, these formulations were not very effective. The discovery of antigen/gene delivery systems has facilitated the development of novel prophylactic and therapeutic veterinary vaccines. To identify vaccine candidates in genomic sequences, a revolutionary approach was established that stems from the assumption that antibodies are more readily able to access surface and secreted than cytoplasm proteins; as such, they represent ideal vaccine candidates. The approach, which is known as reverse vaccinology, uses several bioinformatics algorithms to predict antigen localization and it has been successfully applied to immunize against many veterinary diseases. This review examines some of the main topics that have emerged in the veterinary vaccine field with the use of modern biotechnology techniques.
Keywords
References
Arimitsu et al., 2004
H. Arimitsu, J.-C. Lee, Y. Sakaguchi, Y. Hayakawa, M. Hayashi, M. Nakaura, et al.
Vaccination with recombinant whole heavy chain fragments of Clostridium botulinum Type C and D neurotoxins
Clinical and Diagnostic Laboratory Immunology, 11 (3) (2004), pp. 496-502, 10.1128/CDLI.11.3.496-502.2004
Aurrecoechea et al., 2007
C. Aurrecoechea, M. Heiges, H. Wang, Z. Wang, S. Fischer, P. Rhodes, et al.
ApiDB: Integrated resources for the apicomplexan bioinformatics resource center
Nucleic Acids Research, 35 (Suppl. 1) (2007), 10.1093/nar/gkl880
Babiuk et al., 2003
L.A. Babiuk, R. Pontarollo, S. Babiuk, B. Loehr, S. Van Drunen Littel-van den Hurk
Induction of immune responses by DNA vaccines in large animals
Vaccine, 21 (7–8) (2003), pp. 649-658, 10.1016/S0264-410X(02)00574-1
Bagnoli et al., 2011
F. Bagnoli, B. Baudner, R.P. Mishra, E. Bartolini, L. Fiaschi, P. Mariotti, et al.
Designing the next generation of vaccines for global public health
Omics, 15 (9) (2011), pp. 545-566, 10.1089/omi.2010.0127
Buonaguro and Pulendran, 2011
L. Buonaguro, B. Pulendran
Immunogenomics and systems biology of vaccines
Immunological Reviews, 239 (1) (2011), pp. 197-208, 10.1111/j.1600-065X.2010.00971.x
Cho et al., 2002
H.W. Cho, C.R. Howard, H.W. Lee
Review of an inactivated vaccine against hantaviruses
Intervirology, 45 (2002), pp. 328-333, 10.1159/000067925
Correia et al., 2014
B.E. Correia, J.T. Bates, R.J. Loomis, G. Baneyx, C. Carrico, J.G. Jardine, et al.
Proof of principle for epitope-focused vaccine design
Nature, 507 (7491) (2014), pp. 201-206, 10.1038/nature12966
da Costa et al., 2015
C. da Costa, B. Walker, A. Bonavia
Tuberculosis vaccines – State of the art, and novel approaches to vaccine development
International Journal of Infectious Diseases, 32 (2015), pp. 5-12, 10.1016/j.ijid.2014.11.026
Delany et al., 2014
I. Delany, R. Rappuoli, E. De Gregorio
Vaccines for the 21st century
EMBO Molecular Medicine, 6 (6) (2014), pp. 708-720, 10.1002/emmm.201403876
Dellagostin et al., 2011
O.A. Dellagostin, A.A. Grassmann, D.D. Hartwig, S.R. Félix, É.F. da Silva, A.J.A. McBride
Recombinant vaccines against leptospirosis
Human Vaccines, 7 (11) (2011), pp. 1215-1224, 10.4161/hv.7.11.17944
Dintzis, 1992
R.Z. Dintzis
Rational design of conjugate vaccines
Pediatric Research, 32 (4) (1992), pp. 376-385, 10.1203/00006450-199210000-00002
Doolan et al., 2014
D.L. Doolan, S.H. Apte, C. Proietti
Genome-based vaccine design: The promise for malaria and other infectious diseases
International Journal for Parasitology, 44 (12) (2014), pp. 901-913, 10.1016/j.ijpara.2014.07.010
Dunham, 2002
S.P. Dunham
The application of nucleic acid vaccines in veterinary medicine
Research in Veterinary Science, 73 (1) (2002), pp. 9-16, 10.1016/S0034-5288(02)00032-2
Eshghi et al., 2009
A. Eshghi, P.A. Cullen, L. Cowen, R.L. Zuerner, C.E. Cameron
Global proteome analysis of Leptospira interrogans
Journal of Proteome Research, 8 (10) (2009), pp. 4564-4578, 10.1021/pr9004597
Garçon et al., 2011
N. Garçon, M. Wettendorff, M. Van Mechelen
Role of AS04 in human papillomavirus vaccine: Mode of action and clinical profile
Expert Opinion on Biological Therapy, 11 (5) (2011), pp. 667-677, 10.1517/14712598.2011.573624
Ghosh and Nagar, 2014
S. Ghosh, G. Nagar
Problem of ticks and tick-borne diseases in India with special emphasis on progress in tick control research: A review
Journal of Vector Borne Diseases, 51 (2014), pp. 259-270
http://www.mrcindia.org/journal/issues/514259.pdf
Hartwig et al., 2010
D.D. Hartwig, T.L. Oliveira, F.K. Seixas, K.M. Forster, C. Rizzi, C.P. Hartleben, et al.
High yield expression of leptospirosis vaccine candidates LigA and LipL32 in the methylotrophic yeast Pichia pastoris
Microbial Cell Factories, 9 (1) (2010), p. 98, 10.1186/1475-2859-9-98
Heinson et al., 2015
A.I. Heinson, C.H. Woelk, M. Newell
The promise of reverse vaccinology
International Health, 7 (2) (2015), pp. 85-89, 10.1093/inthealth/ihv002
Jennings and Bachmann, 2008
G.T. Jennings, M.F. Bachmann
The coming of age of virus-like particle vaccines
Biological Chemistry (2008), 10.1515/BC.2008.064
Kremer et al., 2016
F.S. Kremer, M.R. Eslabão, S. Jorge, N.R. Oliveira, J. Labonde, M.N. Santos, et al.
Draft genome of the Leptospira interrogans strains, Acegua, RCA, Prea, and Capivara, obtained from wildlife maintenance hosts and infected domestic animals
Memorias do Instituto Oswaldo Cruz, 111 (4) (2016), pp. 280-283, 10.1590/0074-02760160010
Li et al., 2014
X. Li, A.M. Aldayel, Z. Cui
Aluminum hydroxide nanoparticles show a stronger vaccine adjuvant activity than traditional aluminum hydroxide microparticles
Journal of Controlled Release, 173 (1) (2014), pp. 148-157, 10.1016/j.jconrel.2013.10.032
Liu et al., 2012
F. Liu, S. Ge, L. Li, X. Wu, Z. Liu, Z. Wang
Virus-like particles: Potential veterinary vaccine immunogens
Research in Veterinary Science (2012), 10.1016/j.rvsc.2011.10.018
Marchioro et al., 2013
S.B. Marchioro, D. Maes, B. Flahou, F. Pasmans, R. Del Pozo Sacristán, K. Vranckx, et al.
Local and systemic immune responses in pigs intramuscularly injected with an inactivated Mycoplasma hyopneumoniae vaccine
Vaccine, 31 (9) (2013), pp. 1305-1311, 10.1016/j.vaccine.2012.12.068
McVey and Shi, 2010
S. McVey, J. Shi
Vaccines in veterinary medicine: A brief review of history and technology
Veterinary Clinics of North America – Small Animal Practice, 40 (3) (2010), pp. 381-392, 10.1016/j.cvsm.2010.02.001
Meeusen et al., 2007
E.N.T. Meeusen, J. Walker, A. Peters, P.P. Pastoret, G. Jungersen
Current status of veterinary vaccines
Clinical Microbiology Reviews, 20 (3) (2007), pp. 489-510, 10.1128/CMR.00005-07
Miles et al., 2005
A.P. Miles, H.A. McClellan, K.M. Rausch, D. Zhu, M.D. Whitmore, S. Singh, et al.
Montanide® ISA 720 vaccines: Quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations
Vaccine, 23 (19) (2005), pp. 2528-2537, 10.1016/j.vaccine.2004.08.049
Moreira et al., 2016
C. Moreira, C.E.P. da Cunha, G.M.S.G. Moreira, M. Mendonça, F.M. Salvarani, Â.N. Moreira, et al.
Protective potential of recombinant non-purified botulinum neurotoxin serotypes C and D
Anaerobe, 40 (2016), pp. 58-62, 10.1016/j.anaerobe.2016.05.012
Oliveira et al., 2015
T.L. Oliveira, A.A. Grassmann, R.A. Schuch, A.C.P. Seixas Neto, M. Mendonça, D.D. Hartwig, et al.
Evaluation of the Leptospira interrogans outer membrane protein OmpL37 as a vaccine candidate
PLOS ONE, 10 (11) (2015), p. e0142821, 10.1371/journal.pone.0142821
Ott et al., 2000
G. Ott, R. Radhakrishnan, J. Fang, H. Hora
The adjuvant MF59: A 10-year perspective
Vaccine Adjuvants, 42 (2000), pp. 211-228, 10.1385/1-59259-083-7:211
Peter et al., 2001
K. Peter, Y. Men, G. Pantaleo, B. Gander, G. Corradin
Induction of a cytotoxic T-cell response to HIV-1 proteins with short synthetic peptides and human compatible adjuvants
Vaccine, 19 (30) (2001), pp. 4121-4129, 10.1016/S0264-410X(01)00179-7
Pizza et al., 2000
M. Pizza, V. Scarlato, V. Masignani, M.M. Giuliani, B. Aricò, M. Comanducci, et al.
Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing
Science (New York, N.Y.), 287 (5459) (2000), pp. 1816-1820
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10710308
Rappuoli, 2001
R. Rappuoli
Reverse vaccinology, a genome-based approach to vaccine development
Vaccine, 19 (17–19) (2001), pp. 2688-2691, 10.1016/S0264-410X(00)00554-5
Rappuoli et al., 2014
R. Rappuoli, M. Pizza, G. Del Giudice, E. De Gregorio
Vaccines, new opportunities for a new society
Proceedings of the National Academy of Sciences of the United States of America, 111 (34) (2014), 10.1073/pnas.1402981111
Ravipaty and Reilly, 2010
S. Ravipaty, J.P. Reilly
Comprehensive characterization of methicillin-resistant Staphylococcus aureus subsp. aureus COL secretome by two-dimensional liquid chromatography and mass spectrometry
Molecular & Cellular Proteomics, 9 (9) (2010), pp. 1898-1919, 10.1074/mcp.M900494-MCP200
Redding and Weiner, 2009
L. Redding, D.B. Weiner
DNA vaccines in veterinary use
Expert Review of Vaccines, 8 (9) (2009), pp. 1251-1276, 10.1586/erv.09.77
Rizzi et al., 2012
C. Rizzi, M.V. Bianco, F.C. Blanco, M. Soria, M.J. Gravisaco, V. Montenegro, et al.
Vaccination with a BCG strain overexpressing Ag85B protects cattle against Mycobacterium bovis challenge
PLoS ONE, 7 (12) (2012), p. e51396, 10.1371/journal.pone.0051396
Seib et al., 2012
K.L. Seib, X. Zhao, R. Rappuoli
Developing vaccines in the era of genomics: A decade of reverse vaccinology
Clinical Microbiology and Infection (2012), 10.1111/j.1469-0691.2012.03939.x
Shams, 2005
H. Shams
Recent developments in veterinary vaccinology
Veterinary Journal, 170 (3) (2005), pp. 289-299, 10.1016/j.tvjl.2004.07.004
Shimoji et al., 2002
Y. Shimoji, E. Oishi, T. Kitajima, Y. Muneta, S. Shimizu, Y. Mori
Erysipelothrix rhusiopathiae YS-1 as a live vaccine vehicle for heterologous protein expression and intranasal immunization of pigs
Infection and Immunity, 70 (1) (2002), pp. 226-232, 10.1128/IAI.70.1.226
Simionatto et al., 2010
S. Simionatto, S.B. Marchioro, V. Galli, D.D. Hartwig, R.M. Carlessi, F.M. Munari, et al.
Cloning and purification of recombinant proteins of Mycoplasma hyopneumoniae expressed in Escherichia coli
Protein Expression and Purification, 69 (2) (2010), pp. 132-136, 10.1016/j.pep.2009.09.001
Slütter et al., 2009
B. Slütter, L. Plapied, V. Fievez, M. Alonso Sande, A. des Rieux, Y.J. Schneider, et al.
Mechanistic study of the adjuvant effect of biodegradable nanoparticles in mucosal vaccination
Journal of Controlled Release, 138 (2) (2009), pp. 113-121, 10.1016/j.jconrel.2009.05.011
Soema et al., 2015
P.C. Soema, R. Kompier, J.P. Amorij, G.F.A. Kersten
Current and next generation influenza vaccines: Formulation and production strategies
European Journal of Pharmaceutics and Biopharmaceutics, 94 (2015), pp. 251-263, 10.1016/j.ejpb.2015.05.023
Tettelin et al., 2000
H. Tettelin, N.J. Saunders, J. Heidelberg, A.C. Jeffries, K.E. Nelson, J.A. Eisen, et al.
Complete genome sequence of Neisseria meningitidis serogroup B strain MC58
Science (New York, N.Y.), 287 (5459) (2000), pp. 1809-1815
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10710307
Unnikrishnan et al., 2012
M. Unnikrishnan, R. Rappuoli, D. Serruto
Recombinant bacterial vaccines
Current Opinion in Immunology, 24 (3) (2012), pp. 337-342, 10.1016/j.coi.2012.03.013
van Gelder and Makoschey, 2012
P. van Gelder, B. Makoschey
Production of viral vaccines for veterinary use
Berliner und Münchener Tierärztliche Wochenschrift (2012), 10.2376/0005-9366-125-103
Vasconcelos et al., 2005
A.T.R. Vasconcelos, H.B. Ferreira, C.V. Bizarro, S.L. Bonatto, M.O. Carvalho, P.M. Pinto, et al.
Swine and poultry pathogens: The complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae
Journal of Bacteriology, 187 (16) (2005), pp. 5568-5577, 10.1128/JB.187.16.5568–5577.2005
Zepp, 2010
F. Zepp
Principles of vaccine design – Lessons from nature
Vaccine (2010), 10.1016/j.vaccine.2010.07.020