Support engineering: relation between development of new supports for immobilization of lipases and their applications
Eliane Pereira Cipolatti, Evelin Andrade Manoel, Roberto Fernandez-Lafuente, Denise Maria Guimarães Freire
Abstract
The growing interest in processes with the use of immobilized lipases guides to the development of new supports. In that way, the design and characterization of new supports for lipase immobilization have been increasingly popular in literature. Efforts to obtain “the perfect support” (a not accomplished yet) are described in this paper. Obviously, the choice and development of a support is directly related to the process in which it will be used, considering different factors as the media where the immobilzed enzyme will be used (whether aqueous, free or with solvents), potency of agitation, reactor configuration or substrates/products that will be involved. The present work discusses the use of some techniques of support synthesis in the case of core-shell particles, such as: miniemulsion, microemulsion, suspension, dispersion, the use of heterofunctional supports, whole-cell and processes of coimobilization. Some analytical tools for the investigation of enzyme immobilization are also presented, such as fourier transform infrared spectroscopy, as well as support characteristics that may be relevant for its final performance (e.g., specific surface area, particle diameter and particle size distribution and confocal laser scanning microscope).
Keywords
References
Aguieiras et al., 2014
E.C.G. Aguieiras, E.D. Cavalcanti-Oliveira, A.M. de Castro, M.A.P. Langone, D.M.G. Freire
Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts
Fuel, 135 (2014), pp. 315-321, 10.1016/j.fuel.2014.06.069
Aguieiras et al., 2015
E.C.G. Aguieiras, E.D. Cavalcanti-Oliveira, D.M.G. Freire
Current status and new developments of biodiesel production using fungal lipases
Fuel, 159 (2015), pp. 52-67, 10.1016/j.fuel.2015.06.064
Antonietti and Landfester, 2002
M. Antonietti, K. Landfester
Polyreactions in miniemulsions
Progress in Polymer Science, 27 (2002), pp. 689-757, 10.1016/S0079-6700(01)00051-X
Aybastıer and Demir, 2010
Ö. Aybastıer, C. Demir
Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene–divinylbenzene copolymer using response surface methodology
Journal of Molecular Catalysis B: Enzymatic, 63 (2010), pp. 170-178, 10.1016/j.molcatb.2010.01.013
Ban et al., 2002
K. Ban, S. Hama, K. Nishizuka, M. Kaieda, T. Matsumoto, A. Kondo, et al.
Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production
Journal of Molecular Catalysis B: Enzymatic, 17 (2002), pp. 157-165, 10.1016/S1381-1177(02)00023-1
Ban et al., 2001
K. Ban, M. Kaieda, T. Matsumoto, A. Kondo, H. Fukuda
Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles
Biochemical Engineering Journal, 8 (2001), pp. 39-43, 10.1016/S1369-703X(00)00133-9
Barbosa et al., 2015
O. Barbosa, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R.C. Rodrigues, R. Fernandez-Lafuente
Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts
Biotechnology Advances, 33 (2015), pp. 435-456, 10.1016/j.biotechadv.2015.03.006
Barbosa et al., 2013
O. Barbosa, R. Torres, C. Ortiz, Á. Berenguer-Murcia, R.C. Rodrigues, R. Fernandez-Lafuente
Heterofunctional supports in enzyme immobilization: From traditional immobilization protocols to opportunities in tuning enzyme properties
Biomacromolecules, 14 (2013), pp. 2433-2462, 10.1021/bm400762h
Barth, 2007
A. Barth
Infrared spectroscopy of proteins
Biochimica et Biophysica Acta: Bioenergetics, 1767 (2007), pp. 1073-1101, 10.1016/j.bbabio.2007.06.004
Bernal et al., 2014
C. Bernal, A. Illanes, L. Wilson
Heterofunctional hydrophilic−hydrophobic porous silica as support for multipoint covalent immobilization of lipases: Application to lactulose palmitate synthesis
(2014)
Besteti et al., 2014
M.D. Besteti, A.G. Cunha, D.M.G. Freire, J.C. Pinto
Core/Shell polymer particles by semibatch combined suspension/emulsion polymerizations for enzyme immobilization
Macromolecular Materials and Engineering, 299 (2014), pp. 135-143
Cerqueira et al., 2015
M.R.F. Cerqueira, M.S.F. Santos, R.C. Matos, I.G.R. Gutz, L. Angnes
Use of poly(methyl methacrylate)/polyethyleneimine flow microreactors for enzyme immobilization
Microchemical Journal, 118 (2015), pp. 231-237, 10.1016/j.microc.2014.09.009
Cipolatti et al., 2016
E.P. Cipolatti, R.O. Henriques, D.E. Moritz, J.L. Ninow, D.M.G. Freire, E.A. Manoel, et al.
Nanomaterials for biocatalyst immobilization – State of the art and future trends (2016), pp. 104675-104692, 10.1039/c6ra22047a
Cipolatti et al., 2015
E.P. Cipolatti, S. Moreno-pérez, L. Tereza, D.A. Souza, A. Valério, J.M. Guisán, et al.
Journal of Molecular Catalysis B: Enzymatic Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system
Journal of Molecular Catalysis B: Enzymatic, 122 (2015), pp. 163-169, 10.1016/j.molcatb.2015.09.006
Cipolatti et al., 2014a
E.P. Cipolatti, M.J.A. Silva, M. Klein, V. Feddern, M.M.C. Feltes, J.V. Oliveira, et al.
Current status and trends in enzymatic nanoimmobilization
Journal of Molecular Catalysis B: Enzymatic, 99 (2014), pp. 56-67, 10.1016/j.molcatb.2013.10.019
Cipolatti et al., 2014b
E.P. Cipolatti, A. Valério, G. Nicoletti, E. Theilacker, P.H.H. Araújo, C. Sayer, et al.
Immobilization of Candida antarctica lipase B on PEGylated poly(urea-urethane) nanoparticles by step miniemulsion polymerization
Journal of Molecular Catalysis B: Enzymatic, 109 (2014), pp. 116-121, 10.1016/j.molcatb.2014.08.017
Cunha et al., 2014a
A.G. Cunha, M.D. Besteti, E.A. Manoel, A.A.T. da Silva, R.V. Almeida, A.B.C. Simas, et al.
Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica
Journal of Molecular Catalysis B: Enzymatic, 100 (2014), pp. 59-67, 10.1016/j.molcatb.2013.11.020
Cunha et al., 2014b
A.G. Cunha, M.D. Besteti, E. Manoel, A.A.A. Da Silva, T. Almeida, R.V. Simas, et al.
Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica: Effect of the support nature on catalytic properties
Journal of Molecular Catalysis B: Enzymatic, 100 (2014), pp. 59-67, 10.1016/j.molcatb.2013.11.020
Dalla-Vecchia et al., 2004
R. Dalla-Vecchia, M.D.G. Nascimento, V. Soldi
Aplicaçõess sintéticas de lipases imobilizadas em polímeros
Quimica Nova, 27 (2004), pp. 623-630, 10.1590/S0100-40422004000400017
Damasceno et al., 2012
F.R.C. Damasceno, M.C. Cammarota, D.M.G. Freire
The combined use of a biosurfactant and an enzyme preparation to treat an effluent with a high fat content
Colloids Surf. B. Biointerfaces, 95 (2012), pp. 241-246, 10.1016/j.colsurfb.2012.03.003
Debnath and Khatua, 2011
D. Debnath, B.B. Khatua
Preparation by suspension polymerization and characterization of polystyrene (PS)–poly (methyl methacrylate) (PMMA) core–shell nanocomposites
Macromolecular Research, 19 (2011), pp. 519-527, 10.1007/s13233-011-0607-4
de Sousa et al., 2010
J.S. de Sousa, E.d'Avila Cavalcanti-Oliveira, D.A.G. Aranda, D.M.G. Freire
Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production
Journal of Molecular Catalysis B: Enzymatic, 65 (2010), pp. 133-137, 10.1016/j.molcatb.2010.01.003
Du et al., 2008
W. Du, W. Li, T. Sun, X. Chen, D. Liu
Perspectives for biotechnological production of biodiesel and impacts
Applied Microbiology and Biotechnology, 79 (2008), pp. 331-337, 10.1007/s00253-008-1448-8
Ferguson et al., 2002
C.J. Ferguson, G.T. Russell, R.G. Gilbert
Synthesis of latices with polystyrene cores and poly(vinyl acetate) shells. 1. Use of polystyrene seeds
Polymer (Guildf), 43 (2002), pp. 6371-6382, 10.1016/S0032-3861(02)00601-8
Fernandez-Lafuente et al., 1998
R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. Fernández-Lorente, M.J. Guisán
Immobilization of lipases by selective adsorption on hydrophobic supports
Chemistry and Physics of Lipids, 93 (1998), pp. 185-197, 10.1016/S0009-3084(98)00042-5
Fernandez-Lorente et al., 2007
G. Fernandez-Lorente, J.M. Palomo, J.M. Guisan, R. Fernandez-Lafuente
Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase® Ultra
Journal of Molecular Catalysis B: Enzymatic, 47 (2007), pp. 99-104, 10.1016/j.molcatb.2007.04.008
Filho et al., 2008
M. Filho, B.C. Pessela, C. Mateo, A.V. Carrascosa, R. Fernandez-Lafuente, J.M. Guisán
Immobilization-stabilization of an α-galactosidase from Thermus sp. strain T2 by covalent immobilization on highly activated supports: Selection of the optimal immobilization strategy
Enzyme and Microbial Technology, 42 (2008), pp. 265-271, 10.1016/j.enzmictec.2007.10.006
Foresti et al., 2010
M.L. Foresti, G. Valle, R. Bonetto, M.L. Ferreira, L.E. Briand
FTIR, SEM and fractal dimension characterization of lipase B from Candida antarctica immobilized onto titania at selected conditions
Applied Surface Science, 256 (2010), pp. 1624-1635, 10.1016/j.apsusc.2009.09.083
Fritzen-Garcia et al., 2013
M.B. Fritzen-Garcia, F.F. Monteiro, T. Cristofolini, J.J.S. Acuña, B.G. Zanetti-Ramos, I.R.W.Z. Oliveira, et al.
Characterization of horseradish peroxidase immobilized on PEGylated polyurethane nanoparticles and its application for dopamine detection
Sensors Actuators B: Chemical, 182 (2013), pp. 264-272, 10.1016/j.snb.2013.02.107
Gao et al., 2017
J. Gao, W. Kong, L. Zhou, Y. He, L. Ma, Y. Wang, L. Yin, Y. Jiang
Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization
Chemical Engineering Journal, 309 (2017), pp. 70-79, 10.1016/j.cej.2016.10.02
Ghadi et al., 2015
A. Ghadi, F. Tabandeh, S. Mahjoub, A. Mohsenifar, F.T. Roshan, R.S. Alavije
Fabrication and characterization of core–shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase
Journal of Oleo Science, 64 (2015), pp. 423-430, 10.5650/jos.ess14236
Ghasemi et al., 2014
S. Ghasemi, M. Heidary, M.A. Faramarzi, Z. Habibi
Immobilization of lipase on Fe3O4/ZnO core/shell magnetic nanoparticles and catalysis of Michael-type addition to chalcone derivatives
Journal of Molecular Catalysis B: Enzymatic, 100 (2014), pp. 121-128, 10.1016/j.molcatb.2013.12.00
Guisan and Blanco, 1987
J.M. Guisan, R.M. Blanco
Stabilization of trypsin by multiple-point attachment to aldehyde-agarose gels
Annals of the New York Academy of Sciences, 501 (1987), pp. 67-72
Gumí et al., 2007
T. Gumí, D. Paolucci-Jeanjean, M.-P. Belleville, G.M. Rios
Enzymatic membrane reactor involving a hybrid membrane in supercritical carbon dioxide
Journal of Membrane Science, 297 (2007), pp. 98-103, 10.1016/j.memsci.2007.03.015
Hernandez et al., 2011
K. Hernandez, C. Garcia-Galan, R. Fernandez-Lafuente
Simple and efficient immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads
Enzyme and Microbial Technology, 49 (2011), pp. 72-78, 10.1016/j.enzmictec.2011.03.002
Hou et al., 2015
C. Hou, Z. Qi, H. Zhu
Preparation of core–shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization
Colloids Surfaces B: Biointerfaces, 128 (2015), pp. 544-551, 10.1016/j.colsurfb.2015.03.007
Hou et al., 2014
C. Hou, H. Zhu, D. Wu, Y. Li, K. Hou, Y. Jiang, et al.
Immobilized lipase on macroporous polystyrene modified by PAMAM-dendrimer and their enzymatic hydrolysis
Process Biochemistry, 49 (2014), pp. 244-249, 10.1016/j.procbio.2013.10.019
Huckel et al., 1996
M. Huckel, H.-J. Wirth, M.T.W. Hearn
Porous zirconia: A new support material for enzyme immobilization
Journal of Biochemical and Biophysical Methods, 31 (1996), pp. 165-179, 10.1016/0165-022X(95)00035-P
Jenjob et al., 2012
S. Jenjob, P. Sunintaboon, P. Inprakhon, N. Anantachoke, V. Reutrakul
Chitosan-functionalized poly(methyl methacrylate) particles by spinning disk processing for lipase immobilization
Carbohydrate Polymers, 89 (2012), pp. 842-848, 10.1016/j.carbpol.2012.04.019
Khoobi et al., 2014
M. Khoobi, S.F. Motevalizadeh, Z. Asadgol, H. Forootanfar, A. Shafiee, M.A. Faramarzi
Synthesis of functionalized polyethylenimine-grafted mesoporous silica spheres and the effect of side arms on lipase immobilization and application
Biochemical Engineering Journal, 88 (2014), pp. 131-141, 10.1016/j.bej.2014.04.009
Landfester, 2009
K. Landfester
Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles
Angewandte Chemie International Edition, 48 (2009), pp. 4488-4508, 10.1002/anie.200900723
Landfester et al., 1999
K. Landfester, N. Bechthold, F. Tiarks, M. Antonietti
Formulation and stability mechanisms of polymerizable miniemulsions
Macromolecules, 32 (1999), pp. 5222-5228, 10.1021/ma990299+
Lenzi et al., 2004
M.K. Lenzi, E.L. Lima, J.C. Pinto
Modelagem da Polimerização Simultânea de Estireno em Suspensão e Emulsão, 14 (2004), pp. 112-121
Li et al., 2004
S. Li, J. Hu, B. Liu
Use of chemically modified PMMA microspheres for enzyme immobilization
Biosystems, 77 (2004), pp. 25-32, 10.1016/j.biosystems.2004.03.001
Li et al., 2010
Y. Li, F. Gao, W. Wei, J.-B. Qu, G.-H. Ma, W.-Q. Zhou
Pore size of macroporous polystyrene microspheres affects lipase immobilization
Journal of Molecular Catalysis B: Enzymatic, 66 (2010), pp. 182-189, 10.1016/j.molcatb.2010.05.007
Machado et al., 2011
A.C.O. Machado, A.A.T. da Silva, C.P. Borges, A.B.C. Simas, D.M.G. Freire
Kinetic resolution of (R,S)-1,2-isopropylidene glycerol (solketal) ester derivatives by lipases
Journal of Molecular Catalysis B: Enzymatic, 69 (2011), pp. 42-46, 10.1016/j.molcatb.2010.12.008
Manoel et al., 2015
E.A. Manoel, J.C.S. Dos Santos, D.M.G. Freire, N. Rueda, R. Fernandez-Lafuente
Immobilization of lipases on hydrophobic supports involves the open form of the enzyme
Enzyme and Microbial Technology, 71 (2015), pp. 53-57, 10.1016/j.enzmictec.2015.02.001
Manoel et al., 2012
E.A. Manoel, K.C. Pais, A.G. Cunha, M.A.Z. Coelho, D.M.G. Freire, A.B.C. Simas
On the kinetic resolution of sterically hindered myo-inositol derivatives in organic media by lipases
Tetrahedron: Asymmetry, 23 (2012), pp. 47-52, 10.1016/j.tetasy.2012.01.005
Manoel et al., 2016
E.A. Manoel, M. Pinto, J.C.S. dos Santos, V.G. Tacias-Pascacio, D.M.G. Freire, J.C. Pinto, et al.
Design of a core–shell support to improve lipase features by immobilization
RSC Advances, 6 (2016), pp. 62814-62824, 10.1039/C6RA13350A
Mateo et al., 2007
C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente
Improvement of enzyme activity, stability and selectivity via immobilization techniques
Enzyme and Microbial Technology, 40 (2007), pp. 1451-1463, 10.1016/j.enzmictec.2007.01.018
Moura et al., 2015
M.V.H. Moura, G.P. da Silva, A.C. Machado, F.A.G. Torres, D.M.G. Freire, R.V. Almeida
Displaying lipase B from Candida antarctica in Pichia pastoris using the yeast surface display approach: Prospection of a new anchor and characterization of the whole cell biocatalyst
PLoS One, 10 (10) (2015), pp. 1-12, 10.1371/journal.pone.0141454
Natalello et al., 2005
A. Natalello, D. Ami, S. Brocca, M. Lotti, S.M. Doglia
Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy
Biochemical Journal, 385 (2005), pp. 511-517, 10.1042/BJ20041296
Nicoletti et al., 2015
G. Nicoletti, E.P. Cipolatti, A. Valério, N.G. Carbonera, N.S. Soares, E. Theilacker, et al.
Evaluation of different methods for immobilization of Candida antarctica lipase B (CalB lipase) in polyurethane foam and its application in the production of geranyl propionate
Bioprocess and Biosystems Engineering (2015), pp. 1739-1748, 10.1007/s00449-015-1415-6
Okubo and Lu, 1996
M. Okubo, Y. Lu
Production of core–shell composite polymer particles utilizing the stepwise heterocoagulation method
Colloids Surfaces A: Physicochemical and Engineering Aspects, 109 (1996), pp. 49-53, 10.1016/0927-7757(95)03473-0
Peirce et al., 2016
S. Peirce, J.J. Virgen-Ortíz, V.G. Tacias-Pascacio, N. Rueda, R. Bartolome-Cabrero, L. Fernandez-Lopez, et al.
Development of simple protocols to solve the problems of enzyme coimmobilization. Application to coimmobilize a lipase and a β-galactosidase
RSC Advances, 6 (2016), pp. 61707-61715, 10.1039/C6RA10906C
Pérez et al., 2006
J.P.H. Pérez, E. López-Cabarcos, B. López-Ruiz
The application of methacrylate-based polymers to enzyme biosensors
Biomolecular Engineering, 23 (2006), pp. 233-245, 10.1016/j.bioeng.2006.06.003
Pinto et al., 2014
M.C.C. Pinto, D.M.G. Freire, J.C. Pinto
Influence of the morphology of core–shell supports on the immobilization of lipase B from Candida antarctica (2014), pp. 12509-12530, 10.3390/molecules190812509
Qi et al., 2014
D. Qi, Z. Cao, U. Ziener
Recent advances in the preparation of hybrid nanoparticles in miniemulsions
Advances in Colloid and Interface Science (2014), 10.1016/j.cis.2014.06.001
Rodrigues et al., 2009
R.C. Rodrigues, J.M. Bolivar, A. Palau-Ors, G. Volpato, M.A.Z. Ayub, R. Fernandez-Lafuente, et al.
Positive effects of the multipoint covalent immobilization in the reactivation of partially inactivated derivatives of lipase from Thermomyces lanuginosus
Enzyme and Microbial Technology, 44 (2009), pp. 386-393, 10.1016/j.enzmictec.2009.02.009
Rodrigues et al., 2013
R.C. Rodrigues, C. Ortiz, Á. Berenguer-Murcia, R. Torres, R. Fernández-Lafuente
Modifying enzyme activity and selectivity by immobilization
Chemical Society Reviews, 42 (2013), pp. 6290-6307, 10.1039/c2cs35231a
Rodrigues et al., 2010
R.C. Rodrigues, B.C.C. Pessela, G. Volpato, R. Fernandez-Lafuente, J.M. Guisan, M.A.Z. Ayub
Two step ethanolysis: A simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized-stabilized lipase from Thermomyces lanuginosus
Process Biochemistry, 45 (2010), pp. 1268-1273, 10.1016/j.procbio.2010.04.015
Romio et al., 2009
A.P. Romio, N. Bernardy, E. Lemos Senna, P.H.H. Araújo, C. Sayer
Polymeric nanocapsules via miniemulsion polymerization using redox initiation
Materials Science and Engineering C, 29 (2009), pp. 514-518, 10.1016/j.msec.2008.09.011
Sato et al., 2014
R. Sato, T. Kawakami, H. Tokuyama
Preparation of polymeric macroporous hydrogels for the immobilization of enzymes using an emulsion-gelation method
Reactive and Functional Polymers, 76 (2014), pp. 8-12, 10.1016/j.reactfunctpolym.2014.01.001
Suescun et al., 2015
A. Suescun, N. Rueda, C.S. Jose, J.J. Castillo, C. Ortiz, R. Torres, et al.
Immobilization of lipases on glyoxyl–octyl supports: Improved stability and reactivation strategies
Process Biochemistry, 50 (2015), pp. 1211-1217, 10.1016/j.procbio.2015.05.010
Valério et al., 2013a
A. Valério, P.H.H. Araújo, C. Sayer
Preparation of poly(Urethane-urea) nanoparticles containing açaí oil by miniemulsion polymerization
Polímeros, 23 (2013), pp. 451-455
Valério et al., 2013b
A. Valério, P.H.H. Araújo, C. Sayer
Preparation of poly(urethane–urea) nanoparticles containing açaí oil by miniemulsion polymerization, 23 (2013), pp. 451-455
Valério et al., 2014
A. Valério, S.R.P. da Rocha, P.H.H. Araújo, C. Sayer
Degradable polyurethane nanoparticles containing vegetable oils
European Journal of Lipid Science and Technology, 116 (2014), pp. 24-30, 10.1002/ejlt.201300214
Valério et al., 2015
A. Valério, G. Nicoletti, E.P. Cipolatti, J.L. Ninow, P.H.H. Araújo, C. Sayer, et al.
Kinetic study of Candida antarctica lipase B immobilization using poly(methyl methacrylate) nanoparticles obtained by miniemulsion polymerization as support
Applied Biochemistry and Biotechnology, 175 (2015), pp. 2961-2971, 10.1007/s12010-015-1478-5
Verger, 1997
R. Verger
Interfacial activation of lipases: Facts and artifacts
Trends in Biotechnology, 15 (1997), pp. 32-38, 10.1016/S0167-7799(96)10064-0
Waters, 1997
J.A. Waters
Preparation of core–shell polymer colloid particles by encapsulation, 283 (1997), pp. 274-283
Wilson et al., 2006
L. Wilson, J.M. Palomo, G. Fernández-Lorente, A. Illanes, J.M. Guisán, R. Fernández-Lafuente
Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp
Enzyme and Microbial Technology, 39 (2006), pp. 259-264, 10.1016/j.enzmictec.2005.10.015
Xie and Zang, 2016
W. Xie, X. Zang
Immobilized lipase on core–shell structured Fe3O4–MCM-41 nanocomposites as a magnetically recyclable biocatalyst for interesterification of soybean oil and lard
Food Chemistry, 194 (2016), pp. 1283-1292, 10.1016/j.foodchem.2015.09.009
Ying and Chen, 2007
M. Ying, G. Chen
Study on the production of biodiesel by magnetic cell biocatalyst based on lipase-producing Bacillus subtilis
Applied Biochemistry and Biotechnology, 137-140 (2007), pp. 793-803, 10.1007/s12010-007-9098-3
Zang et al., 2014
L. Zang, J. Qiu, X. Wu, W. Zhang, E. Sakai, Y. Wei
Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization
Industrial and Engineering Chemistry Research, 53 (2014), pp. 3448-3454, 10.1021/ie404072s