Biotechnology Research and Innovation Journal
http://www.biori.periodikos.com.br/article/doi/10.1016/j.biori.2017.04.001
Biotechnology Research and Innovation Journal
Plant Biotechnology Research article

Knocking down chitin synthase 2 by RNAi is lethal to the cotton boll weevil

L.L.P. Macedo, J.D. Antonino de Souza Junior, R.R. Coelho, F.C.A. Fonseca, A.A.P. Firmino, M.C.M. Silva, R.R. Fragoso, E.V.S. Albuquerque, M.S. Silva, J. de Almeida Engler, W.R. Terra, M.F. Grossi-de-Sa

Downloads: 0
Views: 258

Abstract

The cotton boll weevil (Anthonomus grandis) is the most destructive cotton insect pest in Brazil. The endophytic habit of this insect makes difficult its chemical control. Chitin synthase (CHS) is an integral membrane glycosyltransferase that is essential for chitin chain polymerization and deposition in insect chitinous structures, such as the peritrophic membrane (PM). Because it is not present in plants or vertebrates, CHS can be considered a promising target for eco-friendly biotechnological approaches, such as RNA interference (RNAi)-mediated gene silencing. Considering the relevance of CHS genes in the chitin biosynthetic pathway in insects, we report here the molecular cloning of the full-length CHS2 cDNA from the cotton boll weevil, and its functional validation via RNAi. The AgraCHS2 cDNA sequence is 4,869 bp, with a 4,446 bp open reading frame that encodes a predicted protein with 1,482 amino acid residues. Predicted protein has high similarity (53 to 78%) with other insects CHS. Moreover, only one copy is present in A. grandis genome. Transcriptional analysis showed that AgraCHS2 transcripts are restricted to the insect midgut at the third-larval instar and adult stages, which are considered the main feeding stages. RNAi-mediated knockdown of the AgraCHS2 affected A. grandis development, resulting in oviposition reduction of 93% and leading to 100% adult mortality. These data, in addition to the observation of PM severe disorganization in the midgut after AgraCHS2 knock-down, suggest AgraCHS2 as a promising target for developing RNAi-based biotechnological alternatives to specifically control the cotton boll weevil.

Keywords

Peritrophic membrane,  Midgut,  Insect pest control,  RNAi  

References

Alvarenga et al., 2016
E.S. Alvarenga, J.F. Mansur, S.A. Justi, J. Figueira-Mansur, V.M. Dos Santos, S.G. Lopez, et al.
Chitin is a component of the Rhodnius prolixus midgut
Insect Biochemistry and Molecular Biology, 69 (2016), pp. 61-70

Alves et al., 2010
A.P. Alves, M.D. Lorenzen, R.W. Beeman, J.E. Foster, B.D. Siegfried
RNA interference as a method for target-site screening in the western corn rootworm, Diabrotica virgifera virgifera
Journal of Insect Science, 10 (2010), p. 16

Ampasala et al., 2011
D.R. Ampasala, S.C. Zheng, D.Y. Zhang, T. Ladd, D. Doucet, P.J. Krell, et al.
An epidermis-specific chitin synthase CDNA in Choristoneura fumiferana: Cloning, characterization, developmental and hormonal-regulated expression
Archives of Insect Biochemistry and Physiology, 76 (2011), pp. 83-96

Arakane et al., 2011
Y. Arakane, M.C. Baguinon, S. Jasrapuria, S. Chaudhari, A. Doyungan, K.J. Kramer, et al.
Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity
Insect Biochemistry and Molecular Biology, 41 (2011), pp. 42-50

Arakane et al., 2004
Y. Arakane, D.G. Hogenkamp, Y.C. Zhu, K.J. Kramer, C.A. Specht, R.W. Beeman, et al.
Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development
Insect Biochemistry and Molecular Biology, 34 (2004), pp. 291-304

Arakane et al., 2005
Y. Arakane, S. Muthukrishnan, K.J. Kramer, C.A. Specht, Y. Tomoyasu, M.D. Lorenzen, et al.
The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix
Insect Molecular Biology, 14 (2005), pp. 453-463

Arakane et al., 2008
Y. Arakane, C.A. Specht, K.J. Kramer, S. Muthukrishnan, R.W. Beeman
Chitin synthases are required for survival, fecundity and egg hatch in the red flour beetle, Tribolium castaneum
Insect Biochemistry and Molecular Biology, 38 (2008), pp. 959-962

Arakane et al., 2012
Y. Arakane, T. Taira, T. Ohnuma, T. Fukamizo
Chitin-related enzymes in agro-biosciences
Current Drug Targets, 13 (2012), pp. 442-470

Bolognesi et al., 2005
R. Bolognesi, Y. Arakane, S. Muthukrishnan, K.J. Kramer, W.R. Terra, C. Ferreira
Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda
Insect Biochemistry and Molecular Biology, 35 (2005), pp. 1249-1259

Broehan et al., 2007
G. Broehan, L. Zimoch, A. Wessels, B. Ertas, H. Merzendorfer
A chymotrypsin-like serine protease interacts with the chitin synthase from the midgut of the tobacco hornworm
Journal of Experimental Biology, 210 (2007), pp. 3636-3643

Caldeira et al., 2007
W. Caldeira, A.B. Dias, W.R. Terra, A.F. Ribeiro
Digestive enzyme compartmentalization and recycling and sites of absorption and secretion along the midgut of Dermestes maculatus (Coleoptera) larvae
Archives of Insect Biochemistry and Physiology, 64 (2007), pp. 1-18

Carpita, 2011
N.C. Carpita
Update on mechanisms of plant cell wall biosynthesis: How plants make cellulose and other (1->4)-beta-D-glycans
Plant Physiology, 155 (2011), pp. 171-184

Chen et al., 2013
L. Chen, W.J. Yang, L. Cong, K.K. Xu, J.J. Wang
Molecular cloning, characterization and mRNA expression of a chitin synthase 2 gene from the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae)
International Journal of Molecular Sciences, 14 (2013), pp. 17055-17072

Coelho et al., 2016
R.R. Coelho, J.D. de Souza Junior, A.A. Firmino, L.L. de Macedo, F.C. Fonseca, W.R. Terra, et al.
Vitellogenin knockdown strongly affects cotton boll weevil egg viability but not the number of eggs laid by females
Meta Gene, 9 (2016), pp. 173-180

Cohen, 2001
E. Cohen
Chitin synthesis and inhibition: A revisit
Pest Management Science, 57 (2001), pp. 946-950

Firmino et al., 2013
A.A. Firmino, F.C. Fonseca, L.L.P. Macedo, R.R. Coelho, J.D. Antonino de Souza Jr., R.C. Togawa, et al.
Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests
PLoS ONE, 8 (2013), p. e85079

Gagou et al., 2002
M.E. Gagou, M. Kapsetaki, A. Turberg, D. Kafetzopoulos
Stage-specific expression of the chitin synthase DmeChSA and DmeChSB genes during the onset of Drosophila metamorphosis
Insect Biochemistry and Molecular Biology, 32 (2002), pp. 141-146

Hall, 1999
T.A. Hall
BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
Nucleic Acids Symposium Series, 41 (1999), pp. 95-98

Harper et al., 1998
M.S. Harper, T.L. Hopkins, T.H. Czapla
Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae
Tissue & Cell, 30 (1998), pp. 166-176

Hellemans et al., 2007
J. Hellemans, G. Mortier, A. De Paepe, F. Speleman, J. Vandesompele
qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data
Genome Biology (2007), p. 8

Hogenkamp et al., 2005
D.G. Hogenkamp, Y. Arakane, L. Zimoch, H. Merzendorfer, K.J. Kramer, R.W. Beeman, et al.
Chitin synthase genes in Manduca sexta: Characterization of a gut-specific transcript and differential tissue expression of alternately spliced mRNAs during development
Insect Biochemistry and Molecular Biology, 35 (2005), pp. 529-540

Hopkins and Harper, 2001
T.L. Hopkins, M.S. Harper
Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure
Archives of Insect Biochemistry and Physiology, 47 (2001), pp. 100-109

IMAmt, 2015
Instituto Mato-grossense do Algodão – IMAmt
O bicudo-do-algodoeiro (Anthonomus grandis Boh., 1843) nos cerrados brasileiros: Biologia e medidas de controle
Cuiabá (MT)
(2015)

Joga et al., 2016
M.R. Joga, M.J. Zotti, G. Smagghe, O. Christiaens
RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far
Frontiers in Physiology, 7 (2016), p. 553

Katoch et al., 2013
R. Katoch, A. Sethi, N. Thakur, L.L. Murdock
RNAi for insect control: Current perspective and future challenges
Applied Biochemistry and Biotechnology, 171 (2013), pp. 847-873

Kelkenberg et al., 2015
M. Kelkenberg, J. Odman-Naresh, S. Muthukrishnan, H. Merzendorfer
Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut
Insect Biochemistry and Molecular Biology, 56 (2015), pp. 21-28

Klumper and Qaim, 2014
W. Klumper, M. Qaim
A meta-analysis of the impacts of genetically modified crops
PLoS ONE, 9 (2014), p. e111629

Kola et al., 2015
V.S. Kola, P. Renuka, M.S. Madhav, S.K. Mangrauthia
Key enzymes and proteins of crop insects as candidate for RNAi based gene silencing
Frontiers in Physiology, 6 (2015), p. 119

Kramer and Koga, 1986
K.J. Kramer, D. Koga
Insect chitin – Physical state, synthesis, degradation and metabolic-regulation
Insect Biochemistry, 16 (1986), pp. 851-877

Krogh et al., 2001
A. Krogh, B. Larsson, G. von Heijne, E.L. Sonnhammer
Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
Journal of Molecular Biology, 305 (2001), pp. 567-580

Levy et al., 2011
S.M. Levy, A.M. Falleiros, F. Moscardi, E.A. Gregorio
The role of peritrophic membrane in the resistance of Anticarsia gemmatalis larvae (Lepidoptera: Noctuidae) during the infection by its nucleopolyhedrovirus (AgMNPV)
Arthropod Structure & Development, 40 (2011), pp. 429-434

Liu et al., 2012
X. Liu, H. Zhang, S. Li, K.Y. Zhu, E. Ma, J. Zhang
Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria
Insect Biochemistry and Molecular Biology, 42 (2012), pp. 902-910

Mansur et al., 2014
J.F. Mansur, E.S. Alvarenga, J. Figueira-Mansur, T.A. Franco, I.B. Ramos, H. Masuda, et al.
Effects of chitin synthase double-stranded RNA on molting and oogenesis in the Chagas disease vector Rhodnius prolixus
Insect Biochemistry and Molecular Biology, 51 (2014), pp. 110-121

McDonnell et al., 2006
A.V. McDonnell, T. Jiang, A.E. Keating, B. Berger
Paircoil2: Improved prediction of coiled coils from sequence
Bioinformatics, 22 (2006), pp. 356-358

Melia et al., 2002
T.J. Melia, T. Weber, J.A. McNew, L.E. Fisher, R.J. Johnston, F. Parlati, et al.
Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins
The Journal of Cell Biology, 158 (2002), pp. 929-940

Merzendorfer, 2006
H. Merzendorfer
Insect chitin synthases: A review
Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 176 (2006), pp. 1-15

Merzendorfer, 2011
H. Merzendorfer
The cellular basis of chitin synthesis in fungi and insects: Common principles and differences
European Journal of Cell Biology, 90 (2011), pp. 759-769

Merzendorfer, 2012
H. Merzendorfer
Chitin synthesis inhibitors: Old molecules and new developments
Insect Science (2012), pp. 1-18

Miller et al., 2012
S.C. Miller, K. Miyata, S.J. Brown, Y. Tomoyasu
Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: Parameters affecting the efficiency of RNAi
PLoS ONE, 7 (2012), p. e47431

Monnerat et al., 2000
R.G. Monnerat, S.C. Dias, O.B. Oliveira-Neto, S.D. Nobre, J.O. Silva-Werneck, M.F. Grossi-de-Sa
Criação massal do bicudo do algodoeiro Anthonomus grandis em laboratório., Comunicado Técnico, 46, Embrapa-Cenargen, Brasília (2000)
Moussian, 2010
B. Moussian
Recent advances in understanding mechanisms of insect cuticle differentiation
Insect Biochemistry and Molecular Biology, 40 (2010), pp. 363-375

Moussian et al., 2015
B. Moussian, A. Letizia, G. Martinez-Corrales, B. Rotstein, A. Casali, M. Llimargas
Deciphering the genetic programme triggering timely and spatially-regulated chitin deposition
PLoS Genetics, 11 (2015), p. e1004939

Muthukrishnan et al., 2012
S. Muthukrishnan, H. Merzendorfer, Y. Arakane, K.J. Kramer
Chitin metabolism in insects
L.I. Gilbert (Ed.), Insect molecular biology and biochemistry (1st ed.), Elsevier, London (2012), pp. 193-225

Oliveira-Neto et al., 2004
O.B. Oliveira-Neto, J.A. Batista, D.J. Rigden, R.R. Fragoso, R.O. Silva, E.A. Gomes, et al.
A diverse family of serine proteinase genes expressed in cotton boll weevil (Anthonomus grandis): Implications for the design of pest-resistant transgenic cotton plants
Insect Biochemistry and Molecular Biology, 34 (2004), pp. 903-918

Oliveira-Neto et al., 2003
O.B. Oliveira-Neto, J.A. Batista, D.J. Rigden, O.L. Franco, R. Falcao, R.R. Fragoso, et al.
Molecular cloning of alpha-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: An approach to insect resistance
Journal of Protein Chemistry, 22 (2003), pp. 77-87

Qu and Yang, 2012
M. Qu, Q. Yang
Physiological significance of alternatively spliced exon combinations of the single-copy gene class A chitin synthase in the insect Ostrinia furnacalis (Lepidoptera)
Insect Molecular Biology, 21 (2012), pp. 395-404

Ribeiro et al., 2014
J.M. Ribeiro, F.A. Genta, M.H. Sorgine, R. Logullo, R.D. Mesquita, G.O. Paiva-Silva, et al.
An insight into the transcriptome of the digestive tract of the bloodsucking bug Rhodnius prolixus
PLoS Neglected Tropical Diseases, 8 (2014), p. e2594

Rubio et al., 2008
G.J. Rubio, P.A. Bustillo, E.L. Vallejo, Z.J. Acuna, M.P. Benavides
Alimentary canal and reproductive tract of Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae, Scolytinae)
Neotropical Entomology, 37 (2008), pp. 143-151

Sambrook et al., 1989
J. Sambrook, E.F. Fritsch, T. Maniatis
Molecular cloning: A laboratory manual
(2nd ed.), Cold Spring Harbor Laboratory Press, N.Y. (1989)

Shang et al., 2016
F. Shang, Y. Xiong, W.K. Xia, D.D. Wei, D. Wei, J.J. Wang
Identification, characterization and functional analysis of a chitin synthase gene in the brown citrus aphid, Toxoptera citricida (Hemiptera, Aphididae)
Insect Molecular Biology, 25 (2016), pp. 422-430

Shen et al., 2013
G.M. Shen, W. Dou, Y. Huang, X.Z. Jiang, G. Smagghe, J.J. Wang
In silico cloning and annotation of genes involved in the digestion, detoxification and RNA interference mechanism in the midgut of Bactrocera dorsalis [Hendel (Diptera: Tephritidae)]
Insect Molecular Biology, 22 (2013), pp. 354-365

Snodgrass, 1993
R.E. Snodgrass
Principles of insect morphology
Cornell University Press (1993)

Soares-Costa et al., 2011
A. Soares-Costa, A.B. Dias, M. Dellamano, F.F. de Paula, A.K. Carmona, W.R. Terra, et al.
Digestive physiology and characterization of digestive cathepsin L-like proteinase from the sugarcane weevil Sphenophorus levis
Journal of Insect Physiology, 57 (2011), pp. 462-468

Sousa et al., 2014
G. Sousa, E.L. Scudeler, J. Abrahão, H. Conte
Functional morphology of the crop and proventriculus of Sitophilus zeamais (Coleoptera: Curculionidae)
Annals of the Entomological Society of America, 106 (2014), pp. 846-852

Spit et al., 2016
J. Spit, L. Badisco, L. Vergauwen, D. Knapen, J. Vanden Broeck
Microarray-based annotation of the gut transcriptome of the migratory locust, Locusta migratoria
Insect Molecular Biology, 25 (2016), pp. 745-756

Swevers et al., 2013
L. Swevers, H. Huvenne, G. Menschaert, D. Kontogiannatos, A. Kourti, Y. Pauchet, et al.
Colorado potato beetle (Coleoptera) gut transcriptome analysis: Expression of RNA interference-related genes
Insect Molecular Biology, 22 (2013), pp. 668-684

Tamura et al., 2011
K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar
MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods
Molecular Biology and Evolution, 28 (2011), pp. 2731-2739

Tellam and Eisemann, 2000
R.L. Tellam, C. Eisemann
Chitin is only a minor component of the peritrophic matrix from larvae of Lucilia cuprina
Insect Biochemistry and Molecular Biology, 30 (2000), pp. 1189-1201

Tellam et al., 2000
R.L. Tellam, T. Vuocolo, S.E. Johnson, J. Jarmey, R.D. Pearson
Insect chitin synthase: cDNA sequence, gene organization and expression
European Journal of Biochemistry, 267 (2000), pp. 6025-6043

Terra, 2001
W.R. Terra
The origin and functions of the insect peritrophic membrane and peritrophic gel
Archives of Insect Biochemistry and Physiology, 47 (2001), pp. 47-61

Terra and Ferreira, 1994
W.R. Terra, C. Ferreira
Insect digestive enzymes – Properties, compartmentalization and function
Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 109 (1994), pp. 1-62

Timmons et al., 2001
L. Timmons, D.L. Court, A. Fire
Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans
Gene, 263 (2001), pp. 103-112

Tomoyasu and Denell, 2004
Y. Tomoyasu, R.E. Denell
Larval RNAi in Tribolium (Coleoptera) for analyzing adult development
Development Genes and Evolution, 214 (2004), pp. 575-578

Valencia et al., 2000
A. Valencia, A.E. Bustillo, G.E. Ossa, M.J. Chrispeels
Alpha-amylases of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors
Insect Biochemistry and Molecular Biology, 30 (2000), pp. 207-213

Valencia et al., 2016
A. Valencia, H. Wang, A. Soto, M. Aristizabal, J.W. Arboleda, S.I. Eyun, et al.
Pyrosequencing the midgut transcriptome of the banana weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) reveals multiple protease-like transcripts
PLoS ONE, 11 (2016), p. e0151001

Vyas et al., 2017
M. Vyas, A. Raza, M.Y. Ali, M.A. Ashraf, S. Mansoor, A.A. Shahid, et al.
Knock down of whitefly gut gene expression and mortality by orally delivered gut gene-specific dsRNAs
PLoS ONE, 12 (2017), p. e0168921

Wang and Granados, 2000
P. Wang, R.R. Granados
Calcofluor disrupts the midgut defense system in insects
Insect Biochemistry and Molecular Biology, 30 (2000), pp. 135-143

Wang et al., 2012
Y. Wang, H.W. Fan, H.J. Huang, J. Xue, W.J. Wu, Y.Y. Bao, et al.
Chitin synthase 1 gene and its two alternative splicing variants from two sap-sucking insects, Nilaparvata lugens and Laodelphax striatellus (Hemiptera: Delphacidae)
Insect Biochemistry and Molecular Biology, 42 (2012), pp. 637-646

Wu et al., 2016
K. Wu, B. Yang, W. Huang, L. Dobens, H. Song, E. Ling
Gut immunity in Lepidopteran insects
Developmental and Comparative Immunology, 64 (2016), pp. 65-74

Zhang et al., 2010a
J.Z. Zhang, X.J. Liu, J.Q. Zhang, D.Q. Li, Y. Sun, Y.P. Guo, et al.
Silencing of two alternative splicing-derived mRNA variants of chitin synthase 1 gene by RNAi is lethal to the oriental migratory locust, Locusta migratoria manilensis (Meyen)
Insect Biochemistry and Molecular Biology, 40 (2010), pp. 824-833

Zhang et al., 2010b
X. Zhang, J. Zhang, K.Y. Zhu
Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae)
Insect Molecular Biology, 19 (2010), pp. 683-693

Zhang et al., 2012
X. Zhang, J.Z. Zhang, Y. Park, K.Y. Zhu
Identification and characterization of two chitin synthase genes in African malaria mosquito, Anopheles gambiae
Insect Biochemistry and Molecular Biology, 42 (2012), pp. 674-682

Zhao and Fernald, 2005
S. Zhao, R.D. Fernald
Comprehensive algorithm for quantitative real-time polymerase chain reaction
Journal of Computational Biology, 12 (2005), pp. 1047-1064

Zhu et al., 2002
Y.C. Zhu, C.A. Specht, N.T. Dittmer, S. Muthukrishnan, M.R. Kanost, K.J. Kramer
Sequence of a cDNA and expression of the gene encoding a putative epidermal chitin synthase of Manduca sexta
Insect Biochemistry and Molecular Biology, 32 (2002), pp. 1497-1506

Zhuo et al., 2014
W. Zhuo, Y. Fang, L. Kong, X. Li, Y. Sima, S. Xu
Chitin synthase A: A novel epidermal development regulation gene in the larvae of Bombyx mori
Molecular Biology Reports, 41 (2014), pp. 4177-4186
 

608b0be6a953955cb4670303 biori Articles
Links & Downloads

BIORI

Share this page
Page Sections