Structural diversity of carbohydrate esterases
Aline M. Nakamura, Alessandro S. Nascimento, Igor Polikarpov
Abstract
Carbohydrate esterases (CEs) catalyze the de-O or de-N-acylation by removing the ester decorations from carbohydrates. CEs are currently classified in 15 families in the Carbohydrate-Active Enzyme (CAZy) database, which classifies a large variety of enzymes that assemble, modify and breakdown carbohydrates and glycoconjugates. CEs have significant importance as biocatalysts in a variety of bioindustrial processes and applications. Thus, the understanding of molecular mechanisms involved in CE catalysis is essential. However, despite a rather large number of enzymes classified as CEs, just a few have been studied biochemically and only a handful has their three-dimensional structures determined and analyzed. Here, we present a brief overview of all currently classified CE families, mainly focusing on the structures and enzymatic activities of CEs.
Keywords
References
Anderson et al., 2001
D.H. Anderson, G. Harth, M.A. Horwitz, D. Eisenberg
An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (antigen 85B), a mycolyl transferase 1
Journal of Molecular Biology, 307 (2) (2001), pp. 671-681, 10.1006/jmbi.2001.4461
Anderson et al., 1993
M.S. Anderson, H.G. Bull, S.M. Galloway, T.M. Kelly, S. Mohan, K. Radika, C.R. Raetz
UDP-N-acetylglucosamine acyltransferase of Escherichia coli. The first step of endotoxin biosynthesis is thermodynamically unfavorable
Journal of Biological Chemistry, 268 (26) (1993), pp. 19858-19865
Andrés et al., 2014
E. Andrés, D. Albesa-Jové, X. Biarnés, B.M. Moerschbacher, M.E. Guerin, A. Planas
Structural basis of chitin oligosaccharide deacetylation
Angewandte Chemie International Edition, 53 (27) (2014), pp. 6882-6887, 10.1002/anie.201400220
Arnaouteli et al., 2015
S. Arnaouteli, P. Giastas, A. Andreou, M. Tzanodaskalaki, C. Aldridge, S.J. Tzartos, V. Bouriotis
Two putative polysaccharide deacetylases are required for osmotic stability and cell shape maintenance in Bacillus anthracis
Journal of Biological Chemistry, 290 (21) (2015), pp. 13465-13478
Aspinall, 1959
G.O. Aspinall
Structural chemistry of the hemicelluloses
L.W. Melville (Ed.), Advances in carbohydrate chemistry, vol. 14, Academic Press (1959), pp. 429-468
Badhan et al., 2014
A. Badhan, Y. Wang, R. Gruninger, D. Patton, J. Powlowski, A. Tsang, T. McAllister
Formulation of enzyme blends to maximize the hydrolysis of alkaline peroxide pretreated alfalfa hay and barley straw by rumen enzymes and commercial cellulases
BMC Biotechnology, 14 (1) (2014), pp. 1-14, 10.1186/1472-6750-14-31
Belisle et al., 1997
J.T. Belisle, V.D. Vissa, T. Sievert, K. Takayama, P.J. Brennan, G.S. Besra
Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis
Science, 276 (5317) (1997), p. 1420
Biely, 2012
P. Biely
Microbial carbohydrate esterases deacetylating plant polysaccharides
Biotechnology Advances, 30 (6) (2012), pp. 1575-1588, 10.1016/j.biotechadv.2012.04.010
Biely et al., 2004
P. Biely, M. Mastihubová, D.C. la Grange, W.H. van Zyl, B.A. Prior
Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl β-d-xylopyranosides
Analytical Biochemistry, 332 (1) (2004), pp. 109-115, 10.1016/j.ab.2004.04.022
Bitto et al., 2005
E. Bitto, C.A. Bingman, J.G. McCoy, S.T.M. Allard, G.E. Wesenberg, G.N. Phillips Jr.
The structure at 1.6 Å resolution of the protein product of the At4g34215 gene from Arabidopsis thaliana
Acta Crystallographica Section D, 61 (12) (2005), pp. 1655-1661, 10.1107/S0907444905034074
Blair et al., 2006
D.E. Blair, O. Hekmat, A.W. Schüttelkopf, B. Shrestha, K. Tokuyasu, S.G. Withers, D.M.F. van Aalten
Structure and mechanism of chitin deacetylase from the fungal pathogen Colletotrichum lindemuthianum
Biochemistry, 45 (31) (2006), pp. 9416-9426, 10.1021/bi0606694
Blair et al., 2005
D.E. Blair, A.W. Schüttelkopf, J.I. MacRae, D.M.F. van Aalten
Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor
Proceedings of the National Academy of Sciences of United States of America, 102 (43) (2005), pp. 15429-15434
Blair and van Aalten, 2004
D.E. Blair, D.M.F. van Aalten
Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine
FEBS Letters, 570 (1–3) (2004), pp. 13-19, 10.1016/j.febslet.2004.06.013
Boneca, 2005
I.G. Boneca
The role of peptidoglycan in pathogenesis
Current Opinion in Microbiology, 8 (1) (2005), pp. 46-53, 10.1016/j.mib.2004.12.008
Bonnin et al., 2003
E. Bonnin, A. Le Goff, G.J.W.M. van Alebeek, A.G.J. Voragen, J.F. Thibault
Mode of action of Fusarium moniliforme endopolygalacturonase towards acetylated pectin
Carbohydrate Polymers, 52 (4) (2003), pp. 381-388, 10.1016/S0144-8617(02)00332-6
Boraston and Abbott, 2012
A.B. Boraston, D.W. Abbott
Structure of a pectin methylesterase from Yersinia enterocolitica
Acta Crystallographica Section F, 68 (2) (2012), pp. 129-133, 10.1107/S1744309111055400
Bornscheuer, 2002
U.T. Bornscheuer
Microbial carboxyl esterases: Classification, properties and application in biocatalysis
FEMS Microbiology Reviews, 26 (1) (2002), pp. 73-81
Branda et al., 2005
S.S. Branda, Å. Vik, L. Friedman, R. Kolter
Biofilms: The matrix revisited
Trends in Microbiology, 13 (1) (2005), pp. 20-26, 10.1016/j.tim.2004.11.006
Breton et al., 1996
C. Breton, M. Bordenave, L. Richard, J.C. Pernollet, J.C. Huet, S. Pérez, R. Goldberg
PCR cloning and expression analysis of a cDNA encoding a pectinacetylesterase from Vigna radiata L.
FEBS Letters, 388 (2–3) (1996), pp. 139-142, 10.1016/0014-5793(96)00510-8
Brown et al., 2012
M.F. Brown, U. Reilly, J.A. Abramite, J.T. Arcari, R. Oliver, R.A. Barham, D.G. Wishka
Potent inhibitors of LpxC for the treatment of gram-negative infections
Journal of Medicinal Chemistry, 55 (2) (2012), pp. 914-923, 10.1021/jm2014748
Brzozowski et al., 1991
A.M. Brzozowski, U. Derewenda, Z.S. Derewenda, G.G. Dodson, D.M. Lawson, J.P. Turkenburg, L. Thim
A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex
Nature, 351 (6326) (1991), pp. 491-494, 10.1038/351491a0
Buetow et al., 2006
L. Buetow, A. Dawson, W.N. Hunter
The nucleotide-binding site of Aquifex aeolicus LpxC
Acta Crystallographica Section F, 62 (11) (2006), pp. 1082-1086, 10.1107/S1744309106041893
Cantarel et al., 2009
B.L. Cantarel, P.M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, B. Henrissat
The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics
Nucleic Acids Research, 37 (Suppl. 1) (2009), pp. D233-D238
Caufrier et al., 2003
F. Caufrier, A. Martinou, C. Dupont, V. Bouriotis
Carbohydrate esterase family 4 enzymes: Substrate specificity
Carbohydrate Research, 338 (7) (2003), pp. 687-692, 10.1016/S0008-6215(03)00002-8
Charavgi et al., 2013
M.D. Charavgi, M. Dimarogona, E. Topakas, P. Christakopoulos, E.D. Chrysina
The structure of a novel glucuronoyl esterase from Myceliophthora thermophila gives new insights into its role as a potential biocatalyst
Acta Crystallographica Section D, 69 (1) (2013), pp. 63-73, 10.1107/S0907444912042400
Christov and Prior, 1993
L.P. Christov, B.A. Prior
Esterases of xylan-degrading microorganisms: Production, properties, and significance
Enzyme and Microbial Technology, 15 (6) (1993), pp. 460-475, 10.1016/0141-0229(93)90078-G
Clayton et al., 2013
G.M. Clayton, D.J. Klein, K.W. Rickert, S.B. Patel, M. Kornienko, J. Zugay-Murphy, S.M. Soisson
Structure of the bacterial deacetylase LpxC bound to the nucleotide reaction product reveals mechanisms of oxyanion stabilization and proton transfer
Journal of Biological Chemistry, 288 (47) (2013), pp. 34073-34080
Coggins et al., 2003
B.E. Coggins, X. Li, A.L. McClerren, O. Hindsgaul, C.R.H. Raetz, P. Zhou
Structure of the LpxC deacetylase with a bound substrate-analog inhibitor
Nature Structural & Molecular Biology, 10 (8) (2003), pp. 645-651
Coggins et al., 2005
B.E. Coggins, A.L. McClerren, L. Jiang, X. Li, J. Rudolph, O. Hindsgaul, P. Zhou
Refined solution structure of the LpxC−TU-514 complex and pKa analysis of an active site histidine: Insights into the mechanism and inhibitor design
Biochemistry, 44 (4) (2005), pp. 1114-1126, 10.1021/bi047820z
Cole et al., 2011
K.E. Cole, S.G. Gattis, H.D. Angell, C.A. Fierke, D.W. Christianson
Structure of the metal-dependent deacetylase LpxC from Yersinia enterocolitica complexed with the potent inhibitor CHIR-090
Biochemistry, 50 (2) (2011), pp. 258-265, 10.1021/bi101622a
Correia et al., 2008
M.A.S. Correia, J.A.M. Prates, J. Brás, C.M.G.A. Fontes, J.A. Newman, R.J. Lewis, J.E. Flint
Crystal structure of a cellulosomal family 3 carbohydrate esterase from Clostridium thermocellum provides insights into the mechanism of substrate recognition
Journal of Molecular Biology, 379 (1) (2008), pp. 64-72, 10.1016/j.jmb.2008.03.037
Deng et al., 2009
D.M. Deng, J.E. Urch, J.M. ten Cate, V.A. Rao, D.M.F. van Aalten, W. Crielaard
Streptococcus mutans SMU.623c codes for a functional, metal-dependent polysaccharide deacetylase that modulates interactions with salivary agglutinin
Journal of Bacteriology, 191 (1) (2009), pp. 394-402
Dimarogona et al., 2015
M. Dimarogona, E. Nikolaivits, M. Kanelli, P. Christakopoulos, M. Sandgren, E. Topakas
Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential
Biochimica et Biophysica Acta (BBA) – General Subjects, 1850 (11) (2015), pp. 2308-2317, 10.1016/j.bbagen.2015.08.009
Eklöf et al., 2009
J.M. Eklöf, T.-C. Tan, C. Divne, H. Brumer
The crystal structure of the outer membrane lipoprotein YbhC from Escherichia coli sheds new light on the phylogeny of carbohydrate esterase family 8
Proteins: Structure, Function, and Bioinformatics, 76 (4) (2009), pp. 1029-1036, 10.1002/prot.22453
Fadouloglou et al., 2007
V.E. Fadouloglou, A. Deli, N.M. Glykos, E. Psylinakis, V. Bouriotis, M. Kokkinidis
Crystal structure of the BcZBP, a zinc-binding protein from Bacillus cereus
FEBS Journal, 274 (12) (2007), pp. 3044-3054, 10.1111/j.1742-4658.2007.05834.x
Fadouloglou et al., 2013
V.E. Fadouloglou, M. Kapanidou, A. Agiomirgianaki, S. Arnaouteli, V. Bouriotis, N.M. Glykos, M. Kokkinidis
Structure determination through homology modelling and torsion-angle simulated annealing: Application to a polysaccharide deacetylase from Bacillus cereus
Acta Crystallographica Section D, 69 (2) (2013), pp. 276-283, 10.1107/S0907444912045829
Ferreira et al., 2006
F.M. Ferreira, G. Mendoza-Hernandez, M. Castañeda-Bueno, R. Aparicio, H. Fischer, M.L. Calcagno, G. Oliva
Structural analysis of N-acetylglucosamine-6-phosphate deacetylase apoenzyme from Escherichia coli
Journal of Molecular Biology, 359 (2) (2006), pp. 308-321, 10.1016/j.jmb.2006.03.024
Frenkel et al., 1998
C. Frenkel, J.S. Peters, D.M. Tieman, M.E. Tiznado, A.K. Handa
Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit
Journal of Biological Chemistry, 273 (8) (1998), pp. 4293-4295
Fries et al., 2007
M. Fries, J. Ihrig, K. Brocklehurst, V.E. Shevchik, R.W. Pickersgill
Molecular basis of the activity of the phytopathogen pectin methylesterase
The EMBO Journal, 26 (17) (2007), p. 3879
Gennadios and Christianson, 2006
H.A. Gennadios, D.W. Christianson
Binding of Uridine 5′-Diphosphate in the “basic patch” of the zinc deacetylase LpxC and implications for substrate binding
Biochemistry, 45 (51) (2006), pp. 15216-15223, 10.1021/bi0619021
Gennadios et al., 2006
H.A. Gennadios, D.A. Whittington, X. Li, C.A. Fierke, D.W. Christianson
Mechanistic inferences from the binding of ligands to LpxC, a metal-dependent deacetylase
Biochemistry, 45 (26) (2006), pp. 7940-7948, 10.1021/bi060823m
Ghosh et al., 2001
D. Ghosh, M. Sawicki, P. Lala, M. Erman, W. Pangborn, J. Eyzaguirre, ..., D.J. Thiel
Multiple conformations of catalytic Serine and Histidine in acetylxylan esterase at 0.90 Å
Journal of Biological Chemistry, 276 (14) (2001), pp. 11159-11166
Gou et al., 2012
J.Y. Gou, L.M. Miller, G. Hou, X.H. Yu, X.Y. Chen, C.J. Liu
Acetylesterase mediated deacetylation of pectin impairs cell elongation, pollen germination, and plant reproduction
The Plant Cell, 24 (1) (2012), pp. 50-65
Gou et al., 2008
J.Y. Gou, S. Park, X.H. Yu, L.M. Miller, C.J. Liu
Compositional characterization and imaging of “wall-bound” acylesters of Populus trichocarpa reveal differential accumulation of acyl molecules in normal and reactive woods
Planta, 229 (1) (2008), p. 15, 10.1007/s00425-008-0799-9
Gruninger et al., 2016
R.J. Gruninger, C. Cote, T.A. McAllister, D.W. Abbott
Contributions of a unique β-clamp to substrate recognition illuminates the molecular basis of exolysis in ferulic acid esterases
Biochemical Journal, 473 (7) (2016), p. 10, 10.1042/BJ20151153
Gupta and Verma, 2015
A. Gupta, J.P. Verma
Sustainable bio-ethanol production from agro-residues: A review
Renewable and Sustainable Energy Reviews, 41 (2015), pp. 550-567, 10.1016/j.rser.2014.08.032
Hakulinen et al., 2000
N. Hakulinen, M. Tenkanen, J. Rouvinen
Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: Insights into the deacetylation mechanism
Journal of Structural Biology, 132 (3) (2000), pp. 180-190, 10.1006/jsbi.2000.4318
Hale et al., 2013
M.R. Hale, P. Hill, S. Lahiri, M.D. Miller, P. Ross, R. Alm, W. Yang
Exploring the UDP pocket of LpxC through amino acid analogs
Bioorganic & Medicinal Chemistry Letters, 23 (8) (2013), pp. 2362-2367, 10.1016/j.bmcl.2013.02.055
Hanukoglu, 2015
I. Hanukoglu
Proteopedia: Rossmann fold: A beta-alpha-beta fold at dinucleotide binding sites
Biochemistry and Molecular Biology Education, 43 (3) (2015), pp. 206-209, 10.1002/bmb.20849
Heredia, 2003
A. Heredia
Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer
Biochimica et Biophysica Acta (BBA) – General Subjects, 1620 (1–3) (2003), pp. 1-7, 10.1016/S0304-4165(02)00510-X
Hernick and Fierke, 2005
M. Hernick, C.A. Fierke
Zinc hydrolases: The mechanisms of zinc-dependent deacetylases
Archives of Biochemistry and Biophysics, 433 (1) (2005), pp. 71-84, 10.1016/j.abb.2004.08.006
Hernick et al., 2005
M. Hernick, H.A. Gennadios, D.A. Whittington, K.M. Rusche, D.W. Christianson, C.A. Fierke
UDP-3-O-((R)-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase functions through a general acid-base catalyst pair mechanism
Journal of Biological Chemistry, 280 (17) (2005), pp. 16969-16978
Hoell et al., 2010
I.A. Hoell, G. Vaaje-Kolstad, V.G.H. Eijsink
Structure and function of enzymes acting on chitin and chitosan
Biotechnology and Genetic Engineering Reviews, 27 (1) (2010), pp. 331-366, 10.1080/02648725.2010.10648156
Holm and Sander, 1997
L. Holm, C. Sander
An evolutionary treasure: Unification of a broad set of amidohydrolases related to urease
Proteins: Structure, Function, and Bioinformatics, 28 (1) (1997), pp. 72-82, 10.1002/(SICI)1097-0134(199705)28:1<72::AID-PROT7>3.0.CO;2-L
Horwitz et al., 1995
M.A. Horwitz, B.W. Lee, B.J. Dillon, G. Harth
Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis
Proceedings of the National Academy of Sciences of United States of America, 92 (5) (1995), pp. 1530-1534
Huc et al., 2013
E. Huc, C. de Sousa-D’Auria, I.L. de la Sierra-Gallay, C. Salmeron, H. van Tilbeurgh, N. Bayan, M. Tropis
Identification of a mycoloyl transferase selectively involved in O-acylation of polypeptides in Corynebacteriales
Journal of Bacteriology, 195 (18) (2013), pp. 4121-4128
Ishii, 1997
T. Ishii
O-acetylated oligosaccharides from pectins of potato tuber cell walls
Plant Physiology, 113 (4) (1997), pp. 1265-1272
Itoh et al., 2008
Y. Itoh, J.D. Rice, C. Goller, A. Pannuri, J. Taylor, J. Meisner, T. Romeo
Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine
Journal of Bacteriology, 190 (10) (2008), pp. 3670-3680
Jaeger and Eggert, 2002
K.E. Jaeger, T. Eggert
Lipases for biotechnology
Current Opinion in Biotechnology, 13 (4) (2002), pp. 390-397, 10.1016/S0958-1669(02)00341-5
Jaeger and Reetz, 1998
K.E. Jaeger, M.T. Reetz
Microbial lipases form versatile tools for biotechnology
Trends in Biotechnology, 16 (9) (1998), pp. 396-403, 10.1016/S0167-7799(98)01195-0
Jenkins et al., 2001
J. Jenkins, O. Mayans, D. Smith, K. Worboys, R.W. Pickersgill
Three-dimensional structure of Erwinia chrysanthemi pectin methylesterase reveals a novel esterase active site
Journal of Molecular Biology, 305 (4) (2001), pp. 951-960, 10.1006/jmbi.2000.4324
Jenkins and Pickersgill, 2001
J. Jenkins, R. Pickersgill
The architecture of parallel β-helices and related folds
Progress in Biophysics and Molecular Biology, 77 (2) (2001), pp. 111-175, 10.1016/S0079-6107(01)00013-X
Johannsen, 1993
L. Johannsen
Biological properties of bacterial peptidoglycan
APMIS, 101 (1–6) (1993), pp. 337-344, 10.1111/j.1699-0463.1993.tb00119.x
Johansson et al., 2002
K. Johansson, M. El-Ahmad, R. Friemann, H. Jörnvall, O. Markovič, H. Eklund
Crystal structure of plant pectin methylesterase
FEBS Letters, 514 (2–3) (2002), pp. 243-249, 10.1016/S0014-5793(02)02372-4
Kafetzopoulos et al., 1993
D. Kafetzopoulos, G. Thireos, J.N. Vournakis, V. Bouriotis
The primary structure of a fungal chitin deacetylase reveals the function for two bacterial gene products
Proceedings of the National Academy of Sciences of United States of America, 90 (17) (1993), pp. 8005-8008
Kakugawa et al., 2015
S. Kakugawa, P.F. Langton, M. Zebisch, S.A. Howell, T.-H. Chang, Y. Liu, J.-P. Vincent
Notum deacylates Wnt proteins to suppress signalling activity
Nature, 519 (7542) (2015), pp. 187-192, 10.1038/nature14259
Kent et al., 2016
L.M. Kent, T.S. Loo, L.D. Melton, D. Mercadante, M.A.K. Williams, G.B. Jameson
Structure and properties of a non-processive, salt-requiring, and acidophilic pectin methylesterase from Aspergillus niger provide insights into the key determinants of processivity control
Journal of Biological Chemistry, 291 (3) (2016), pp. 1289-1306
Kodama et al., 2009
Y. Kodama, K. Masaki, H. Kondo, M. Suzuki, S. Tsuda, T. Nagura, H. Iefuji
Crystal structure and enhanced activity of a cutinase-like enzyme from Cryptococcus sp. strain S-2
Proteins: Structure, Function, and Bioinformatics, 77 (3) (2009), pp. 710-717, 10.1002/prot.22484
Kolattukudy, 1981
P.E.t. Kolattukudy
Structure, biosynthesis, and biodegradation of cutin and suberin
Annual Review of Plant Physiology, 32 (1) (1981), pp. 539-567
Kold et al., 2014
D. Kold, Z. Dauter, A.K. Laustsen, A.M. Brzozowski, J.P. Turkenburg, A.D. Nielsen, R. Wimmer
Thermodynamic and structural investigation of the specific SDS binding of Humicola insolens cutinase
Protein Science, 23 (8) (2014), pp. 1023-1035, 10.1002/pro.2489
Lee et al., 2011
C.J. Lee, X. Liang, X. Chen, D. Zeng, S.H. Joo, H.S. Chung, P. Zhou
Species-specific and inhibitor-dependent conformations of LpxC: Implications for antibiotic design
Chemistry & Biology, 18 (1) (2011), pp. 38-47, 10.1016/j.chembiol.2010.11.011
Lee et al., 2014
C.J. Lee, X. Liang, R. Gopalaswamy, J. Najeeb, E.D. Ark, E.J. Toone, P. Zhou
Structural basis of the promiscuous inhibitor susceptibility of Escherichia coli LpxC
ACS Chemical Biology, 9 (1) (2014), pp. 237-246, 10.1021/cb400067g
Lee et al., 2016
C.J. Lee, X. Liang, Q. Wu, J. Najeeb, J. Zhao, R. Gopalaswamy, P. Zhou
Drug design from the cryptic inhibitor envelope
Nature Communications, 7 (2016), p. 10638, 10.1038/ncomms10638
Levisson et al., 2012
M. Levisson, G.W. Han, M.C. Deller, Q. Xu, P. Biely, S. Hendriks, I.A. Wilson
Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima
Proteins: Structure, Function, and Bioinformatics, 80 (6) (2012), pp. 1545-1559, 10.1002/prot.24041
Li et al., 2008
X.L. Li, C.D. Skory, M.A. Cotta, V. Puchart, P. Biely
Novel family of carbohydrate esterases, based on identification of the Hypocrea jecorina acetyl esterase gene
Applied and Environmental Microbiology, 74 (24) (2008), pp. 7482-7489, 10.1128/AEM.00807-08
Li et al., 2007
X.L. Li, S. Špániková, R.P. de Vries, P. Biely
Identification of genes encoding microbial glucuronoyl esterases
FEBS Letters, 581 (21) (2007), pp. 4029-4035, 10.1016/j.febslet.2007.07.041
Liang et al., 2011
X. Liang, C.J. Lee, X. Chen, H.S. Chung, D. Zeng, C.R.H. Raetz, E.J. Toone
Syntheses, structures and antibiotic activities of LpxC inhibitors based on the diacetylene scaffold
Bioorganic & Medicinal Chemistry, 19 (2) (2011), pp. 852-860, 10.1016/j.bmc.2010.12.017
Little et al., 2014
D.J. Little, N.C. Bamford, V. Pokrovskaya, H. Robinson, M. Nitz, P.L. Howell
Structural basis for the de-N-acetylation of poly-β-1,6-N-acetyl-d-glucosamine in Gram-positive bacteria
Journal of Biological Chemistry, 289 (52) (2014), pp. 35907-35917
Little et al., 2015
D.J. Little, S. Milek, N.C. Bamford, T. Ganguly, B.R. DiFrancesco, M. Nitz, P.L. Howell
The Protein BpsB is a poly-β-1,6-N-acetyl-d-glucosamine deacetylase required for biofilm formation in Bordetella bronchiseptica
Journal of Biological Chemistry, 290 (37) (2015), pp. 22827-22840
Little et al., 2012
D.J. Little, J. Poloczek, J.C. Whitney, H. Robinson, M. Nitz, P.L. Howell
The structure- and metal-dependent activity of Escherichia coli PgaB provides insight into thepartial de-N-acetylation of poly-β-1,6-N-acetyl-d-glucosamine
Journal of Biological Chemistry, 287 (37) (2012), pp. 31126-31137
Liu et al., 2009
Z. Liu, Y. Gosser, P.J. Baker, Y. Ravee, Z. Lu, G. Alemu, J.K. Montclare
Structural and functional studies of Aspergillus oryzae cutinase: Enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation
Journal of the American Chemical Society, 131 (43) (2009), pp. 15711-15716, 10.1021/ja9046697
Lombard et al., 2014
V. Lombard, H.G. Ramulu, E. Drula, P.M. Coutinho, B. Henrissat
The carbohydrate-active enzymes database (CAZy) in 2013
Nucleic Acids Research, 42 (D1) (2014), pp. D490-D495
Long, 1989
S.R. Long
Rhizobium-legume nodulation: Life together in the underground
Cell, 56 (2) (1989), pp. 203-214, 10.1016/0092-8674(89)90893-3
Mansoor et al., 2011
U.F. Mansoor, D. Vitharana, P.A. Reddy, D.L. Daubaras, P. McNicholas, P. Orth, M. Arshad Siddiqui
Design and synthesis of potent Gram-negative specific LpxC inhibitors
Bioorganic & Medicinal Chemistry Letters, 21 (4) (2011), pp. 1155-1161, 10.1016/j.bmcl.2010.12.111
Martinez et al., 1992
C. Martinez, P. De Geus, M. Lauwereys, G. Matthyssens, C. Cambillau
Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent
Nature, 356 (6370) (1992), pp. 615-618
Martinez et al., 1994
C. Martinez, A. Nicolas, H. van Tilbeurgh, M.P. Egloff, C. Cudrey, R. Verger, C. Cambillau
Cutinase, a lipolytic enzyme with a preformed oxyanion hole
Biochemistry, 33 (1) (1994), pp. 83-89, 10.1021/bi00167a011
Martínez-Martínez et al., 2007
I. Martínez-Martínez, S. Montoro-García, J.D. Lozada-Ramírez, Á. Sánchez-Ferrer, F. García-Carmona
A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate
Analytical Biochemistry, 369 (2) (2007), pp. 210-217, 10.1016/j.ab.2007.06.030
Maynes et al., 2003
J.T. Maynes, C. Garen, M.M. Cherney, G. Newton, D. Arad, Y. Av-Gay, M.N.G. James
The crystal structure of 1-d-myo-Inosityl 2-Acetamido-2-deoxy-α-d-glucopyranoside deacetylase (MshB) from Mycobacterium tuberculosis reveals a zinc hydrolase with a lactate dehydrogenase fold
Journal of Biological Chemistry, 278 (47) (2003), pp. 47166-47170
McCann and Roberts, 1996
M.C. McCann, K. Roberts
Plant cell wall architecture: The role of pectins
J.V.a.A.G.J. Voragen (Ed.), Progress in biotechnology, vol. 14, Elsevier (1996), pp. 91-107
Micheli, 2001
F. Micheli
Pectin methylesterases: Cell wall enzymes with important roles in plant physiology
Trends in Plant Science, 6 (9) (2001), pp. 414-419, 10.1016/S1360-1385(01)02045-3
Mine et al., 2014
S. Mine, M. Niiyama, W. Hashimoto, T. Ikegami, D. Koma, T. Ohmoto, T. Nakamura
Expression from engineered Escherichia coli chromosome and crystallographic study of archaeal N,N′-diacetylchitobiose deacetylase
FEBS Journal, 281 (11) (2014), pp. 2584-2596, 10.1111/febs.12805
Mochalkin et al., 2008
I. Mochalkin, J.D. Knafels, S. Lightle
Crystal structure of LpxC from Pseudomonas aeruginosa complexed with the potent BB-78485 inhibitor
Protein Science, 17 (3) (2008), pp. 450-457, 10.1110/ps.073324108
Mohnen, 2008
D. Mohnen
Pectin structure and biosynthesis
Current Opinion in Plant Biology, 11 (3) (2008), pp. 266-277, 10.1016/j.pbi.2008.03.006
Montanier et al., 2009
C. Montanier, V.A. Money, V.M.R. Pires, J.E. Flint, B.A. Pinheiro, A. Goyal, H.J. Gilbert
The active site of a carbohydrate esterase displays divergent catalytic and noncatalytic binding functions
PLoS Biology, 7 (3) (2009), p. e1000071, 10.1371/journal.pbio.1000071
Montoro-García et al., 2011
S. Montoro-García, F. Gil-Ortiz, F. García-Carmona, L.M. Polo, V. Rubio, Á. Sánchez-Ferrer
The crystal structure of the cephalosporin deacetylating enzyme acetyl xylan esterase bound to paraoxon explains the low sensitivity of this serine hydrolase to organophosphate inactivation
Biochemical Journal, 436 (2) (2011), p. 321
Mueller-Harvey et al., 1986
I. Mueller-Harvey, R.D. Hartley, P.J. Harris, E.H. Curzon
Linkage of p-coumaroyl and feruloyl groups to cell-wall polysaccharides of barley straw
Carbohydrate Research, 148 (1) (1986), pp. 71-85, 10.1016/0008-6215(86)80038-6
Murphy-Benenato et al., 2014
K.E. Murphy-Benenato, N. Olivier, A. Choy, P.L. Ross, M.D. Miller, J. Thresher, M.R. Hale
Synthesis, structure, and SAR of tetrahydropyran-based LpxC inhibitors
ACS Medicinal Chemistry Letters, 5 (11) (2014), pp. 1213-1218, 10.1021/ml500210x
Mølgaard et al., 2000
A. Mølgaard, S. Kauppinen, S. Larsen
Rhamnogalacturonan acetylesterase elucidates the structure and function of a new family of hydrolases
Structure, 8 (4) (2000), pp. 373-383, 10.1016/S0969-2126(00)00118-0
Navarre and Schneewind, 1999
W.W. Navarre, O. Schneewind
Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope
Microbiology and Molecular Biology Reviews, 63 (1) (1999), pp. 174-229
Newton et al., 2000
G.L. Newton, Y. Av-gay, R.C. Fahey
N-Acetyl-1-d-myo-Inosityl-2-Amino-2-Deoxy-α-d-Glucopyranoside Deacetylase (MshB) is a key enzyme in mycothiol biosynthesis
Journal of Bacteriology, 182 (24) (2000), pp. 6958-6963
Newton et al., 1999
G.L. Newton, M.D. Unson, S.J. Anderberg, J.A. Aguilera, N.N. Oh, S.B. delCardayre, R.C. Fahey
Characterization of Mycobacterium smegmatis mutants defective in 1-d-myo-Inosityl-2-amino-2-deoxy-α-d-glucopyranoside and mycothiol biosynthesis
Biochemical and Biophysical Research Communications, 255 (2) (1999), pp. 239-244, 10.1006/bbrc.1999.0156
Nishiyama et al., 2013
T. Nishiyama, H. Noguchi, H. Yoshida, S.Y. Park, J.R.H. Tame
The structure of the deacetylase domain of Escherichia coli PgaB, an enzyme required for biofilm formation: A circularly permuted member of the carbohydrate esterase 4 family
Acta Crystallographica Section D, 69 (1) (2013), pp. 44-51, 10.1107/S0907444912042059
Nyon et al., 2009
M.P. Nyon, D.W. Rice, J.M. Berrisford, A.M. Hounslow, A.J.G. Moir, H. Huang, C.J. Craven
Catalysis by Glomerella cingulata cutinase requires conformational cycling between the active and inactive states of its catalytic triad
Journal of Molecular Biology, 385 (1) (2009), pp. 226-235, 10.1016/j.jmb.2008.10.050
Nyyssölä, 2015
A. Nyyssölä
Which properties of cutinases are important for applications?
Applied Microbiology and Biotechnology, 99 (12) (2015), pp. 4931-4942, 10.1007/s00253-015-6596-z
Oberbarnscheidt et al., 2007
L. Oberbarnscheidt, E.J. Taylor, G.J. Davies, T.M. Gloster
Structure of a carbohydrate esterase from Bacillus anthracis
Proteins: Structure, Function, and Bioinformatics, 66 (1) (2007), pp. 250-252, 10.1002/prot.21217
Park and Kim, 2010
B.K. Park, M.-M. Kim
Applications of chitin and its derivatives in biological medicine
International Journal of Molecular Sciences, 11 (12) (2010), 10.3390/ijms11125152
Pokkuluri et al., 2011
P.R. Pokkuluri, N.E.C. Duke, S.J. Wood, M.A. Cotta, X.L. Li, P. Biely, M. Schiffer
Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina
Proteins: Structure, Function, and Bioinformatics, 79 (8) (2011), pp. 2588-2592, 10.1002/prot.23088
Poutanen and Sundberg, 1988
K. Poutanen, M. Sundberg
An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans
Applied Microbiology and Biotechnology, 28 (4) (1988), pp. 419-424, 10.1007/BF00268207
Prates et al., 2001
J.A.M. Prates, N. Tarbouriech, S.J. Charnock, C.M.G.A. Fontes, L.s.M.A. Ferreira, G.J. Davies
The structure of the feruloyl esterase module of xylanase 10B from Clostridium thermocellum provides insights into substrate recognition
Structure, 9 (12) (2001), pp. 1183-1190, 10.1016/S0969-2126(01)00684-0
Prendergast et al., 2016
K.A. Prendergast, C. Counoupas, L. Leotta, C. Eto, W. Bitter, N. Winter, J.A. Triccas
The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection
Vaccine, 34 (23) (2016), pp. 2608-2615, 10.1016/j.vaccine.2016.03.089
Raetz et al., 2007
C.R.H. Raetz, C.M. Reynolds, M.S. Trent, R.E. Bishop
Lipid A modification system in Gram-negative bacteria
Annual Review of Biochemistry, 76 (2007), pp. 295-329, 10.1146/annurev.biochem.76.010307.145803
Ralet et al., 2005
M.C. Ralet, J.C. Cabrera, E. Bonnin, B. Quéméner, P. Hellìn, J.F. Thibault
Mapping sugar beet pectin acetylation pattern
Phytochemistry, 66 (15) (2005), pp. 1832-1843, 10.1016/j.phytochem.2005.06.003
Ralph et al., 1995
J. Ralph, J.H. Grabber, R.D. Hatfield
Lignin-ferulate cross-links in grasses: Active incorporation of ferulate polysaccharide esters into ryegrass lignins
Carbohydrate Research, 275 (1) (1995), pp. 167-178, 10.1016/0008-6215(95)00237-N
Rao and Rossmann, 1973
S.T. Rao, M.G. Rossmann
Comparison of super-secondary structures in proteins
Journal of Molecular Biology, 76 (2) (1973), pp. 241-256, 10.1016/0022-2836(73)90388-4
Rawat et al., 2002
M. Rawat, G.L. Newton, M. Ko, G.J. Martinez, R.C. Fahey, Y. Av-Gay
Mycothiol-deficient Mycobacterium smegmatis mutants are hypersensitive to alkylating agents, free radicals, and antibiotics
Antimicrobial Agents and Chemotherapy, 46 (11) (2002), pp. 3348-3355
Ronning et al., 2000
D.R. Ronning, T. Klabunde, G.S. Besra, V.D. Vissa, J.T. Belisle, J.C. Sacchettini
Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines
Nature Structural & Molecular Biology, 7 (2) (2000), pp. 141-146
Ronning et al., 2004
D.R. Ronning, V. Vissa, G.S. Besra, J.T. Belisle, J.C. Sacchettini
Mycobacterium tuberculosis Antigen 85A and 85C structures confirm binding orientation and conserved substrate specificity
Journal of Biological Chemistry, 279 (35) (2004), pp. 36771-36777
Roussel et al., 2014
A. Roussel, S. Amara, A. Nyyssölä, E. Mateos-Diaz, S. Blangy, H. Kontkanen, C. Cambillau
A cutinase from Trichoderma reesei with a lid-covered active site and kinetic properties of true lipases
Journal of Molecular Biology, 426 (22) (2014), pp. 3757-3772, 10.1016/j.jmb.2014.09.003
Schols et al., 1990
H.A. Schols, C.C.J.M. Geraeds, M.F. Searle-van Leeuwen, F.J.M. Kormelink, A.G.J. Voragen
Rhamnogalacturonase: A novel enzyme that degrades the hairy regions of pectins
Carbohydrate Research, 206 (1) (1990), pp. 105-115, 10.1016/0008-6215(90)84010-R
Schubot et al., 2001
F.D. Schubot, I.A. Kataeva, D.L. Blum, A.K. Shah, L.G. Ljungdahl, J.P. Rose, B.C. Wang
Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z from Clostridium thermocellum
Biochemistry, 40 (42) (2001), pp. 12524-12532, 10.1021/bi011391c
Shao and Wiegel, 1995
W. Shao, J. Wiegel
Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485
Applied and Environmental Microbiology, 61 (2) (1995), pp. 729-733
Shevchik et al., 1996
V.E. Shevchik, G. Condemine, N. Hugouvieux-Cotte-Pattat, J. Robert-Baudouy
Characterization of pectin methylesterase B, an outer membrane lipoprotein of Erwinia chrysanthemi 3937
Molecular Microbiology, 19 (3) (1996), pp. 455-466, 10.1046/j.1365-2958.1996.389922.x
Shin et al., 2007
H. Shin, H.A. Gennadios, D.A. Whittington, D.W. Christianson
Amphipathic benzoic acid derivatives: Synthesis and binding in the hydrophobic tunnel of the zinc deacetylase LpxC
Bioorganic & Medicinal Chemistry, 15 (7) (2007), pp. 2617-2623, 10.1016/j.bmc.2007.01.044
Shin et al., 1999
H.J. Shin, M. Kim, D.S. Lee
Purification and characterization of N-acetylglucosamine 6-phosphate deacetylase from Thermus caldophilus
Journal of Bioscience and Bioengineering, 88 (3) (1999), pp. 319-322, 10.1016/S1389-1723(00)80017-1
Singh and Manoj, 2016
M.K. Singh, N. Manoj
An extended loop in CE7 carbohydrate esterase family is dispensable for oligomerization but required for activity and thermostability
Journal of Structural Biology, 194 (3) (2016), pp. 434-445, 10.1016/j.jsb.2016.04.008
Strunk et al., 2014
R.J. Strunk, K.M. Piemonte, N.M. Petersen, D. Koutsioulis, V. Bouriotis, K. Perry, K.E. Cole
Structure determination of BA0150, a putative polysaccharide deacetylase from Bacillus anthracis
Acta Crystallographica Section F, 70 (2) (2014), pp. 156-159, 10.1107/S2053230X13034262
Takimoto et al., 1994
A. Takimoto, K. Mitsushima, S. Yagi, T. Sonoyama
Purification, characterization and partial amino acid sequences of a novel cephalosporin-C deacetylase from Bacillus subtilis
Journal of Fermentation and Bioengineering, 77 (1) (1994), pp. 17-22, 10.1016/0922-338X(94)90201-1
Tanaka et al., 2004
T. Tanaka, T. Fukui, S. Fujiwara, H. Atomi, T. Imanaka
Concerted action of diacetylchitobiose deacetylase and exo-β-D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1
Journal of Biological Chemistry, 279 (29) (2004), pp. 30021-30027
Taylor et al., 2006
E.J. Taylor, T.M. Gloster, J.P. Turkenburg, F. Vincent, A.M. Brzozowski, C. Dupont, G.J. Davies
Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases
Journal of Biological Chemistry, 281 (16) (2006), pp. 10968-10975
Teller et al., 2014
D.C. Teller, C.A. Behnke, K. Pappan, Z. Shen, J.C. Reese, G.R. Reeck, R.E. Stenkamp
The structure of rice weevil pectin methylesterase
Acta Crystallographica Section F, 70 (11) (2014), pp. 1480-1484, 10.1107/S2053230X14020433
Thomson, 1993
J.A. Thomson
Molecular biology of xylan degradation
FEMS Microbiology Reviews, 10 (1–2) (1993), p. 65
Till et al., 2013
M. Till, D.C. Goldstone, G.T. Attwood, C.D. Moon, W.J. Kelly, V.L. Arcus
Structure and function of an acetyl xylan esterase (Est2A) from the rumen bacterium Butyrivibrio proteoclasticus
Proteins: Structure, Function, and Bioinformatics, 81 (5) (2013), pp. 911-917, 10.1002/prot.24254
Topakas et al., 2010a
E. Topakas, S. Kyriakopoulos, P. Biely, J. Hirsch, C. Vafiadi, P. Christakopoulos
Carbohydrate esterases of family 2 are 6-O-deacetylases
FEBS Letters, 584 (3) (2010), pp. 543-548, 10.1016/j.febslet.2009.11.095
Topakas et al., 2010b
E. Topakas, M. Moukouli, M. Dimarogona, C. Vafiadi, P. Christakopoulos
Functional expression of a thermophilic glucuronoyl esterase from Sporotrichum thermophile: Identification of the nucleophilic serine
Applied Microbiology and Biotechnology, 87 (5) (2010), pp. 1765-1772, 10.1007/s00253-010-2655-7
Tsigos et al., 2000
I. Tsigos, A. Martinou, D. Kafetzopoulos, V. Bouriotis
Chitin deacetylases: New, versatile tools in biotechnology
Trends in Biotechnology, 18 (7) (2000), pp. 305-312, 10.1016/S0167-7799(00)01462-1
Upton and Buckley, 1995
C. Upton, J.T. Buckley
A new family of lipolytic enzymes?
Trends in Biochemical Sciences, 20 (5) (1995), pp. 178-179
Urch et al., 2009
J.E. Urch, R. Hurtado-Guerrero, D. Brosson, Z. Liu, V.G.H. Eijsink, C. Texier, D.M.F. van Aalten
Structural and functional characterization of a putative polysaccharide deacetylase of the human parasite Encephalitozoon cuniculi
Protein Science, 18 (6) (2009), pp. 1197-1209, 10.1002/pro.128
Vaara, 1993
M. Vaara
Outer membrane permeability barrier to azithromycin, clarithromycin, and roxithromycin in gram-negative enteric bacteria
Antimicrobial Agents and Chemotherapy, 37 (2) (1993), pp. 354-356
Vincent et al., 2003
F. Vincent, S.J. Charnock, K.H.G. Verschueren, J.P. Turkenburg, D.J. Scott, W.A. Offen, J.A. Brannigan
Multifunctional xylooligosaccharide/cephalosporin C ceacetylase revealed by the hexameric structure of the Bacillus subtilis enzyme at 1.9 Å resolution
Journal of Molecular Biology, 330 (3) (2003), pp. 593-606, 10.1016/S0022-2836(03)00632-6
Vincent et al., 2004
F. Vincent, D. Yates, E. Garman, G.J. Davies, J.A. Brannigan
The three-dimensional structure of the N-acetylglucosamine-6-phosphate deacetylase, NagA, from Bacillus subtilis: A member of the urease superfamily
Journal of Biological Chemistry, 279 (4) (2004), pp. 2809-2816
Vu et al., 2009
B. Vu, M. Chen, J.R. Crawford, P.E. Ivanova
Bacterial extracellular polysaccharides involved in biofilm formation
Molecules, 14 (7) (2009), 10.3390/molecules14072535
Watanabe et al., 2015
M. Watanabe, H. Fukada, H. Inoue, K. Ishikawa
Crystal structure of an acetylesterase from Talaromyces cellulolyticus and the importance of a disulfide bond near the active site
FEBS Letters, 589 (11) (2015), pp. 1200-1206, 10.1016/j.febslet.2015.03.020
Watanabe and Koshijima, 1988
T. Watanabe, T. Koshijima
Evidence for an ester linkage between lignin and glucuronic acid in lignin-carbohydrate complexes by DDQ-oxidation
Agricultural and Biological Chemistry, 52 (11) (1988), pp. 2953-2955, 10.1271/bbb1961.52.2953
Whittington et al., 2003
D.A. Whittington, K.M. Rusche, H. Shin, C.A. Fierke, D.W. Christianson
Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis
Proceedings of the National Academy of Sciences of United States of America, 100 (14) (2003), pp. 8146-8150
Wilson et al., 2004
R.A. Wilson, W.N. Maughan, L. Kremer, G.S. Besra, K. Fütterer
The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic α/β hydrolases
Journal of Molecular Biology, 335 (2) (2004), pp. 519-530, 10.1016/j.jmb.2003.11.001
Wyckoff et al., 1998
T.J.O. Wyckoff, C.R.H. Raetz, J.E. Jackman
Antibacterial and anti-inflammatory agents that target endotoxin
Trends in Microbiology, 6 (4) (1998), pp. 154-159, 10.1016/S0966-842X(98)01230-X
Yamano et al., 2000
N. Yamano, N. Higashida, C. Endo, N. Sakata, S. Fujishima, A. Maruyama, T. Higashihara
Purification and characterization of N-acetylglucosamine-6-phosphate deacetylase from a psychrotrophic marine bacterium, Alteromonas species
Marine Biotechnology, 2 (1) (2000), pp. 57-64, 10.1007/s101269900008
Yamano et al., 1996
N. Yamano, Y. Matsushita, Y. Kamada, S. Fujishima, M. Arita
Purification and characterization of N-acetylglucosamine 6-phosphate deacetylase with activity against N-acetylglucosamine from Vibrio cholerae Non-O1
Bioscience, Biotechnology, and Biochemistry, 60 (8) (1996), pp. 1320-1323, 10.1271/bbb.60.1320
Zhao et al., 2010
Y. Zhao, R.-D. Park, R.A.A. Muzzarelli
Chitin deacetylases: Properties and applications
Marine Drugs, 8 (1) (2010), 10.3390/md8010024
Zhou and Barb, 2008
P. Zhou, A.W. Barb
Mechanism and inhibition of LpxC: An essential zinc-dependent deacetylase of bacterial lipid A synthesis
Current Pharmaceutical Biotechnology, 9 (1) (2008), pp. 9-15
Špániková and Biely, 2006
S. Špániková, P. Biely
Glucuronoyl esterase – Novel carbohydrate esterase produced by Schizophyllum commune
FEBS Letters, 580 (19) (2006), pp. 4597-4601, 10.1016/j.febslet.2006.07.033